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Abstract

This paper considers few-shot image classification under
the cross-domain scenario, where the train-to-test domain
gap compromises classification accuracy. To mitigate the
domain gap, we propose a prompting-to-disentangle (ProD)
method through a novel exploration with the prompting
mechanism. ProD adopts the popular multi-domain train-
ing scheme and extracts the backbone feature with a stan-
dard Convolutional Neural Network. Based on these two
common practices, the key point of ProD is using the
prompting mechanism in the transformer to disentangle the
domain-general (DG) and domain-specific (DS) knowledge
from the backbone feature. Specifically, ProD concatenates
a DG and a DS prompt to the backbone feature and feeds
them into a lightweight transformer. The DG prompt is
learnable and shared by all the training domains, while the
DS prompt is generated from the domain-of-interest on the
fly. As a result, the transformer outputs DG and DS features
in parallel with the two prompts, yielding the disentangling
effect. We show that: 1) Simply sharing a single DG prompt
for all the training domains already improves generaliza-
tion towards the novel test domain. 2) The cross-domain
generalization can be further reinforced by making the DG
prompt neutral towards the training domains. 3) When in-
ference, the DS prompt is generated from the support sam-
ples and can capture test domain knowledge through the
prompting mechanism. Combining all three benefits, ProD
significantly improves cross-domain few-shot classification.
For instance, on CUB, ProD improves the 5-way 5-shot ac-
curacy from 73.56% (baseline) to 79.19%, setting a new
state of the art.

1. Introduction

Few-shot image classification aims to use very limited
support samples to transfer the classifier from base train-
ing classes to novel test classes [10, 27, 28, 32, 34], which
meets the requirement in application scenarios when train-
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Figure 1. ProD flattens the CNN backbone feature into feature
tokens and concatenates them with the DG and DS prompt. The
DG prompt is learnable and shared by all the training domains
for general knowledge. In contrast, the DS prompt is generated
from same-domain features and thus can capture novel test domain
knowledge from the support images during the test. The output of
the DG/DS prompt is respectively supervised with a global/local
classification head during training and concatenated as the final
representation for inference.

ing data is scarce. However, besides the insufficient data,
in real-world applications, another critical challenge is the
cross-domain problem, i.e., there is usually a domain gap
between the training set and the test set. This train-to-test
domain gap further hinders the knowledge transfer between
the training and test data, significantly compromising the
classification accuracy [7, 12]. In this paper, we tackle the
cross-domain problem for few-shot image classification.

Generally, there are two approaches for mitigating the
domain gap, i.e., domain generalization, and domain adap-
tation. Domain generalization improves the inherent gen-
eralization ability of the learned feature and directly ap-
plies it to novel domains without further tuning. In con-
trast, the domain adaptation uses samples from the novel
domain to fine-tune the already-learned feature. For few-
shot image classification, the domain generalization ap-
proach [14, 21, 29, 41] is more explored than the domain
adaptation approach [12], because limited support samples
hardly provide reliable clues for domain adaptation.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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This paper proposes a prompting-to-disentangle (ProD)
method through a novel exploration with the prompting
mechanism. The prompting technique was first introduced
in natural language processing and has become popular
in computer vision [16, 43]. It aims to switch the trans-
former to different mapping functions without changing its
parameters by using different prompts to condition (im-
pact) the transformer. Compared with prior prompting tech-
niques, our exploration is novel: with a single transformer,
we simultaneously use two prompts to extract the domain-
general (DG) knowledge and the domain-specific (DS)
knowledge in parallel. Therefore, these two prompts switch
a single transformer between two different outputs simul-
taneously, i.e., DG and DS knowledge, yielding the so-
called Prompting-to-Disentangle. The related work section
(Sec.2.3) compares our method and the standard prompting
mechanism.

Importantly, in ProD, both the DG and DS knowledge
are beneficial, contrary to prior works [14, 19, 22] where
the DS knowledge is harmful and discarded. The reason is:
in ProD, the DS knowledge is not bound by the already-
seen training domains. Instead, it can on-the-fly capture
the novel domain knowledge from support samples through
the prompting mechanism (as explained in the 3rd bene-
fit below). Therefore, ProD benefits from the DS knowl-
edge of the novel test domain. Specifically, as illustrated
in Fig.1, ProD adopts the popular multi-domain training
scheme [14, 29] and uses a Convolutional Neural Network
(ResNet-10 [13]) to extract the backbone feature. After-
ward, ProD flattens the backbone feature into multiple fea-
ture tokens, concatenates the feature tokens with a DS and a
DG prompt, and feeds them into a lightweight transformer.
The DG prompt is learnable and shared by all the training
domains, while the DS prompt is generated with backbone
features from the domain-of-interest (i.e., the domain of the
feature tokens) on the fly. In ProD, there are three key points
for mitigating the domain gap:

1) Sharing a single prompt for all the training domains
benefits cross-domain generalization. In other words, we
need no special design to obtain a DG prompt but only to
share a single prompt with multiple domains. During train-
ing, the output state of the DG prompt (i.e. the DG feature
in Fig.1) is fed into a global classifier that contains the cate-
gories from all the training domains. Inference with the DG
feature improves classification accuracy.

2) The DG prompt can be further reinforced by making
it neutral towards all the training domains. To this end, we
enforce a simple constraint: the learned DG prompt should
have identical (or close) distance toward all the training do-
mains. This constraint reduces the bias toward any domain
and enriches the domain-general knowledge, bringing an-
other round of improvement.

3) The DS prompt can capture the DS knowledge from

the domain-of-interest on the fly and thus makes the DS
knowledge beneficial. Specifically, during training, given
an input, we use features from the same domain to gener-
ate a DS prompt. Correspondingly, the knowledge in the
DS prompt is from the input domain specifically rather than
from all the training domains. Moreover, the output DS fea-
ture is supervised by a local classifier, which contains only
the categories in the current domain and thus avoids cross-
domain interference. In the inference phase, we duplicate
the DS prompt generation procedure onto the test domain,
i.e., generating the DS prompt from the support samples.
Therefore, although the model remains unchanged, the on-
the-fly DS prompt modifies the context of the model input
and dynamically conditions the output to the test domain.
Such a prompting and conditioning effect can be viewed as
a test-time adaptation without fine-tuning the model.

ProD concatenates the DG and DS features as the fi-
nal representation for inference, therefore integrating the
benefits of good generalization and fast adaptation. Con-
sequently, ProD effectively mitigates the domain gap and
improves cross-domain few-shot classification. For exam-
ple, on CUB, ProD improves the 5-way 5-shot recognition
accuracy from 73.56% to 79.19% on CUB dataset, setting a
new state of the art.

Our contributions can be summed as follow:
• We propose a Prompting-to-Disentangling (ProD)

method for cross-domain few-shot image classification.
ProD disentangles the domain-general (DG) and domain-
specific (DS) knowledge through a novel exploration of the
prompting mechanism.
• For the DG knowledge, we show that sharing and neu-

tralizing a DG prompt for all the training domains bene-
fits cross-domain generalization. For the DS knowledge,
we condition model to the novel test domain through a DS
prompt generated on-the-fly to replace fine-tuning.
• We conduct extensive experiments to validate the ef-

fectiveness of ProD. Ablation studies show that both the DG
and DS prompt in ProD are effective.

2. Related Work

2.1. Few-shot Image Classification

Few-shot image classification aims at classifying images
from novel categories with limited labeled samples. There
are two few-shot learning schemes: 1) meta-learning and
2) transfer learning. Meta-learning [7, 10, 27, 28, 32, 34] fo-
cus on applying metric learning to simulate few-shot sce-
narios in the training phase and upgrading the training op-
timizer. Transfer learning [38], on the other hand, solves
the problem in a transductive way by re-training a new clas-
sifier [7] or adapter [39] for the novel domain while fixing
other parts of the network. [7, 12] point out that the meta-
learning-based methods underperform the transfer learning
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methods on the cross-domain scenario. In this paper, we
follow the standard transfer learning routine.

2.2. Domain Generalization and Adaptation

Domain generalization [36] aims to improve cross-
domain performance without needing to access the target
domain. Generalization can be achieved by data augmen-
tation and generation [21, 33], domain-invariant represen-
tation learning & feature disentangle [1, 3, 19], and gen-
eral training strategies [9, 37]. In the few-shot learning
scenario, [21] proposes a noise-enhanced supervised au-
toencoder to generate augmentation samples. [14] use the
model with average parameters from multiple iterations as
the general domain teacher. In contrast, domain adapta-
tion relies on the target domain data to transfer an already-
trained model from the source domain to the target do-
main [2, 6, 11, 15, 25, 30, 40]. [20] applies an adapter to
transform the general feature into a specific one for few-shot
learning. The proposed ProD may be viewed as combining
the benefits of domain generalization (through DG knowl-
edge) and domain adaptation (through DS knowledge). We
note that there is no fine-tuning to achieve the domain adap-
tation effect: When ProD is applied to the novel test (target)
domain, the entire model for extracting the feature is fixed.
Instead, ProD conditions the DS knowledge to the novel test
domain by generating a DS prompt on-the-fly.

2.3. Prompting Mechanism

The prompting technique [5] was first introduced in nat-
ural language processing. It modifies the pre-trained lan-
guage model for different downstream tasks by changing
the prompt instead of tuning the deep model. Recently,
the prompting mechanism has been applied in vision tasks
for efficient fine-tuning [16]. Compared with the exist-
ing methods [23], our ProD has close connections and sig-
nificant differences. Similar to prior works, in ProD, the
prompt changes the mapping function of the deep model
by modifying the context of the model input and does not
change the model parameters. Still, there are two signifi-
cant differences regarding training and inference. 1) Train-
ing: recent prompting techniques usually require a pre-
trained model. Then, the prompts are injected and tuned
for novel downstream tasks. When tuning the prompt, the
pre-trained model is frozen. In contrast, in the proposed
ProD, the “base model” (the CNN and the transformer head)
and the prompts are trained simultaneously from scratch
in an end-to-end manner. 2) Inference: Different prompts
are usually employed separately in recent popular prompt-
ing techniques. In contrast, ProD simultaneously injects
two prompts to activate two different knowledge in paral-
lel. Moreover, the prompting objective, i.e., using different
prompts to disentangle domain-general and domain-specific
knowledge is novel, so far as we know.

3. Methodology
3.1. Problem Formulation

In this paper, we adopt the popular multi-domain train-
ing paradigm [14, 17, 19, 24] for solving the cross-domain
few-shot learning task. Specifically, we use a group of
training datasets corresponding to different domains D =
{D0,D1, ...,DN}. In each training iteration, we randomly
sample a dataset and conduct a few-show learning episode
on the corresponding domain.

The test dataset is from a novel domain Dt and contains
images with disjoint labels.

In the test phase, only a few labeled samples are provided
for fine-tuning the model. Each testing episode performs a
C-way K-shot task by randomly sampling a support set and
a query set from the test domain Dt. The support set consists
of C × K (C is the number of classes, and each class has
K samples) samples, and the query set consists of multiple
unlabeled images from these C classes.

3.2. Overall Pipeline of ProD

The overall pipeline of ProD is illustrated in Fig.2 (a).
In each training iteration, we randomly select a training do-
main Dn ∈ D and sample multiple images {xn

i } (the su-
perscript n indicates the n-th domain). ProD feeds these
images into a CNN backbone, denoted as f(), to produce
their backbone features. Correspondingly, for each image x
(the superscript and upper-script are omitted), its backbone
feature is a convolutional feature map f(x) ∈ RD×H×W

(D, H , W are the dimension, height, and width).
Given a backbone feature f(x), ProD flattens it into a

feature sequence consisting of H ×W tokens (each token
is D-dimensional), i.e., F ∈ R(HW )×D. These feature to-
kens are then concatenated with a DG prompt (G) and a
DS prompt (S). Since the concatenated tokens are to be in-
put into the multi-block transformer, we add a superscript
“0” to indicate their position (i.e., F0, G0 and S0). The
DG prompt G0 consists of multiple tokens and is learnable
(Sec.3.3). The DS prompt S0 is generated from some other
backbone features in the current domain Dn during training
(Sec.3.4). During testing, S0 is generated from the sup-
port samples in Dt to capture the novel domain knowledge.
ProD feeds the concatenated tokens into a transformer with
L blocks (we empirically set L = 2), which is formulated
as:

[Fl,Gl,Sl] = Bl([F
l−1,Gl−1,Sl−1]), (1)

where Bl (l = 1, 2, · · · , L) is the l-th transformer block,
[ ] is the concatenation operation.

During training, the output state of GD and GS prompts
(i.e., GL and SL) are fed into a global and local classi-
fication head, respectively. The global classification head
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Figure 2. The architecture of ProD. (a) and (b) respectively depict the overall pipeline and the DG prompt neutralization. GAP represents
global average pooling. In (a), ProD first extracts the backbone feature with a CNN backbone. Then, it flattens the backbone feature into
feature tokens and concatenates them with a learnable DG prompt and an on-the-fly DS prompt. The outputs of the DG / DS prompt are
fed into a global / local classification head, respectively. In (b), we maintain the domain centers using momentum update, use the domain
centers to push the DG prompt (in all the transformer blocks except the final output state) far away, therefore neutralizing the DG prompt.

Hglobal contains the holistic classes from all the domains
D = {D0,D1, · · · ,DN}. In contrast, the local classification
head Hn only contains the classes from the current domain
Dn (n ∈ 1, 2, · · · , N ).

During testing, we use the concatenation of GL and SL

as the final representation and discard Fl. GL contains
domain-general knowledge, while SL contains domain-
specific knowledge conditioned by the novel test domain.
Combining these two features brings complementary bene-
fits for cross-domain evaluation (Sec.4.3).

The following Sec.3.3 elaborates on the DG prompt,
neutralizing DG prompt for better domain generalization
and the corresponding global classification head. Sec.3.4
elaborates on the DS prompt and the corresponding local
classification head.

3.3. Learning Domain-General Feature

3.3.1 DG Prompt and Global Classification

Domain-General prompt G0 contains multiple trainable
tokens. When the feature tokens and the DG tokens
([F0,G0]) proceed in the transformer, they interact with
each other through the attention mechanism. After L trans-
former blocks (Eqn.1), we consider the output GL as con-
taining domain-general knowledge and use a global classi-
fication head to supervise GL, which is formulated as:

LG = − log
exp (wy ·GL)∑
j exp (wj ·GL)

, (2)

where wj enumerates all the weight vectors in the global
classification head. wy is the weight vector of the ground-
truth class. “ · ” is the inner product operation. “ ” is the
average pooling operation, through which multiple tokens
in GL are pooled into a vector GL. This global classifi-
cation head covers all the classes from the entire training
domains D = {D1,D2, · · · ,DN}.

Empirically, we find that adding DG prompt brings con-
siderable improvement (e.g., in Sec.4.3, + 1.82 top-1 accu-
racy on CUB) over the “CNN+Transformer” baseline. An-
alytically, it is because the DG prompt brings additional in-
put tokens shared by all the training domains. Intuitively, if
the number of DG prompt tokens is extremely large, differ-
ent input images will have almost the same representation.
Under this extreme assumption, the deep representation has
minimal domain bias. However, it lacks basic discrimina-
tive ability and might not be recognized properly. There-
fore, the number of DS prompt tokens matters and is empir-
ically set to 5, as illustrated in Sec.4.3.

3.3.2 Neutralizing DG Prompt

We further neutralize the DG prompt to reinforce its gen-
eralization ability. The intuition is that if the DG prompt
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has no bias to any training domains D, it can capture more
general knowledge and further benefit cross-domain gener-
alization. To this end, given a DG prompt, we measure its
domain bias through the cosine similarity towards different
training domain centers, as illustrated in Fig.2 (b). A do-
main center is the averaged feature of all the samples in the
corresponding domain, which can be online approximated
by momentum update:

pn ← λpn + (1− λ)

∑B
i=1 f(x

n
i )

B
, (3)

where the superscript n indicates the n-th training domain,
λ is the momentum rate, B is the batch size, f(xn

i ) is a vec-
tor pooled from the backbone feature through the average
pooling “ ”.

Given the DG prompt, the neutralizing loss minimizes
its cosine similarity to all the domain centers, which is for-
mulated as:

LN =
1

N

N∑
n=1

(| G · pn

∥G∥∥pn∥
|). (4)

The above neutralizing loss (Eqn.4) is performed to Gl

(l = 0, 1, · · · , L − 1). We choose not to neutralize GL

because it conflicts with the global classification loss (which
is also on GL).

3.4. Learning Domain-Specific Feature

3.4.1 Domain-Specific Prompt

The DS prompt S0 is on-the-fly generated from some ran-
dom backbone features f(x) in the current domain through
average pooling, as illustrated in Fig.2 (a). Specifically, dur-
ing training, we choose C training classes, randomly sam-
ple 1 backbone feature f(x) from each class, and use the
average-pooled vector f(x) as a corresponding token. Con-
sequently, S0 contains C tokens, i.e., S0 ∈ RC×D. During
testing (C-way K-shot), we duplicate the generation pro-
cedure onto the novel testing domain, i.e., using C support
samples (1 from each class) to derive the DS prompt.

A side-effect of the DS prompt is that each DS token
contains the underlying domain knowledge and the class
information from the initialization. While the DS prompt
intends to inject the domain knowledge, the class informa-
tion is NOT desired. It might become a distraction (because
among all the C DS tokens, C−1 tokens belong to different
classes as the query image).

3.4.2 Local Classification Head

To suppress the undesired class information, we design an
“changing identity” objective: after the DS prompt proceeds
in the transformer along with the feature tokens F, each
DS token should lose its own class identity and changes the

identity to the same as F. To this end, ProD feeds the output
state of the DS prompt (after average pooling), i.e., SL into
a local classification head. The local classifier only covers
the training classes in the current n-th domain, which is for-
mulated as:

LS = − log
exp (un

y · SL)∑
j exp (u

n
j · SL)

, (5)

where un
j enumerates all the weight vectors in the n-th local

classification head, un
y is the weight vector for the ground-

truth category of the input feature tokens F0, rather than any
ground-truth categories for generating the GS prompt.

The reason for using the local classification head instead
of a global head is: in a global classification head, SL (from
a specific domain Dn) interacts with all the weight vectors
from the entire training domains D = {D1,D2, · · · ,DN}.
The global interaction will propagate domain knowledge
from other domains (Dj ̸=n) to SL and thus blur its domain-
specific knowledge.

The overall loss for ProD is calculated as:

L = LG + αLN + βLS , (6)

where LG, LN , LS are the global classification loss
(Eqn.2), neutralizing loss (Eqn.4), and the local classifica-
tion loss (Eqn.5), respectively. α and β are the balancing
hyper-parameters.

4. Experiments
4.1. Setting

Datasets. Following the popular multi-domain train-
ing scheme, we use miniImageNet [26] and four fine-
grained datasets, i.e., CUB [4], Cars [18], Plantae [31] and
Places [42]. We adopt the leave-on-out setting, i.e., choos-
ing one fine-grained dataset for inference and using the
other three fine-grained datasets along with miniImageNet
for training.

The baseline of ProD consist of CNN (ResNet-10 [13])
and a lightweight Transformer head. Without DG or
DS prompt, this “CNN+Transformer” baseline achieves
72.32% 5-way 5-shot accuracy on CUB and outperforms
the popular pure CNN baseline (68.98%) by +3.34%, as
to be detailed in Sec.4.5. We note that: 1) a strong
“CNN+Transformer” baseline only contributes a small por-
tion to the superiority of ProD because ProD further im-
proves the baseline by a large margin (e.g., +6.87% on
CUB), and 2) adding the transformer head increases the
model size (5.3M → 8.5M, as discussed in Sec.4.5) but is
still efficient (smaller than ResNet-18 but achieves higher
accuracy).

Inference. In the C-way K-shot testing phase, the trans-
former and CNN backbone are both frozen. Then, we ran-
domly select C support samples (each from a class) and
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Methods CUB CARS Plantae Places

RelationNet [28] 35.21± 0.46 30.12± 0.49 31.99± 0.51 49.79± 0.57
MatchingNet [32] 42.28± 0.61 28.91± 0.56 33.02± 0.56 48.53± 0.62
RelationNet+LFT [29] 48.10± 0.62 32.26± 0.58 35.21± 0.59 51.02± 0.56
MatchingNet+LFT [29] 43.38± 0.58 30.68± 0.59 35.10± 0.54 52.63± 0.55
RelationNet+ATA [35] 48.49± 0.61 31.92± 0.58 33.62± 0.49 51.00± 0.50
DSL [14] 50.15± 0.80 37.13± 0.69 41.17± 0.80 53.16± 0.88

Baseline 48.56± 0.72 33.15± 0.64 37.94± 0.71 49.81± 0.69
ProD 53.97± 0.71 38.02± 0.63 42.86± 0.59 53.92± 0.72

Table 1. Comparison with the state of the arts on 5-way 1-shot task.

Methods CUB CARS Plantae Places

RelationNet 51.10± 0.62 38.26± 0.58 62.99± 0.62 46.01± 0.57
MatchingNet 57.21± 0.63 36.98± 0.56 62.83± 0.62 43.68± 0.55
RelationNet+LFT 65.02± 0.55 43.51± 0.51 50.48± 0.46 67.34± 0.52
MatchingNet+LFT 61.44± 0.56 43.12± 0.52 48.49± 0.51 65.09± 0.48
RelationNet+ATA 59.42± 0.48 42.99± 0.42 45.51± 0.51 67.10± 0.41
NSAE [21] 68.17± 0.54 54.77± 0.56 59.51± 0.55 70.93± 0.54
DSL 73.57± 0.65 58.53± 0.73 62.10± 0.75 74.10± 0.72

Baseline 72.32± 0.77 53.17± 0.71 60.05± 0.69 69.13± 0.60
ProD 79.19± 0.59 59.49± 0.68 65.82± 0.65 75.00± 0.72

Table 2. Comparison with the state of the arts on 5-way 5-shot task.

use their backbone features to generate the DS prompt on
the fly. Finally, the DS and DG prompt outputs are con-
catenated as the feature representation. Finally, we use the
support features to learn a new linear classification head and
then use the new head to classify the query samples, consis-
tent with the standard few-shot classification pipeline.

Implementation details. We set the parameters for bal-
ancing the neutralizing loss and local classification loss to
α = 1 and β = 1 in Eqn.6. The transformer has only two
blocks with an 8-head attention layer. Feature channels of
the backbone feature and transformer layers are all 512. The
DS and DG prompts both consist of 5 tokens. We train the
model for 500 epochs and adopt the standard 5-way 1-shot
and 5-way 5-shot test routine [7, 10, 27, 28, 32] for evalua-
tion. More training and inference details are provided in the
supplementary material.

4.2. Effectiveness of ProD

We compare the proposed ProD with the baseline and
state of the art in Tab.1 (5-way 1-shot) and Tab.2 (5-way 5-
shot). For a fair comparison, all the competing methods use
the multi-domain training scheme, which is usually better
than the single-domain counterpart. A more comprehensive
comparison, including the single-domain competing meth-
ods, is provided in the supplementary. We draw two obser-
vations:

First, ProD improves the “CNN+Transformer” baseline
by a large margin. For example, under the 5-way 5-shot

setting, ProD increases the accuracy by +6.87%, +6.32%,
+5.77%, +5.87% on CUB, CARS, Plantae, Places, respec-
tively. ProD only adds ten prompt tokens (5 DG tokens +
5 DS tokens) over the baseline and incurs very small com-
putational overhead. The improvement validates the effec-
tiveness of the proposed Prompting-to-Disentangling mech-
anism.

Second, ProD achieves accuracy on par with state of the
art. Under the 1-shot setting, ProD surpasses the strongest
competitor DSL by +3.82%, +0.89%, +1.69%, +0.86%
on CUB, CARS, Plantae, Places, respectively. Under the
5-shot setting, the superiority of ProD is even larger, i.e.,
+6.87%, +0.96%, +3.72%, +0.90% higher accuracy on
CUB, CARS, Plantae, Places, respectively.

4.3. Ablation Study

4.3.1 DG and DS prompts

Tab.3 investigates two key components, i.e., the domain-
general (DG) and the domain-specific (DS) prompt through
ablation on CUB. Based on the result, we draw three obser-
vations below:

First, adding the DG / DS prompt independently im-
proves the baseline (e.g., +2.80% / +2.59% 5-way 5-shot
accuracy). It indicates that DG and DS knowledge are both
beneficial. We note that making the DS knowledge benefi-
cial is particularly difficult in few-shot learning because the
few samples are insufficient for fine-tuning the DS knowl-
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Methods CUB
1-shot 5-shot

Basel. 48.56± 0.59 72.32± 0.67
Basel. + DG 51.89± 0.63 75.12± 0.69
Basel. + DS 51.48± 0.71 74.91± 0.68
Basel. + DG + DS 52.69± 0.66 77.63± 0.74
Basel. + DG + LN 53.08± 0.74 78.65± 0.68

Table 3. Evaluation of key components: DG prompt (DG), neu-
tralizing loss (LN ), and DS prompt (DS).

Methods CUB
1-shot 5-shot

Basel. 48.56± 0.59 72.32± 0.67
Basel. + DS (global) 50.39± 0.71 73.87± 0.66
Basel. + DS (local) 51.48± 0.71 74.91± 0.68
ProD (global) 52.08± 0.74 77.65± 0.68
ProD (local) 53.97± 0.71 79.19± 0.63

Table 4. Comparison between the local and global classification
heads on the DS prompt.

edge. Therefore, most of the prior works usually discard the
DS knowledge. In contrast, ProD on-the-fly conditions the
DS knowledge to the novel test domain without fine-tuning
the model, therefore making the DS knowledge beneficial.

Second, comparing “Basel. + DG + DS” against “Basel.
+ DG (or DS)”, we find that combining the DG and DS
prompt brings further improvement. It indicates that the
DG and conditioned DS knowledge achieve complementary
benefits for the cross-domain challenge.

Third, neutralizing the DG prompt is beneficial and
brings another round improvement of +0.39% and +1.02%
accuracy under the 1-shot and 5-shot setting, respectively.

4.3.2 Local Classification for DS Prompt

To learn the DS prompt and the corresponding DS knowl-
edge, ProD uses a local classification head that contains
only the classes in the current domain. Tab.4 validates this
choice by replacing the local head with a global one. The
result shows that the local heads better cooperate with the
DS prompt. For example, global head reduces the 5-way 5-
shot accuracy by +1.33% (only DS prompt) / +1.54% (full
ProD with DG + DS prompt). We infer that the global clas-
sification head makes each DS feature interact with class-
specific prototypes (i.e., the weight vectors) across all the
training domains. Such cross-domain interaction brings in-
terference and blurs the DS knowledge.

4.3.3 Choice of Inference Features

ProD provides three outputs, i.e., feature tokens FL, DG to-
kens GL and DS tokens SL. Each output is averaged into a

Inference Input CUB
1-shot 5-shot

Feature Token 51.51± 0.72 76.13± 0.68
DG 53.01± 0.74 78.17± 0.61
DS 52.07± 0.69 77.64± 0.63
DG+DS 53.97± 0.71 79.19± 0.63
DG+DS+Feature Token 52.18± 0.75 78.04± 0.72

Table 5. Comparison between different features for inference with
a complete ProD model.
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Figure 3. Evaluation of different sizes for DG and DS prompts
with a complete ProD model.

vector through pooling layers. Tab.5 investigates how to de-
rive the most discriminative representation with these vec-
tors. This ablation is based on a complete ProD, different
from Tab.3 where several key components are removed dur-
ing training. We draw two observations below:

First, when each type is used alone, the “DG” and “DS”
feature tokens are better than the main “Feature Token”. It
validates that the DG and DS prompt effectively activate the
DG and DS knowledge from the original backbone features
and is thus superior. We also note that the main feature
token in ProD is better than the main feature token in the
baseline (“Basel.” in Tab.4). It is because, in ProD, the DG
and DS knowledge can be partially propagated to the main
feature token through the attention in the transformer.

Second, comparing two combination strategies against
each other, we find “DG+DS” is better. It indicates that the
DG and DS prompt achieve a complementary benefit while
further adding the main feature token compromises ProD.
Therefore, we use “DG+DS” as the final representation.

4.4. Analysis on Hyper-parameters

4.4.1 DG and DS Prompt Size
We investigate the impact of prompt size, i.e., the number
of tokens in DG and DS prompt. The results are shown in
Fig.3, from which we draw two observations below:

First, as the DG prompt size increases, the achieved ac-
curacy undergoes a sharp increase and a following slow de-
crease. We infer that the reason is two-fold. On the one
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Figure 4. Analysis of the transformer depth (CUB dataset, 5-
way 5-shot test). The ordinate is NOT linearly scaled for the
“69.0→78.5” interval.

hand, increasing the DG prompt size enhances its capability
for capturing domain-general knowledge and is thus benefi-
cial. However, on the other hand, an oversized DG prompt
might suppress the difference between samples (because all
the samples share the same DG prompt), thus decreasing
the discriminative ability. Therefore, we set the DG prompt
size to 5, which achieves 79.19% 5-way 5-shot accuracy on
CUB, for all the datasets.

Second, increasing the DS prompt size brings a similar
trend of “increasing → slightly decreasing” the accuracy.
In the supplementary material, we further investigate DS
prompt size under the 10-way 5-shot setting. The results
show that 5 ∼ 10 DS tokens achieve close results, indicat-
ing that the DS prompt size does not have to increase along
with C when C is large.

4.4.2 Transformer Depth

We analyze the impact of transformer depth on CUB under
the 5-way 5-shot setting. All the models are the full ProD
model except for the “0 layer backbone feature”. The results
are shown in Fig.4. We draw two observations below:

First, when the transformer has only one block, it already
significantly improves +9.70% over the CNN backbone
feature (68.98%→78.68%). We note that: 1) the additional
computation cost within a 1-block transformer is minimal
(less than 1.6M), and 2) adding a transformer without our
prompting-to-disentangling mechanism only brings slight
improvement. Combining these two facts, we infer that
the improvement is mainly contributed by our prompting-
to-disentangling mechanism rather than the transformer it-
self.

Second, when the transformer depth increases, the ac-
curacy increases to its peak of 79.19% and gradually de-
creases. We infer that the reason is two-fold. On the one
hand, two transformer blocks are already sufficient for de-
picting the required prompting-to-disentangling effect. On
the other hand, training a large transformer generally re-

Method Size CUB 5-shot

Res10 5.3M 68.98± 0.81
Res18 11.7M 72.39± 0.84
Basel. (Res10 + Trans) 8.5M 72.32± 0.77
ProD (Res10 + Trans + Prompt) 8.6M 79.19± 0.59

Table 6. Analysis of the computational efficiency. “Res10”,
“Res18” and “Trans” denote ResNet-10, ResNet-18 and the trans-
former head, respectively.

quires a large-scale dataset [8], while the small-scale train-
ing data in few-shot learning is insufficient. Therefore, we
set the transformer depth to 2 as the optimized result.

4.5. Computational Efficiency
Tab.6 analyzes the computational efficiency by compar-

ing the model size and the achieved accuracy. Comparing
“Basel. (Res10 + Trans)” against “Res10”, we observe that
the transformer head increases 3.2M parameters and brings
+3.34% accuracy improvement (68.98%→ 72.32%). This
improvement is due to the inherent capability of the trans-
former. Based on the baseline, ProD further brings +6.87%
accuracy improvement while adding only about 0.1M pa-
rameters. It indicates that the prompting-to-disentangling
mechanism is the major reason for the superiority of ProD
and is very efficient. Moreover, when compared with
the larger pure CNN model (ResNet-18), ProD (based on
ResNet-10) is still more accurate while being smaller.

5. Limitation
A limitation is that we have not investigated the pro-

posed ProD on a pure-transformer network (e.g., ViT [8]).
There are two reasons: 1) prior works are based on the
CNN backbone and are not entirely comparable with a pure-
transformer method, and 2) training a ViT model requires
a large-scale dataset, which is not satisfied in the few-shot
learning task. In the feature, we will consider developing an
efficient pure-transformer for few-shot learning.

6. Conclusion
This paper proposes a prompting-to-disentangling

(ProD) method for cross-domain few-shot image classifi-
cation. ProD uses two parallel prompts to disentangle the
domain-general and domain-specific knowledge from a sin-
gle backbone feature. While the domain-specific knowl-
edge in prior works is usually bound to the already-seen
training domain and is thus harmful, the domain-specific
knowledge in ProD can be conditioned to the novel test do-
main through the on-the-fly DS prompt. Therefore, ProD
benefits from both domain-general and domain-specific
knowledge and significantly improves the baseline. More-
over, the achieved results are on par with state of the art.
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