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Abstract

Post-training quantization (PTQ) is widely regarded as
one of the most efficient compression methods practically,
benefitting from its data privacy and low computation costs.
We argue that an overlooked problem of oscillation is in the
PTQ methods. In this paper, we take the initiative to ex-
plore and present a theoretical proof to explain why such a
problem is essential in PTQ. And then, we try to solve this
problem by introducing a principled and generalized frame-
work theoretically. In particular, we first formulate the os-
cillation in PTQ and prove the problem is caused by the dif-
ference in module capacity. To this end, we define the mod-
ule capacity (ModCap) under data-dependent and data-free
scenarios, where the differentials between adjacent modules
are used to measure the degree of oscillation. The prob-
lem is then solved by selecting top-k differentials, in which
the corresponding modules are jointly optimized and quan-
tized. Extensive experiments demonstrate that our method
successfully reduces the performance drop and is general-
ized to different neural networks and PTQ methods. For
example, with 2/4 bit ResNet-50 quantization, our method
surpasses the previous state-of-the-art method by 1.9%. It
becomes more significant on small model quantization, e.g.
surpasses BRECQ method by 6.61% on MobileNetV2×0.5.

1. Introduction
Deep Neural Networks (DNNs) have rapidly become a

research hotspot in recent years, being applied to various
*This work was done when Yuexiao Ma was intern at ByteDance Inc.

Code is available at: https://github.com/bytedance/MRECG
†Corresponding Author: rrji@xmu.edu.cn

Oscillation

Figure 1. Left: Reconstruction loss distribution of BRECQ [17]
on 0.5 scaled MobileNetV2 quantized to 4/4 bit. Loss oscilla-
tion in BRECQ during reconstruction see red dashed box. Right:
Mixed reconstruction granularity (MRECG) smoothing loss oscil-
lation and achieving higher accuracy.

scenarios in practice. However, as DNNs evolve, better
model performance is usually associated with huge resource
consumption from deeper and wider networks [8, 14, 28].
Meanwhile, the research field of neural network compres-
sion and acceleration, which aims to deploy models in
resource-constrained scenarios, is gradually gaining more
and more attention, including but not limited to Neural Ar-
chitecture Search [18, 19, 33, 35–40, 42, 43], network prun-
ing [4, 7, 16, 27, 32, 41], and quantization [3, 5, 6, 15, 17, 21,
22,29,31]. Among these methods, quantization proposed to
transform float network activations and weights to low-bit
fixed points, which is capable of accelerating inference [13]
or training [44] speed with little performance degradation.

In general, network quantization methods are divided
into quantization-aware training (QAT) [3, 5, 6] and post-
training quantization (PTQ) [11, 17, 22, 31]. The former
reduces the quantization error by quantization fine-tuning.
Despite the remarkable results, the massive data require-
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ments and high computational costs hinder the pervasive
deployment of DNNs, especially on resource-constrained
devices. Therefore, PTQ is proposed to solve the aforemen-
tioned problem, which requires only minor or zero calibra-
tion data for model reconstruction. Since there is no iter-
ative process of quantization training, PTQ algorithms are
extremely efficient, usually obtaining and deploying quan-
tized models in a few minutes. However, this efficiency of-
ten comes at the partial sacrifice of accuracy. PTQ typically
performs worse than full precision models without quanti-
zation training, especially in low-bit compact model quan-
tization. Some recent algorithms [17, 22, 31] try to address
this problem. For example, Nagel et al. [22] constructs new
optimization functions by second-order Taylor expansions
of the loss functions before and after quantization, which
introduces soft quantization with learnable parameters to
achieve adaptive weight rounding. Li et al. [17] changes
layer-by-layer to block-by-block reconstruction and uses di-
agonal Fisher matrices to approximate the Hessian matrix to
retain more information. Wei et al. [31] discovers that ran-
domly disabling some elements of the activation quantiza-
tion can smooth the loss surface of the quantization weights.

However, we observe that all the above methods show
different degrees of oscillation with the deepening of the
layer or block during the reconstruction process, as illus-
trated in the left sub-figure of Fig. 1. We argue that the
problem is essential and has been overlooked in the previ-
ous PTQ methods. In this paper, through strict mathemati-
cal definitions and proofs, we answer 3 questions about the
oscillation problem, which are listed as follows:

(i). Why the oscillation happens in PTQ? To answer
this question, we first define module topological homogene-
ity, which relaxes the module equivalence restriction to a
certain extent. And then, we give the definition of module
capacity under the condition of module topological homo-
geneity. In this case, we can prove that when the capacity of
the later module is large enough, the reconstruction loss will
break through the effect of quantization error accumulation
and decrease. On the contrary, if the capacity of the later
module is smaller than that of the preceding module, the
reconstruction loss increases sharply due to the amplified
quantization error accumulation effect. Overall, we demon-
strate that the oscillation of the loss during PTQ reconstruc-
tion is caused by the difference in module capacity;

(ii). How the oscillation will influence the final perfor-
mance? We observe that the final reconstruction error is
highly correlated with the largest reconstruction error in all
the previous modules by randomly sampling a large num-
ber of mixed reconstruction granularity schemes. In other
words, when oscillation occurs, the previous modules ob-
viously have larger reconstruction errors, thus leading to
worse accuracy in PTQ;

(iii). How to solve the oscillation problem in PTQ?

Since oscillation is caused by the different capacities
of the front and rear modules, we propose the Mixed
REConstruction Granularity (MRECG) method which
jointly optimizes the modules where oscillation occurs.
Besides, our method is applicable in data-free and data-
dependent scenarios, which is also compatible with differ-
ent PTQ methods. In general, our contributions are listed as
follows:

• We reveal for the first time the oscillation problem in
PTQ, which has been neglected in previous algorithms.
However, we discover that smoothing out this oscilla-
tion is essential in the optimization of PTQ.

• We show theoretically that this oscillation is caused by
the difference in the capability of adjacent modules.
A small module capability exacerbates the cumulative
effect of quantization errors making the loss increase
rapidly, while a large module capability reduces the cu-
mulative quantization errors making the loss decrease.

• To solve the oscillation problem, we propose a
novel Mixed REConstruction Granularity (MRECG)
method, which employs loss metric and module capac-
ity to optimize mixed reconstruction granularity under
data-dependency and data-free scenarios. The former
finds the global optimum with moderately higher over-
head and thus has the best performance. The latter is
more effective with a minor performance drop.

• We validate the effectiveness of the proposed method
on a wide range of compression tasks in ImageNet.
In particular, we achieve a Top-1 accuracy of 58.49%
in MobileNetV2 with 2/4 bit, which exceeds current
SOTA methods by a large margin. Besides, we also
confirm that our algorithm indeed eliminates the oscil-
lation of reconstruction loss on different models and
makes the reconstruction process more stable.

2. Related Work
Quantization: Quantization can be divided into two cat-
egories: Quantization-Aware Training (QAT) and Post-
Training Quantization (PTQ). QAT [3, 5, 45] uses the en-
tire training dataset for quantization training and updates
the gradients by back-propagation of the network to elimi-
nate quantization errors. Although QAT integrates various
training methods to achieve higher accuracy, this process is
often resource intensive and limited in certain data privacy
scenarios. Our research interest is not in this field.

PTQ has attracted increasing attention in recent years
due to the advantages of efficient model deployment and
low data dependence. Since quantization training is not
included, PTQ algorithms usually use a small calibration
dataset for reconstruction to obtain a better-quantized model
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Figure 2. Overview of our method. Top: Optimization process for MRECG. We first estimate the capacity of each module, then we rank
the capacity difference of adjacent modules, and finally we jointly optimize the adjacent modules corresponding to the top-k capacity
difference. Bottom left: Module capacity estimation for data-dependent scenarios. We calculate the squared Frobenius norm of the feature
map difference before and after quantization in the PTQ process. Bottom right: Module capacity estimation for the data-free scenario. We
sum the convolutional layer capacities corresponding to the modules.

by optimizing the approximation of the second-order Taylor
expansion term for task loss, which is introduced in Sec. 1.
Module Capacity: Some common parameters affect the
module capacity, for example, the size of the filter, the bit
width of the weight parameter, and the number of convolu-
tional groups. In addition, some investigations show that the
stride and residual shortcuts also affect the module capacity.
Kong et al. [12] show that convolution with stride=2 can be
equivalently replaced by convolution with stride=1. Mean-
while, the filter size of the replaced convolution is larger
than that of the original convolution, implying an increase in
module capacity. The MobileNetV2 proposed by [26] con-
tains depth-wise convolution, which does not contain the
exchange of information between channels, so it somehow
compromises the model performance. Liu et al. [20] argue
that the input of full precision residual shortcuts increases
the representation capacity of the quantized module.

3. Methodology

In this section, we first prove that the oscillation problem
of PTQ is highly correlated with the module capacity by a
theorem and corollary. Secondly, we construct the capacity
difference optimization problem and present two solutions
in data-dependent and data-free scenarios, respectively. Fi-
nally, we analyze expanding the batch size of the calibration

data to reduce the expectation approximation error, which
shows a trend of diminishing marginal utility.

3.1. Oscillation problem of PTQ

Without loss of generality, we employ modules as the
basic unit of our analysis. In particular, different from
BRECQ, module granularity in this paper is more flexible,
which represents the layer, block, or even stage granularity.
Formally, we set f (ni)

i (·) be the i-th (i=1,2,...,L) module of
the neural network which contains ni convolutional layers.
We propose a more general reconstruction loss under the
module granularity framework as follows,

L(Wi, Xi) = E
[
∥f (ni)

i (Wi, Xi)− f
(ni)
i (W̃i, X̃i)∥

2

F

]
,

(1)
where Wi, Xi are the weights and inputs of the i-th mod-
ule, respectively. W̃i, X̃i are the corresponding quan-
tized version. When f

(ni)
i (·) contains only one con-

volution layer, Eq. 1 degenerates to the optimization

function ∥WiXi − W̃iX̃i∥
2

F in AdaRound [22]. When
f
(ni)
i (·) contains all convolutional layers within the i-

th block, Eq. 1 degenerates to the optimization function
E
[
∆z(i),THz(i)

∆z(i)
]

in BRECQ [17]. Note that we ig-
nore the regularization term in AdaRound which facilitates
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Figure 3. The relationship between the final reconstruction error
and the maximum reconstruction error of the previous module. We
randomly sample a number of mixed reconstruction granularity
schemes and recover the accuracy using BRECQ or QDROP. We
record the final reconstruction error and the maximum reconstruc-
tion error of the previous modules for each scheme. The first row
of the figure represents the experiments on 4/4 bit ResNet-18. The
second row of the figure represents the experiments on 4/4 bit 0.5
scaled MobileNetV2. The first and second columns represent us-
ing the BRECQ or QDROP algorithms to recover the accuracy.

convergence since it converges to 0 after each module is op-
timized. In addition, we omit the squared gradient scale in
BRECQ for simplicity. If two modules have the same num-
ber of convolutional layers and all associated convolutional
layers have the same hyper-parameters, they are called to be
equivalent (including but not limited to additional residual
input, kernel size, channels, groups, and stride).

There exists an accumulation effect of quantization er-
ror in quantization [34], which is manifested by the increas-
ing tendency of quantization error in the network influenced
by the quantization of previous layers. Since PTQ does
not contain quantization training, this accumulation effect
is more obvious in reconstruction loss. We propose the fol-
lowing theorem to demonstrate that the accumulation effect
of quantization error in PTQ leads to an incremental loss.

Theorem 1 Given a pre-trained model and input data. If
two adjacent modules are equivalent, we have,

L(Wi, Xi) ≤ L(Wi+1, Xi+1). (2)

Detailed proof is provided in the supplementary material.
Theorem 1 illustrates that under the condition that two ad-
jacent modules are equivalent, the quantization error accu-
mulation leads to the increment of loss

However, due to the difference of one or several con-
volution hyper-parameters (additional residual input, kernel
size, channels, groups, stride, etc.), the condition of adja-
cent module equivalence in the above theorem is difficult
to be satisfied in real scenarios. Non-equivalent modules
will inevitably result in differences in module capacity. It
is well-known that the number of parameters and the bit-
width of the module affects the module capacity, in which
the effect of these hyper-parameters on the module capacity
is easy to quantify. In addition, we introduce in Sec. 2 that
the residual input [20], the convolution type [26], and the
convolution hyperparameters [12] all affect the module ca-
pacity, which the effects are difficult to quantify. Therefore,
we define the concept of module topological homogeneity
as follows, which relaxes the restrictions on module equiv-
alence to some extent, while making it possible to compare
capacities between different modules.

Definition 1 (Module Topological Homogeneity) Suppose
two modules have the same number of convolutional layers.
If the hyper-parameters of the corresponding convolutional
layers of the two modules are the same except for the ker-
nel size and channels, we claim that the two modules are
topologically homogeneous.

From Definition 1, we relax the restriction of module
equivalence on the equality of kernel size and channels in
module topology homogeneity, which only results in dif-
ferences in the number of module parameters. In other
words, we obviate the problem that the impact of hyper-
parameters such as residual inputs and groups makes the
module capacity hard to be quantified. Specifically, if the
module weight containing n convolutional layers is W =
[W1,W2, · · · ,Wn] and Wi is the weight of the i-th convo-
lution layer in the module, then the module capacity (Mod-
Cap) is defined as the following equation.

ModCap =

n∑
i=1

params(Wi)× bi × αi, (3)

where params(·) is a function that counts the number of pa-
rameters, bi is the bit-width of the i-th convolutional layer,
and αi is used to make convolutional layers that have differ-
ent strides comparable. Specifically, convolutional layers of
different strides are equated by some transformation [12],
accompanied by a change in the number of parameters.
Therefore, we convert the stride = 2 layer in the network
to implicit stride = 1 layer by multiplying the scaling pa-
rameter αi. Under this conversion, all layers of the network
satisfy the definition of topological homogeneity and thus
are comparable with each other. Theoretically, according to
the analysis of [12], αi can be set to 1.6, which is general-
ized in different networks in our paper.

Then, we derive a corollary of Theorem 1 to explain why
the oscillations occur in PTQ.
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Corollary 1 Suppose two adjacent modules be topologi-
cally homogeneous. If the module capacity of the later mod-
ule is large enough, the loss will decrease. Conversely, if the
latter module capacity is smaller than the former, then the
accumulation effect of quantization error is exacerbated.

Detailed proofs are provided in the supplementary mate-
rial. From Corollary 1, we can conclude that the oscilla-
tion problem of PTQ on a wide range of models is caused
by the excessive difference in capacities with adjacent mod-
ules. The logical/correlation chain of our paper: Oscillation
∝ The largest error ∝ Final error ∝ Accuracy. Oscillation
∝ The largest error: From Fig. 6 and a similar figure in
the supplementary material, the more severe the oscillation
of the loss distribution corresponding to the different algo-
rithms, the larger the peak of the loss. That is, the degree
of oscillation is positively correlated with the largest error.
The largest error ∝ Final error: In addition, our observa-
tions in Fig. 3 show that the largest error is positively corre-
lated with the final error on different algorithms for different
models. Final error ∝ Accuracy: Theoretically, by per-
forming a Taylor expansion on the accuracy loss function
according to BRECQ [17] and Adaround [22], we can de-
rive the final reconstruction error that is highly correlated to
the performance. Empirically, extensive experiments con-
ducted in the above papers also prove the statement. In
conclusion, the degree of oscillation of the error is posi-
tively correlated with the accuracy. Fig.1 in our paper also
demonstrates that reducing the degree of oscillation is ben-
eficial to accuracy. In the next section, we will introduce
how to eliminate oscillations in PTQ by optimizing module
capacity differences.

3.2. Mixed REConstruction Granularity

The oscillation problem analyzed in Sec. 3.1 indicates
that the information loss due to the difference in module
capacities will eventually affect the performance of PTQ.
And since there is no quantization training process in PTQ,
this information loss is something that cannot be recovered
even by increasing the model capacity of subsequent mod-
ules. Therefore, we smoothen the loss oscillations by jointly
optimizing modules with large capacity differences, thus re-
ducing the final reconstruction loss.

From Theorem 1 and Corollary 1, it is clear that a small
capacity of the later module will aggravate the cumulative
effect of the quantization error and thus increase the recon-
struction loss sharply. Conversely, a large capacity of the
later module will reduce the loss and increase the probabil-
ity of information loss in the subsequent module. Therefore,
we hope that the capacities of two adjacent modules are
as close as possible. We construct the capacity difference
optimization problem for the model containing L modules
based on the capacity metric (CM) as follows,

argmin
m

L−1∑
l=1

(CM l − CM l+1)
2
ml + λ(m · 1− k)

2
, (4)

where m ∈ Rl−1 is a binary mask vector. When mi=1, it
means we perform joint optimization for the i-th and (i+1)-
th modules. 1 ∈ Rl−1 is a vector with all elements of 1.
k is a hyper-parameter that controls the number of jointly
optimized modules. λ controls the importance ratio of the
regularization term and the squared capacity difference op-
timization objective.

We calculate the square of the difference in capacities
of all L − 1 kinds of adjacent modules for ranking and se-
lect the top k adjacent modules for joint optimization. We
use ModCap and reconstruction loss as our capacity metrics
in the data-free and data-dependent scenarios, respectively.
Details are shown in Fig. 2. The mixed reconstruction gran-
ularity scheme obtained according to the ModCap metric is
computationally efficient because it does not involve the re-
construction. However, once we combine a pair of adjacent
modules, this combined module cannot compare ModCap
for further combination because it is not topologically ho-
mogeneous with the adjacent module. Therefore, this opti-
mization scheme can only obtain the local optimal solution
for the mixed reconstruction granularity.

On the other hand, according to Corollary 1, the ModCap
difference is positively correlated with the difference in re-
construction loss, we can consider the reconstruction loss
itself as a capacity metric. This scheme can get the global
optimal solution, but it requires a PTQ reconstruction to ob-
tain the reconstruction loss, which is relatively inefficient.

Batch size of calibration data. PTQ requires a small
portion of the dataset to do calibration of the quantization
parameters and model reconstruction. We note that Eq. 1
contains the expectation of the squared Frobenius norm.
The expectation represents the average of the random vari-
ables, and we take the average of a sampled batch to approx-
imate the expectation in the reconstruction process. The law
of large numbers [9] proves that the mean of samples is in-
finitely close to the expectation when the sample size N
tends to infinity, i.e.,

lim
N→+∞

1

N

N∑
m=1

∥f (n)
i (Wi, X

(m)
i )− f

(n)
i (W̃i, X̃

(m)
i )∥

2

F

= E
[
∥f (n)

i (Wi, Xi)− f
(n)
i (W̃i, X̃i)∥

2

F

]
,

(5)
Our experiments show that expanding the batch size of

calibration data can improve the accuracy of PTQ. And this
trend shows the diminishing marginal utility. Specifically,
the improvement of PTQ accuracy slows down as the batch
size increases. Details are shown in Sec. 4.3.
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Methods W/A Res18 Res50 MBV2×1.0 MBV2×0.75 MBV2×0.5 MBV2×0.35

Full Prec. 32/32 71.01 76.63 72.20 69.95 64.60 60.08

ACIQ-Mix [1] 4/4 67.00 73.80 - - - -
ZeroQ [2] 4/4 21.71 2.94 26.24 - - -

LAPQ [23] 4/4 60.30 70.00 49.70 - - -
AdaQuant [10] 4/4 69.60 75.90 47.16 - - -
Bit-Split [30] 4/4 67.56 73.71 - - - -

AdaRound [22] 4/4 67.96 73.88 61.52 55.32 40.71 35.13
BRECQ∗ [17] 4/4 68.69 74.88 67.51 62.94 53.02 48.88
Ours+BRECQ 4/4 69.06 (+0.37) 74.84 68.56 (+1.05) 64.55 (+1.61) 55.26 (+2.24) 50.67 (+1.79)
QDROP [31] 4/4 69.10 75.03 67.89 63.26 54.19 49.79

Ours+QDROP 4/4 69.46 (+0.36) 75.35 (+0.32) 68.84 (+0.95) 64.39 (+1.13) 55.64 (+1.45) 50.94 (+1.15)

LAPQ [23] 2/4 0.18 0.14 0.13 - - -
AdaQuant [10] 2/4 0.11 0.12 0.15 - - -
AdaRound [22] 2/4 62.12 66.11 36.31 25.58 15.12 12.46
BRECQ∗ [17] 2/4 63.71 68.55 52.30 47.14 34.55 30.80
Ours+BRECQ 2/4 65.61 (+1.9) 70.04 (+1.49) 58.49 (+6.19) 52.50 (+5.36) 41.16 (+6.61) 35.46 (+4.66)
QDROP [31] 2/4 64.66 70.08 52.92 49.00 37.13 32.37

Ours+QDROP 2/4 66.18 (+1.52) 70.53 (+0.45) 57.85 (+4.93) 53.71 (+4.71) 40.09 (+2.96) 35.85 (+3.48)

AdaQuant [10] 3/3 60.09 67.46 2.23 - - -
AdaRound∗ [22] 3/3 63.91 64.85 34.55 18.16 8.13 4.45
BRECQ∗ [17] 3/3 64.83 70.06 52.03 45.54 29.79 25.52
Ours+BRECQ 3/3 65.64 (+0.81) 70.68 (+0.62) 57.14 (+5.11) 50.21 (+4.67) 35.11 (+5.32) 30.26 (+4.74)
QDROP [31] 3/3 65.56 71.07 54.27 49.26 35.14 29.40

Ours+QDROP 3/3 66.30 (+0.74) 71.92 (+0.85) 58.40 (+4.13) 51.78 (+2.52) 38.43 (+3.29) 32.96 (+3.56)

BRECQ∗ [17] 2/2 46.89 40.18 7.03 5.60 1.87 1.62
Ours+BRECQ 2/2 52.02 (+5.13) 43.72 (+3.54) 13.84 (+6.81) 9.46 (+3.86) 3.43 (+1.56) 3.22 (+1.6)
QDROP [31] 2/2 51.14 54.74 8.46 8.67 3.31 2.77

Ours+QDROP 2/2 54.46 (+3.32) 56.82 (+2.08) 14.44 (+5.98) 11.40 (+2.73) 4.18 (+0.87) 3.09 (+0.32)

Table 1. A comparison of our algorithm with the State-Of-The-Art method. We combine our algorithm with two latest PTQ algorithms,
BRECQ and QDROP, and show significant improvements on a wide range of models. “*” represents our reproduction of the algorithm
based on an open-source codebase in a uniform experimental setup. “W/A” represents the bit width of the weights and activations,
respectively. “Full Prec.” is the full precision pre-trained model. Under different bit configurations, we show in the table the comparison
of our algorithm with a wide range of PTQ methods on ResNet-18, ResNet-50 and different scaled MobileNetV2.

4. Experiments

In this section, we perform a series of experiments to
verify the superiority of our algorithm. First, we introduce
the implementation details of our experiments. Second, we
compare our algorithm quantized to different low bit-widths
with the State-Of-The-Art on ImageNet datasets. Finally,
we design a variety of ablation experiments to comprehen-
sively analyze the properties of our algorithm, including the
Pareto optimum subject to model size, the respective con-
tributions of MRECG and expanded batch size, the phe-
nomenon of diminishing marginal utility of expanded batch
size, and loss distribution of different algorithms.

4.1. Implementation Details

We validate the performance of our algorithm on the Im-
ageNet dataset [25], which consists of 1.2M training images
and 50, 000 validation images. We take 16 batches of data to
perform the reconstruction of PTQ. We fix the batch size to
256 for ResNet-18 and MobileNetV2, and 128 for ResNet-
50. In addition, our experimental analysis of the expanded
batch size is shown in Sec. 4.3. Our data preprocessing fol-
lows [8] as everyone does. We use the Pytorch library [24]
to complete our algorithm. We perform our experiments on
an Nvidia Tesla A100 as well as an Intel(R) Xeon(R) Plat-
inum 8336C CPU.

For PTQ reconstruction, our weight rounding scheme
follows [22]. The rest of our reconstruction hyper-
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Methods Top-1 Acc(%)

Baseline 50.83

Baseline+MRECG 51.91
Baseline+ExpandBS 51.57

Baseline+both(Ours) 52.25

Table 2. Top-1 accuracy (%) for different component combina-
tions. Baseline is 0.5 scaled MobileNetV2 quantized to 4/4 bit
using the BRECQ algorithm. MRECG is mixed reconstruction
granularity. ExpandBS represents expanded batch size.

parameters, such as reconstruction iterations, loss ratios,
etc., are consistent with Adaround [22], BRECQ [17] and
QDrop [31]. Also, as mentioned in QDrop, BRECQ addi-
tionally relaxes the bit-width of the first layer output to 8
bit, which somehow brings some accuracy gains. We re-
executed BRECQ in an experimental setup uniform with
all algorithms and obtained the accuracy under different bit
configurations of models. Please refer to the supplementary
material for other hyper-parameter settings.

4.2. ImageNet Classification

We validated our algorithm on a wide range of models,
including ResNet-18, ResNet-50 and MobileNetV2 at dif-
ferent scales. As shown in Tab. 1, our algorithm outper-
forms other methods by a large margin on a wide range
of models corresponding to different bit configurations.
Specifically, we achieve 66.18% and 57.85% Top-1 accu-
racy on ResNet-18, MobileNetV2 with 2/4 bit, which are
1.52% and 4.93% higher than SOTA, respectively. Sec-
ondly, our method shows strong superiority at lower bits.
For example, the accuracy gain of 2/4 bit PTQ quantization
on MobileNetV2×0.75 is significantly higher than that of
4/4 bit (5.36% vs. 1.61%). The oscillation problem may be
more significant because the low bit causes an increase in
the magnitude of PTQ reconstruction error. So smoothing
this oscillation at low bit quantization is crucial to the PTQ
optimization process. Also, our method shows considerable
improvement on MobileNetV2 at different scales, implying
that the model size does not limit the performance of our
algorithm. Besides, we notice that our algorithm is more
effective for MobileNetV2. Through our observations, the
oscillation problem in MobileNetV2 is more severe than
that of the ResNet family of networks. The deep separa-
ble convolution increases the difference in module capacity
and thus makes the magnitude of the loss oscillation larger.
Therefore, our algorithm achieves a considerable perfor-
mance improvement by solving the oscillation problem in
MobileNetV2.

MBV2_035 MBV2_050 MBV2_075 MBV2_100
47.5

50.0

52.5

55.0

57.5

60.0

62.5

65.0

67.5

A
cc

 D
is

tri
bu

tio
n

MRECG
BRECQ

Figure 4. Pareto optimality of MRECG. We randomly sampled
a large number of mixed reconstruction granularity schemes on
four scales of MobileNetV2. We combine these schemes with the
BRECQ algorithm to recover accuracy. The accuracy distribution
of the sampled schemes on different models is given. Also, we
mark the accuracy values of MRECG and BRECQ, respectively.
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Figure 5. Impact of expanding batch size on PTQ accuracy. We
sample some batch sizes on 4/4 bit MobileNetV2 and recover the
accuracy. We demonstrate the median of sampled accuracy as the
batch size increases to prevent the effect of outlier points.

4.3. Ablation Study

Pareto optimal. We randomly sample a large number
of mixed reconstruction granularity schemes on differ-
ent scaled MobileNetV2 and optimize these schemes with
4/4 bit PTQ using the BRECQ algorithm to obtain the
sampling accuracy. We plot the accuracy distribution of
these schemes in Fig. 4. Also we mark the accuracies
of MRECG and BRECQ algorithms on MobileNetV2 at
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different scales, respectively. From Fig. 4, we can ob-
serve that MRECG has stable accuracy improvement on
MobileNetV2 at all scales. Overall, MRECG achieves the
Pareto optimal state under the limitation of model size.

Component Contribution. Here we examine how much
mixed reconstruction granularity and expanded batch size
contribute to accuracy, respectively. We take the 0.5 scaled
MobileNetV2 quantized to 4/4 bit by BRECQ as the base-
line. As shown in Tab. 2, the mixed reconstruction granu-
larity and expanded batch size have 1.08% and 0.74% accu-
racy improvement, respectively. Meanwhile, the combina-
tion of the two methods further boosts model performance.

Diminishing marginal utility of expanding batch size.
By the law of large numbers [9], when the number of sam-
ples increases, the mean of samples converges to the expec-
tation in Eq. 1 thus yielding a smaller approximation error.
However, when the sample size is large enough, the accu-
racy gain from the reduction of the approximation error is
negligible. In other words, expanding batch size presents
a trend of diminishing marginal utility. In Fig. 5, we ran-
domly sample some batch sizes and obtained PTQ accu-
racy of 4/4 bit by BRECQ on 0.5 scaled MobileNetV2. We
demonstrate the median of the sampling accuracy to prevent
the effect of outliers. We notice that the sampling accuracy
fluctuates more when the batch size is small, implying that
the approximation error of a smaller batch size generates
larger noise. This situation is moderated as the batch size is
expanded. In addition, we observe an increase and then sta-
bilization of the median accuracy, implying that expanding
the batch size can bring accuracy gains to PTQ. Meanwhile,
this gain is constrained by the diminishing marginal utility.

Loss distribution. As in Fig. 6, we present the loss dis-
tribution of different algorithms. From the distribution of
Adaround we can see that it has the largest oscillation am-
plitude. Therefore, in the deeper layers of the model, the
reconstruction loss of Adaround increases rapidly. In addi-
tion, BRECQ uses block reconstruction for PTQ optimiza-
tion, which somehow alleviates the loss oscillation prob-
lem and therefore brings performance improvement. Our
mixed reconstruction granularity smoothes out the loss os-
cillations by jointly optimizing adjacent modules with large
differences in capacity. It can be seen that the loss varia-
tion of MRECG is more stable compared to Adaround and
BRECQ. Moreover, when comparing the MRECG loss in
different scenarios, we find that the MRECG obtained based
on the data-free scenario still has a small amplitude loss os-
cillation. We believe that this modest oscillation is related
to the fact that the ModCap MRECG can only jointly op-
timize two adjacent modules, which can only achieve local
optimality. In contrast, the loss MRECG has the smoothest
loss curve. However, this global optimum comes at the cost
of prolonging the time to obtain the quantized model.
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Figure 6. The reconstruction loss distributions of different algo-
rithms for 4/4 bit configurations on 0.5 scaled MobileNetV2, in-
cluding Adaround, BRECQ, and MRECG constructed using Mod-
Cap and Loss metric for data-free or data-dependency scenarios.
we omit the final fully connected layer loss for clarity.

5. Conclusion
In this paper, we discover an oscillation problem in the

PTQ optimization process for the first time, which has been
neglected in all previous PTQ algorithms. We then theo-
retically analyze that this oscillation is caused by the dif-
ference in the capacity of adjacent modules. Meanwhile,
we observe that the final reconstruction error is positively
correlated with the largest value of reconstruction error.
Therefore, we construct a mixed reconstruction granularity
optimization problem to smoothen the loss oscillations by
jointly optimizing the adjacent modules with large capac-
ity differences in data-dependent and data-free scenarios,
which reduces the final reconstruction error. In addition, we
observe that increasing the batch size of calibration data can
reduce the expectation approximation error of the objective
function. And this gain is of diminishing marginal utility.
We validate the effectiveness of our method on extensive
models with different bit configurations.
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