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Abstract
Unsupervised completion of real scene objects is of vi-

tal importance but still remains extremely challenging in
preserving input shapes, predicting accurate results, and
adapting to multi-category data. To solve these prob-
lems, we propose in this paper an Unsupervised Symmetric
Shape-Preserving Autoencoding Network, termed USSPA,
to predict complete point clouds of objects from real scenes.
One of our main observations is that many natural and
man-made objects exhibit significant symmetries. To ac-
commodate this, we devise a symmetry learning module to
learn from those objects and to preserve structural sym-
metries. Starting from an initial coarse predictor, our au-
toencoder refines the complete shape with a carefully de-
signed upsampling refinement module. Besides the discrim-
inative process on the latent space, the discriminators of
our USSPA also take predicted point clouds as direct guid-
ance, enabling more detailed shape prediction. Clearly
different from previous methods which train each category
separately, our USSPA can be adapted to the training of
multi-category data in one pass through a classifier-guided
discriminator, with consistent performance on single cate-
gory. For more accurate evaluation, we contribute to the
community a real scene dataset with paired CAD models
as ground truth. Extensive experiments and comparisons
demonstrate our superiority and generalization and show
that our method achieves state-of-the-art performance on
unsupervised completion of real scene objects.

1. Introduction
As the standard outputs of 3D scanners [12, 32], point

clouds are becoming more and more popular [9] which
are also the basic data structure in 3D geometry process-
ing [4, 5, 13]. Complete point clouds are hard to obtain
due to the nature of the scanning process and object oc-
clusion [35]. Due to the defects of incomplete point clouds
on downstream applications such as reconstruction [10], re-
cent works [17, 19, 22, 23, 26, 30, 33, 35] pay more attention
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Figure 1. Visual comparison of predicted results on real scene
data by our USSPA and other works (top) and our complete result
on a whole real scene (bottom). (a) shows an example of a real
scene partial point cloud of a chair and the complete predictions
by Disp3D [23], ShapeInv [36], Unpaired [32] and our method. As
shown, our prediction result is more accurate and uniform accord-
ing to the input, which contains complete arms and legs. (b) and
(c) show the original point cloud of a real scene and the complete
results of all the objects in this scene.

to point cloud completion which relies on paired artificial
complete point clouds for supervised training to complete
partial point clouds. However, these supervised works are
difficult to apply in practice because of the great gap be-
tween artificial data and real scene data and the inaccessi-
bility to the ground truth of real scene data. Therefore, it is
important to complete partial point clouds from real scene
in an unsupervised way.

Recent unsupervised works [24, 32, 36] only require real
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scene partial point clouds and artificial CAD models for un-
paired completion utilizing GANs [8] as their fundamental
frameworks, most of which need pre-training on artificial
data. The main ideas are to transform latent codes from
the space of real scene partial data to the space of artificial
complete data and then employ the decoder trained on arti-
ficial data to predict the complete point cloud. Essentially,
these methods make the predictions whose distributions are
consistent with the artificial models. Most of them, how-
ever, just extract a global feature from the partial input with-
out fully exploiting its geometry information, leading to the
prediction severely deviated from the input. And such in-
formation actually provides vital clues and constraints for
completion. Furthermore, prediction results by these meth-
ods usually lack enough geometric details due to the ab-
sence of an explicit discriminative process on point clouds.
These domain transforming methods are also hard to adapt
to multi-category data or other datasets.

In this paper, we present an unsupervised symmetric
shape-preserving autoencoding network, termed USSPA,
for the completion of real scene objects, as shown in Figure
2, which is a GAN-based end-to-end network without the
requirement of pre-trained weights. Different from previ-
ous domain transforming methods which cannot fully lever-
age existing incomplete models, we argue that the exist-
ing partial scanning, which also provides vital clues and
constraints for the prediction of the missing part, should
be preserved to some extent. To this end, we exploit the
symmetries shown in many natural or man-made objects
and devise a novel symmetry learning module to generate
symmetrical point clouds of existing parts by predicting the
symmetric planes. This enables our network to preserve
the shapes of input symmetrically, intrinsically facilitating
structure completion, as shown in Figure 1. For those parts
that can not be directly inferred from inputs, we employ an
initial coarse module for an initial prediction first. Start-
ing from the initial guess, we specifically design a refine-
ment autoencoder with an upsampling refinement module
for detailed refinement and the local feature grouping for
extracting local information, to learn detailed structures of
artificial data through the autoencoding process. Benefit-
ing from this, our final prediction is accurate, uniform, and
symmetric shape-preserving. Besides the indirect guidance
of the feature discriminator on latent space, our point dis-
criminator takes predicted point clouds as direct guidance
for generating more accurate shapes. Compared with pre-
vious methods which train each category separately, our
method can classify the partial point clouds simultaneously
through a classifier-guided discriminator when adapted to
multi-category data, with consistent performance on the sin-
gle category.

To measure the performance of unsupervised comple-
tion quantitatively, we build a dataset from ScanNet [5] and

ShapeNet [2] utilizing the annotations of Scan2CAD [1].
Our dataset contains real scene partial point clouds and
paired ground truths that are only used for evaluation in
our experiments. Extensive comparisons against previous
works on this dataset and the public PCN Dataset [35] show
the superiority and generalization of our method which
achieves state-of-the-art performance on unsupervised com-
pletion of real scene objects.

Our main contributions are as follows.

• We propose a novel USSPA for unsupervised real
scene point cloud completion whose prediction is
accurate, uniform and symmetric shape-preserving.
Clearly different from previous works training each
category separately, our USSPA can be adapted to the
training of multi-category data in one pass by classify-
ing the input simultaneously.

• We propose a novel symmetry learning module and a
novel refinement autoencoder. The symmetry learn-
ing module preserves input shapes by generating sym-
metrical point clouds, and the refinement autoencoder
learns the detailed information from artificial data to
refine the initial guess by an autoencoding process.

• We propose a new evaluation method for obtaining
paired ground truths and partial data from artificial and
real scene datasets using alignment information, which
can be used to more accurately evaluate unsupervised
completion of real scene objects.

2. Related Work
2.1. Supervised Point Cloud Completion

To infer the complete point cloud from an incomplete
input, many deep learning methods were introduced in re-
cent years, most of which are supervised. At first, the
3D data were voxelized into occupancy grids or distance
fields before fed into convolutional networks [15, 16, 20].
To avoid loss of details and huge memory cost brought by
these data representations, Yuan et al. [35] propose PCN
which directly operates on raw point clouds. Giancola et
al. [7] also leverage a new method for 3D shape comple-
tion which directly works on LiDAR point clouds. Later
works [11, 19, 22] pay much attention to details refinement
and denoise. Disp3D [23] investigates grouping local fea-
tures to bring improvement to point cloud completion. Tak-
ing structures and topology information into consideration,
SA-Net [25], GRNet [31], PoinTr [34] and LAKe-Net [17]
succeed to utilize the detailed geometry information from
input to generate more reasonable complete point clouds.
Other works like designing new metrics [28] and combining
information of single-view images [37] also make contribu-
tions to the point cloud completion task. However, these
works are all supervised that are not suitable for practice
since ground truths are in lack.
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USSPA Unsupervised Symmetric Shape-
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Figure 2. The overall architecture of our USSPA. Our network has a generator composed of an initial coarse predictor (blue) and a
refinement autoencoder (green), and the point and feature discriminators (yellow). The red lines and boxes represent the employed losses.
The blue and green lines (bottom) denote the forward processes having the same network architectures with sharing weights.

2.2. Unsupervised Point Cloud Completion
Due to the absence of suitable paired training data for su-

pervised models, some unsupervised models for point cloud
completion have emerged in recent years. Unpaired [32]
first introduces the GAN to learn the transformation from
the latent space of partial point cloud to the latent space of
complete point cloud, and then decode the transformed la-
tent code to predict. Zhang et al. [36] employ optimization-
based GAN inversion [29] and directly find the complete
prediction by optimizing the latent code such that the degra-
dation of the complete point cloud matches the input partial
point cloud, which requires fine-tuning the network for each
input data. Cycle4 [24] proposes two simultaneous cycle
transformations between the latent spaces of complete point
cloud and partial ones, facilitating the network’s under-
standing of 3D shapes by building a bidirectional mapping.
Wu et al. [27] propose the first multimodal shape comple-
tion method that completes the partial shape via conditional
generative modeling, without requiring paired training data.
However, the application of pre-trained GANs makes their
predictions lack details and difficult to preserve the shape
features of the input. For evaluation, Unpaired [32] em-
ploys classification accuracy of the complete results which
is hard to measure detailed structures. Thus, a more accu-
rate evaluation method is required.

3. Method
3.1. Network Architecture

Given the partial point cloud PR ∈ Mn0×3 from real
scene data with distribution pr and the complete point cloud
PA ∈ Mn0×3 from artificial data with distribution pa, the
goal of unsupervised real scene point cloud completion is
to predict the complete point cloud Com(PR) of PR such

that Com(PR) ∼ pa and PR ⊂ Com(PR). This means
that the prediction must be similar to the artificial data and
meanwhile retain the shapes of the input partial point cloud.

We carefully design several modules of our generator G
and discriminators, Dp and Df , for unsupervised comple-
tion on real scene data through generative adversarial learn-
ing [8] as shown in Figures 2 and 3. As we mentioned
above, many natural and man-made objects exhibit signif-
icant symmetries. To fully leverage these symmetries and
preserve the shape of existing partial input PR, we devise a
novel symmetry learning module that predicts the symmet-
ric plane and the symmetrical point cloud of PR for further
refinement. Our refinement autoencoder learns the detailed
information of artificial data and refines the details of the
initial, but coarse prediction PR0

for uniform and accurate
prediction. With the local feature grouping operation, our
elaborate upsampling refinement module can utilize the lo-
cal features for more detailed results. Different from previ-
ous works focusing on the discriminative process of latent
space, our point discriminator Dp also takes point clouds as
input for direct guidance.

Initial Coarse Predictor. We first employ an initial
coarse predictor for shape-preserving and preliminary pre-
diction. The encoder ER takes the real scene partial point
cloud PR as input and encodes the global feature f ′

R =
ER(PR) ∈ M1×c0 . f ′

R is then taken by the decoder
DR for the prediction of initial, but coarse complete re-
sult P ′

R = DR(f
′
R) ∈ Mn1×3. Encoder-decoder architec-

ture is hard to retain shape features on the completion task
since there is no explicit complete ground truth. To this end,
we devise the symmetry learning module to accommodate
symmetrical shape features widely existed in man-made and
natural objects, as shown in Figure 3. The decoder Dsl pre-
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dicts symmetric arguments A = Dsl(f
′
R) = [xA, yA, zA]

T

and then we introduce symmetry operation to calculate the
symmetrical point cloud Psym of PR by :

Psym = p− 2
A · p
||A||2

A, (1)

where p = [x, y, z]T ∈ PR, · represents the inner product
and ||x|| denotes the module of the vector x. Without the
loss of generality, we can safely assume that all the objects
are axis-aligned. Under such an assumption, the symmetric
plane is perpendicular to the xz-plane and zero-crossing.
Thus we set yA = 0. Then Psym, PR and P ′

R are fused
and resampled through FPS (farthest point sampling) to get
PR0

which is the complete and shape-preserving result.
Refinement Autoencoder. Noisy PR and the fusion op-

eration may cause noisy PR0 with uneven point distribution.
The initial coarse predictor or the point discriminator only
predicts or judges through the global feature, which makes
PR0

lack details. Thus, PR0
requires denoising and further

refinement on details and point distribution. To this end,
we employ the refinement autoencoder with a carefully de-
signed upsampling refinement module. As shown in Figure
2, the blue and green lines of the refinement autoencoder
represent the same forward process having the same net-
work architectures with sharing weights. In this way, our
autoencoder extracts the detailed information of artificial
data and refines the details of PR0 for more accurate and
uniform prediction.

The encoder and decoder EA, DA generate the skeleton
point cloud PR1/A1

∈ Mn2×3 of input point cloud. We
set n2 to a small number for easier prediction of PR1/A1

.
And the density loss is faster to calculate with fewer points.
We then employ upsampling refinement module to up-
sample PR1/A1

and add details to the skeleton for final pre-
diction PR2/A2

. As shown in Figure 3, we utilize wight-
shared MLP [3] to obtain the point features and max-
pooling operation on point features to obtain the global fea-
ture of the point cloud. We also concatenate the point and
global features to fuse the information. Since wight-shared
MLP only extracts the feature of one point, lacking the lo-
cal information, we also employ the local feature group-
ing to get the local information around each point. For
point p0, fgroup ∈ Mn2×(c1·m) are the features grouped
from finput ∈ Mn2×c1 corresponding to the points p that
||p − p0|| ≤ r, where m is the feature number of each
group. After applying max-pooling operation on m fea-
tures of each group, flocal ∈ Mn2×c1 are concatenated with
finput to generate the output foutput ∈ Mn2×2c1 . We uti-
lize a weight-shared MLP for upsmapling that takes fused
features composed of PR1/A1

, local and global features, and
predict k shifts for each point. Then, each point splits into k
points by adding the predicted shifts to its coordinate whose
result is PR2/A2

∈ Mkn2×3.
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Point and Feature Discriminator. We employ the point
discriminator Dp to directly guide the generation of PR0

and PR2
comparing with the artificial complete data PA for

unsupervised completion. We also guide the generation of
latent code of autoencoder through the feature discriminator
Df such that fR and fA have the same distribution for more
accurate prediction. Our discriminators predict the proba-
bility that input point cloud Pi or feature fi is real data. For
multi-category data, we replace the probability-guided dis-
criminator with a classifier-guided discriminator which out-
puts the category label of input rather than probability. We
utilize label 0 to represent fake data and labels l > 0 to de-
note real data of different categories such as the chair, table,
etc. For fake data, the discriminator tends to output label 0,
while the generator tends to make the discriminator output
label l > 0. And for real data with label l, the discriminator
tends to output l correctly. In this way, our USSPA can un-
supervisedly classify the real scene partial point cloud when
completing multi-category data.

3.2. Optimization
The abbreviate optimization goal of our USSPA for un-

supervised learning is:

min
G

max
Dp,Df

E
Pi∼pa

log p+ E
Pi∼pr

log(1− p), (2)

where p is the probability of real data. By playing the
maxmin game with Dp and Df , our generator G tends to
predict point clouds similar to artificial data. We employ
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Table 1. Point cloud completion comparison on our dataset in terms of L1 Chamfer Distance cdl1 × 102 (lower is better).All the methods
are trained with our dataset and the unsupervised methods including ours are trained on single category data. Boldface denotes the best
among unsupervised methods in Tables 1, 2 and 3.

Method AVG chair table trash bin TV cabinet bookshelf sofa lamp bed tub

Sup.
PoinTr [34] 14.37 13.65 12.52 15.26 12.69 17.32 13.99 12.36 17.05 15.13 13.77

Disp3D [23] 7.78 6.24 8.20 7.12 7.12 10.36 6.94 5.60 14.03 6.90 5.32
TopNet [19] 7.07 6.39 5.79 7.40 6.26 8.37 7.02 5.94 8.50 7.81 7.25

Unsup.
OptBased

ShapeInv [36] 21.39 17.97 17.28 33.51 15.69 26.26 25.51 14.28 16.69 32.33 14.43

Unsup.
Unpaired [32] 10.47 8.41 7.52 12.08 6.72 17.45 9.95 6.92 19.36 10.04 6.22

Cycle4 [24] 11.53 9.11 11.35 11.93 8.40 15.47 12.51 10.63 12.25 15.73 7.92

Ours 8.56 8.22 7.68 10.36 7.66 10.77 7.84 6.14 11.93 8.20 6.75

Chamfer Distance(CD) [6] to measure the difference be-
tween point clouds. The cdl2P1→P2

indicates the single di-
rection Chamfer Distance with L2-norm from point cloud
P1 to P2:

cdl2P1→P2
=

1

|P1|
∑
x∈P1

min
y∈P2

||x− y||2, (3)

which guides P1 to be a part of P2. The cdl2P1↔P2
between

P1 and P2 is:

cdl2P1↔P2
= cdl2P1→P2

+ cdl2P2→P1
, (4)

which guides P1 and P2 to be identical. As shown in Fig-
ure 2, to restrict the generation of P ′

R, we employ single
direction Chamfer Distance from PR to P ′

R. We also utilize
Chamfer Distance between PR1/A1

, PR2/A2
and PR0

,PA for
supervision of autoencoder. For uniform prediction, we em-
ploy density loss by first calculating the local density of
x ∈ P :

ld(x, P ) =
1

kd

kd∑
k=1

k
min
y∈P

||x− y||, (5)

and then calculating the standard deviation for all x:

dl(P ) =

√
1

|P |
∑
x∈P

(
ld(x, P )− ld(x, P )

)2
, (6)

where
k

min indicates the k-th-min element. The smaller the
ld(x, P ) is, the bigger the local density of x is.

In practice, we alternately optimize G with loss LG :

LG = α1LF→R + α2LP + α3Ld, (7)

where

LF→R =−
(
logDp(PR0

) + logDp(PR2
)

+ logDf (fR)
)
,

(8)

LP =cdl2PR1
↔PR0

+ cdl2PR2
↔PR0

+ cdl2PR→P ′
R

+cdl2PA1
↔PA

+ cdl2PA2
↔PA

,
(9)

Ld = dl(PR1
) + dl(PA1

) (10)

and D with loss LD:

LD = α4LF + α5LR, (11)

where

LF =−
(
log[1−Dp(PR0

)] + log[1−Dp(PR2
)]

+ log[1−Df (fR)]
)
,

(12)

LR =−
(
logDp(PA) + logDf (fA)

)
, (13)

and here α1∼5 are the weights used for balancing the influ-
ences between each term. And for multi-category data, we
use cross-entropy to calculate the loss between predicted la-
bels and ground truth labels.

4. Experiments
4.1. Dataset and Implementation Details

Different from the Unpaired [32] which utilizes a classi-
fier to evaluate the completion results of real scene data,
we build a new dataset from ScanNet [5], ShapeNet [2]
and Scan2CAD [1], containing paired partial and complete
point clouds for more accurate evaluation. Scan2CAD con-
tains annotations that align the CAD models of ShapeNet to
the real scenes of ScanNet. We first extract the CAD mod-
els from ShapeNet and partial point clouds from ScanNet
which are paired according to the correspondences offered
by Scan2CAD, and then uniformly sample the CAD mod-
els to get complete point clouds. Finally, we transform the
paired partial and complete point clouds with the transform
matrix given by Scan2CAD to normalize their face direc-
tion, scale, and position. We select ten categories including
the chair, table, etc., to establish the dataset and randomly
split the data into training, validation, and testing sets. In
our experiments, these ground truths are only used for the
evaluation of the complete results.
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Figure 4. Visualization of completion results by supervised works, including TopNet [19], Disp3D [23], unsupervised works Cycle4 [24],
Unpaired [32], optimization-based work ShapeInv [36] and our method. From top to bottom: table, bed, cabinet, and TV.

We utilize PyTorch to implement our USSPA. In Section
3.1, the point numbers n0∼2 are set to 2048, 512 and 512.
The channel numbers c0∼1 are set to 512 and 256. The
feature number m, the radius r of local feature grouping,
and the split number of upsampling k are set to 32, 0.5, and
4. kd of density loss in Section 3.2 is set to 16. The weights
α1∼5 of losses are set to 1, 100, 7.5, 0.5 and 0.5. We employ
Adam optimizer whose learning rate is 1.0 × 10−5. The
batch size is set to 4, and the maximum epoch of training is
240 to 960 according to the size of the dataset. Training our
USSPA takes about 20 hours with a GTX 2080Ti GPU. We
will make our dataset and codes public in the future.

4.2. Comparison
We compare our USSPA against existing representative

point cloud completion methods including supervised [19,
23, 34], unsupervised [24, 32] and optimization-based [36]
methods on our dataset and the PCN Dataset [35]. The met-
rics used for comparison include pre-point L1 Chamfer Dis-
tance cdl1 [6] and F-Scores F 1%

score, F 0.1%
score [18].

As shown in Table 1, we compare these methods on our
dataset with 10 categories where all methods are trained on
the training set and evaluated on the testing set. All the
unsupervised methods are trained with single category data
for each class. The average cdl1 of our USSPA is 18.2%
lower than Unpaired and the average F 0.1%

score is 30% higher
than Unpaired as shown in Table 2, indicating the superior
performance of our method on completion of real scene ob-
jects. We also mix up all 10 categories as the multi-category
data to train the methods for evaluation of the generalization

Table 2. Comparison on our dataset trained with single cate-
gory and multi-category data in terms of L1 Chamfer Distance
cdl1 × 102 (lower is better) and F-scores F 0.1%

score × 102, F 1%
score ×

102 (higher is better). “Ours” and “Ours(classifier)” denote our
method with probability-guided and classifier-guided discrimina-
tors, respectively.

single category multi-category
Method

↑F
0.1%
score ↑F

1%
score ↓cd

l1
↑F

0.1%
score ↑F

1%
score

PoinTr [34] - - 14.37 18.35 80.41
Disp3D [23] - - 7.78 30.29 78.26
TopNet [19] - - 7.07 12.33 80.37

ShapeInv [36] 15.58 66.53 19.35 16.98 69.66

Unpaired [32] 12.20 64.33 10.12 10.86 66.68
Cycle4 [24] 9.98 60.14 12.00 8.61 56.57

Ours 17.49 73.41 8.96 16.88 72.31
Ours(classifier) - - 8.76 17.12 73.75

ability. As shown in Table 2, our USSPA keeps the same
performance by replacing the probability-guided discrimi-
nators with classifier-guided discriminators and has better
generalization ability on multi-category than other unsuper-
vised networks. Further comparisons show the generaliza-
tion capability of our USSPA on different datasets. We train
unsupervised models with ScanNet and then test them on
the PCN Dataset which is a point cloud completion dataset
built upon artificial data. As shown in Table 3, our method
also performs better than other unsupervised methods, the
average cdl1 of which is 15% lower than the SOTA method.
Table 4 shows the classification accuracy of PN2 [14] and
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Table 3. Point cloud completion comparison on PCN Dataset in
terms of L1 Chamfer Distance cdl1 × 102 (lower is better). All
unsupervised models are trained with ScanNet.

Method AVG chair table cabinet sofa lamp

PoinTr [34] 5.49 5.61 5.68 6.08 5.67 4.44
Disp3D [23] 2.51 2.42 2.30 2.38 2.44 3.00
TopNet [19] 5.92 6.34 5.45 6.06 5.80 5.95

ShapeInv [36] 19.05 23.18 15.66 17.14 22.85 16.40

Unpaired [32] 14.87 12.87 8.14 14.30 18.23 20.82
Cycle4 [24] 17.60 14.25 15.73 21.06 21.54 15.40

Ours 12.63 13.52 9.66 8.89 15.51 15.57

Table 4. Point cloud classification in terms of accuracy. “AVG”
denotes the average accuracy on 10 categories of our dataset. Only
four categories are shown due to width limitation.

Method AVG chair table trash bin sofa

PN2 [14] 58.6% 91.0% 94.0% 17.2% 48.9%
Ours 69.8% 91.0% 91.0% 51.6% 93.3%

our method. Our method can also unsupervisedly classify
the real scene partial point cloud while completing. The ac-
curacy of our USSPA is 11.2% higher than PN2 on average.

Figure 4 shows the qualitative results on 4 categories.
The complete point clouds predicted by our USSPA exhibit
more accurate shapes, such as the leg of the table and the
division plate of the bookshelf, which are hard to generate
even for supervised methods. Our method can successfully
generate the circular top of the table. By comparision, other
unsupervised works generate a square one. Our predictions
are also more uniform with fewer noises. Benefiting from
our shape-preserving method, our predicted TV retains the
support part from the input point cloud. Our symmetry
learning module also plays an important role in completing
the pillars of the bed by copying the pillars from the input
symmetrically. Visualization of our predicted point clouds
shows the superiority of our methods in the generation of
detailed completion on real scene data.
4.3. Ablation Study

Ablation study on network architecture. We conduct
experiments on ablated models for evaluation of the neces-
sity of important structures of our USSPA, including the
symmetry learning module, the refinement autoencoder, the
local feature grouping, the point and feature discriminators,
the single direction Chamfer Distance, and the upsampling
refinement module. As shown in Table 5, these modules are
removed from our full network separately. We downsample
the final prediction of our USSPA to 512 points for a fair
comparison to the ablated model without the upsampling
refinement module. We train and utilize F 0.1%

score to evaluate
these ablated models with our dataset on the chair category,
and the comparison indicates the necessity of these modules

Table 5. Ablation study in terms of F 0.1%
score, where “-” represents

removing a module from the full network respectively and “512”
denotes the point number.

Model F 0.1%
score

- Symmetry Learning Module 16.43
- Refinement Autoencoder 17.08
- Local Feature Grouping 15.72
- Feature Discriminator 17.11
- Point Discriminator 15.68
- Single Direction Chamfer Distance 17.84
Ours (full) 18.43

- Upsampling Refinement (512) 5.60
Ours (full) (512) 6.46

xy-plane

yz-plane

(a) (b) (c) (d)(e)

Figure 5. Visualization of the symmetric planes and predictions by
USSPA without the symmetry learning module and full network.
Blue and orange denote original and mirrored points, separately.

which play significant roles in shape-preserving, extracting,
and utilizing detailed features, upsampling and refining for
more accurate point cloud completion.

Symmetry learning module. Our symmetry learning
module learns different symmetric planes according to the
input point clouds as shown in Figures 5(a) and 5(b). The
predicted symmetric plane is xy-plane for the chair and yz-
plane for the table. Through different symmetric planes,
our network can fully leverage the symmetrical structures of
input point clouds, such as the arm of the chair and the legs
of the table, which exist on only one side. Figure 5(c) shows
the prediction PR2 of our network without the symmetry
learning module, and Figure 5(d) shows the result of our full
network. Figure 5(e) shows the input point cloud whose left
arm is missing while the right arm is complete. Without the
symmetry learning module, the left arm of the prediction is
incomplete as shown in the red box. And benefiting from
such a module, our full network can learn the symmetric
structures, and generate a complete left arm.

Density loss. We visualize the local density of points
as shown in Figure 6. The warmer the color of the point
is, the bigger its local density (described in equation 5) is.
(a) is the prediction without the supervision of the density
loss, and (b) is the prediction supervised by the density loss.
Without the supervision of density loss, the network prefers
generating many points in the same location as shown in the
blue circle to minimize the Chamfer Distance, which makes
the predicted point clouds contain fewer points describing
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Table 6. Comparison of Unpaired and our USSPA in terms of den-
sity loss, where “ours (w/o dl)” indicates our USSPA without the
supervision of the density loss. The results show that our predicted
point clouds are more uniform.

Unpaired ours (w/o dl) ours

Density Loss 0.0957 0.1238 0.0149

(a) (b) 𝑑𝑑𝑑𝑑 = 0.0390 𝑑𝑑𝑑𝑑 = 0.0144
2048 points 2048 points

𝑃𝑃𝑅𝑅0 𝑃𝑃𝑅𝑅2
1.0

0.0(c) (d)
𝑑𝑑𝑑𝑑 =

0.1066
𝑑𝑑𝑑𝑑 =

0.0096
512 points 512 points

Figure 6. Visualization of the local density of point clouds, where
the warmth of the color indicates the values of local densities. The
warmer the color is, the bigger the local density is. (a) and (b) are
the comparison of the ablation experiment on the density loss. (c)
and (d) are the examples of PR0 and PR2 . The density loss and
the point number of each point cloud are shown at its bottom.

details such as chair arms and legs. Table 6 compares Un-
paired and our USSPA on density loss indicating that our
predicted point clouds are more uniform.

Autoencoding refiner. As shown in Figure 6, (c) and
(d) are the examples of PR0 and PR2 which is the refine-
ment result of the autoencoding refiner on PR0

. The refiner
removes the noises from input shown in blue boxes and gen-
erates more points on legs as shown in green boxes, which
makes the whole point cloud more uniform and accurate
with less density loss.

Real scene data. We also test our USSPA on real ob-
jects, as shown in Figure 7. We obtain the point clouds
of real objects by the 3D scanner and then sample them to
2048 points as the input to our network. Our network can
preserve the right arm of the chair and complete the left arm.
The predictions are more accurate and uniform as shown in
red boxes. This indicates the generalization ability of our
USSPA on real objects.

Visualization of latent codes on multi-category data.
We utilize t-SNE [21] to visualize the latent codes fR and
fA of Unpaired and our USSPA on multi-category data. As
shown in Figure 8, ten different colors indicate ten cate-
gories where dark colors indicate real scene data and light
colors indicate artificial data. Figure 8 (c) and (d) show the
t-SNE results of latent codes on chair category only. Ben-
efiting from our feature discriminator and autoencoder, the
latent codes of real scene data are similar to artificial data
which can be shown from the distribution of dark and light
points. The dark and light points of Unpaired are separated
while ours are fixed together for each category. Benefiting
from our classifier-guided discriminator, the distributions of

Real Object Input Unpaired ShapeInv Ours 

Figure 7. Completion on real objects by Unpaired [32],
ShapeInv [36] and our USSPA.

Unpaired Ours

(a) (b)

(d)

(c)

Figure 8. Visualization of t-SNE results of the latent codes by
Unpaired [32] and our method. (a) and (b) are the results on multi-
category, where different colors denote different categories. Dark
and light denote real scene data and artificial data respectively. (c)
and (d) are the results on the chair category only.

our latent codes of different categories are separated and
clean. For example, as Figure 8 (b) shows, the distances
between pink, orange and blue clusters are bigger and the
clusters are tighter.

5. Conclusion, Limitation and Future Work
We have presented USSPA, an end-to-end unsupervised

network for completion of real scene point cloud objects.
Benefiting from our carefully designed symmetry learning
module and refinement autoencoder, our prediction pre-
serves the symmetrical shape of input with more accu-
rate and uniform points. We also contribute a real scene
dataset for accurate evaluation, and extensive experiments
and comparisons show the superiority and generalization of
our method on different categories of different datasets and
real objects, which achieves state-of-the-art performance
on unsupervised completion of real scene objects. For
those categories without artificial data as assistance, previ-
ous works and our method are hard to apply in this situation.
This is our limitation. Unsupervised point cloud completion
without the assistance of artificial data is our future work.
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