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Figure 1. Transfer4D is an unsupervised technique for intra-category motion transfer from monocular depth videos (highlighted in
the green box) to virtual characters of varying shapes (blue). It is category-agnostic, permitting motion transfer between quadrupeds
(left), between bipeds (center and right), and in general between any characters with similar topology. Skeletons shown in yellow are
extracted using our proposed unsupervised skeletonization algorithm. Please refer to the demo video on the project webpage: https:
//transfer4d.github.io/ and Fig. 3 for diverse animation sequences ranging bipeds and quadrupeds.

Abstract

Animating a virtual character based on a real perfor-
mance of an actor is a challenging task that currently re-
quires expensive motion capture setups and additional effort
by expert animators, rendering it accessible only to large pro-
duction houses. The goal of our work is to democratize this
task by developing a frugal alternative termed “Transfer4D”
that uses only commodity depth sensors and further reduces
animators’ effort by automating the rigging and animation
transfer process. Our approach can transfer motion from an
incomplete, single-view depth video to a semantically similar
target mesh, unlike prior works that make a stricter assump-
tion on the source to be noise-free and watertight. To handle
sparse, incomplete videos from depth video inputs and varia-
tions between source and target objects, we propose to use
skeletons as an intermediary representation between motion
capture and transfer. We propose a novel unsupervised skele-
ton extraction pipeline from a single-view depth sequence
that incorporates additional geometric information, result-
ing in superior performance in motion reconstruction and
transfer in comparison to the contemporary methods and
making our approach generic. We use non-rigid reconstruc-
tion to track motion from the depth sequence, and then we rig
the source object using skinning decomposition. Finally, the

rig is embedded into the target object for motion retargeting.

1. Introduction

The growing demand for immersive animated content
originates primarily from its widespread applications in en-
tertainment, metaverse, education, and augmented/virtual
reality to name a few. Production of animation content re-
quiring modeling the geometry of the characters of interest,
rigging a skeleton to determine each character’s degrees
of freedom, and then animating their motion. The latter
step is often performed by transferring the motion captured
from a real performer, whether a human actor, an animal,
or even a puppet. The intermediate rigging step is tedious
and labor-intensive, while motion capture requires an expen-
sive multi-camera system; both factors hinder the large-scale
adoption of 3D content creation. We aim to democratize
content creation by (i) replacing expensive motion capture
setups with a single monocular depth sensor, and (ii) by au-
tomatically generating character rigs to transfer motion to
non-isometric objects.

By the term animation transfer we refer to the process of
transferring the motion captured from a real performer to an
articulated character modelled as a polygon mesh. Specif-
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ically, we work in a setting where the source is an point
cloud obtained from a single-view commodity sensor such
as Kinect/Realsense, and the target is a user-defined poly-
gon mesh without a predefined skeletal rig. These choices
make our approach more practical for deployment in future.
In this setting, performing automatic animation transfer re-
quires reconstructing the source motion from the point cloud,
and finding a correspondence between points on the source
and target shapes, before the source performance can be
remapped to the target character. Furthermore, many appli-
cations often require animation content not just of humans
but of other kinds of characters and objects such as animals,
birds, and articulated mechanical objects, precluding the use
of predefined human body models. As we discuss below,
existing techniques have limited applicability under all these
constraints.

Monocular motion systems generally require a template
before registering the incoming video. Templates are cre-
ated by 360◦ static registration of the source object [19, 52]
or by creating a parametric model from a large corpus of
meshes [2, 23, 28, 35, 39, 65]. Unfortunately, these meth-
ods do not generalize to unknown objects. As a parallel
approach, methods that rely on neural implicit representa-
tions [8, 37, 51, 59–61] are comparatively high on computa-
tion cost for working on a single video making them unsuit-
able for frugal animation transfer. Dynamic reconstruction
based methods [26, 33, 42, 43, 50] provide promising results,
but tracking error could cause structural artifacts thereby
resulting in issues of shape correspondence or skeleton ex-
traction.

Without using a predefined template, establishing cor-
respondence between parts of the partial source and the
complete target objects becomes challenging. Automatic cor-
respondence methods like [4, 11, 17, 45, 53, 62] do not work
in our setting where input is sparse, noisy and incomplete. A
family of approaches based on surface level correspondence
such as the functional maps [17,21,27,31,40,47] incorporate
geometry; however, these approaches are data intensive and
do not account for the underlying shape topologies explicitly
which are critical to matching generic shapes.

Recently, a deep learning approach, Morig [57] was pro-
posed to automatically rig character meshes and capture
the motion of performing characters from single-view point
cloud streams. However, Morig requires supervision at all
stages. Furthermore, Liao et al. [24] introduced a skeleton-
free approach to transfer poses between 3D characters. The
target object is restricted to bipedal characters in T-pose, and
the mocap data is limited to human motion.

To address the above shortcomings, we propose Trans-
fer4D, a frugal motion capture and a retargeting framework.
We extract the skeleton motion of the source object from
a monocular depth video in an unsupervised fashion and
retarget the motion to a similar target virtual model. Instead

of relying on a predefined template, we directly extract the
skeleton from the incoming video. Furthermore, by directly
embedding the skeleton into the target object, we bypass
establishing dense (surface) correspondence between the
source and target that can prove to be computationally ex-
pensive and noisy.
Key Contributions: (1) To the best of our knowledge, Trans-
fer4D is the first approach for intra-category motion transfer
technique from a monocular depth video to a target virtual
object (Fig. 1). The research aid in efforts towards the de-
mocratization of motion-capture systems and reduce anima-
tors’ drudgery through rigging and automatic motion transfer.
(2) To transfer motion from a single view incomplete mesh,
we propose a novel unsupervised skeleton extraction algo-
rithm. We construct the skeleton based on rigidity constraints
from the motion and structural cues from the curve skeleton.
See Sec. 4 for details.

2. Related Works

3D Skeleton Extraction: Prior works have studied 3D skele-
ton extraction as an effective tool for motion transfer [6],
shape correspondence [4], retrieval [9], and recognition [12].
Traditionally morphological operations like thinning/erosion
[36] or medial axis analysis [48] were used for skeletal ex-
traction. Some data-driven methods like Rignet [55, 56] use
neural networks to predict joint location and the skeleton
structure. However, RigNet is not effective for skeletoniza-
tion of incomplete surfaces. Furthermore, RigNet tries to
predict a skeleton using only the geometry, whereas our work
focuses on computing a skeleton that fits the given motion
for transfer. Neural marionette [15] uses Spatio-temporal
information to extract key points from a complete mesh se-
quence. Furthermore, for similar object categories, they can
also re-target motion, and generate and interpolate between
poses. Unfortunately, these methods do not generalize to
single-view incomplete objects. ROSA [49] extracts a curve
skeleton from an incomplete point cloud using a rotational
symmetry axis. Local Separators [5] transforms mesh to
graph structure and used local separators to extract joint.
However, these work on static 3D meshes and do not in-
clude motion information which is necessary for animation
transfer.

To incorporate motion information from single-view point
clouds, Zhang et al. [64] propose spectral clustering on the
point cloud trajectory to find the joint points for the skeleton.
Lu et al. [29] optimize the skeleton extraction procedure in a
probabilistic framework using linear blend skinning. Unlike
our method these do not utilize curve skeleton information,
and consequently, embedding them into the target mesh
results in artifacts (See Fig. 4 for additional details).
Real-time Methods to control non-humanoid characters:
This line of work focuses on real-time character control by

12837



Figure 2. Overview of Transfer4D Pipeline. Given a depth video, we first perform non-rigid registration (a) to align the source object at a
canonical frame to every other frame, yielding its trajectory. Then, skeletonization (b) uses the geometry and estimated trajectory of the
object to extract its underlying skeletal structure and the motion thereof. In the skeleton embedding step (c), the obtained motion skeleton
is embedded inside the target mesh and skinning weights are calculated. Finally, for motion retargetting (d), the rotation of the bones is
transferred from the motion skeleton to the target skeleton. The proposed skeletonization approach, shown in the highlighted green box,
takes the incomplete mesh and (i) extracts the curve skeleton and local separator clusters, (ii) splits each curve into bones and the mesh
into corresponding motion clusters, and lastly (iii) calculates the skinning weights and transformation parameters of each motion cluster to
estimate the skeleton motion.

mapping input from different motion sensors/instruments
to poses of animation datasets of non-humanoid characters.
Numaguchi et al. [34] create a puppet instrument for motion
retrieval. Rhodin et al. [38] estimate wave properties from
the skeleton, facial, or hand tracked by off-the-shelf sen-
sors. Anderegg et al. [3] use a smartphone, to tie together to
control of the character and camera into a single interaction
mechanism. These methods require dedicated sensors for
tracking motion and can prove to be expensive. In contrast,
our method permits use of a single stationary RGBD camera,
without requiring any predefined mapping between the input
motion and the target character database.

Skeleton-based motion retargetting: This has been widely
studied in the context of humans. Seol et al. [41] and Nu-
maguchi et al. [34] proposed motion puppetry systems to
drive the motion of non-human characters. Similarly, Ya-
mane et al. [58] used Kinect-based human skeleton to trans-
fer animation from human to anthropomorphic (human-like
eg. bear or monkey) characters. Unlike these approaches, we
aim towards generic motion capture where the source and
target object are not necessarily humans. Aberman et al. [1]
proposed a skeleton-aware deep learning framework, which
requires skeletons to be homeomorphic. Hsieh et al. [14]
proposed an interactive system to transfer animation between
different creatures by manually assigning correspondence
between their skeletons. Baran et al. [6] embed the source
skeleton to the target shape, calculated attachment weights,

and transfer the bone transformation parameters to deform
the target shape.

Frugal Motion Capture: To capture motion from a monoc-
ular camera is a restricted domain with some representa-
tive works: SCAPE [2], SMPL [28] for human bodies,
MANO [39] for hands, FLAME [23] for facial expressions,
and SMAL [65] for quadrupeds. Similarly, neural-based
parametric models like [35, 60, 61] require a large corpus
of complete meshes to create. Recent neural implicit-based
methods for RBD and RGB-D methods provide a decent al-
ternative to motion-capture-based systems. But their compu-
tation cost hinders their utilization for frugal motion capture;
at the same time, they do not retarget motion to non-isometric
objects.

3. Overview

In our setting, the source is a possibly noisy, single-view
depth video with known camera parameters showing a single
object in motion. The target is a clean, watertight mesh. We
do not have information of part correspondences between
the source and target or semantics, making our setting chal-
lenging and unsupervised at the same time. Our goal is to
transfer the motion of the object in the source video to the
target in a visually plausible manner.

Fig. 2 presents a high-level overview of Transfer4D
pipeline taking an example of incomplete point cloud of
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a quadruped (namely, a bear) from a depth camera to retarget
motion automatically to a user-defined mesh of a different
quadruped (a cow). It comprises of following steps: first,
we obtain the source video from the depth camera and seg-
ment the object of interest whose motion is to be retargeted;
second, we utilize scene flow information and non-rigid reg-
istration (NRR) to obtain the motion field of each frame in
a scene. Third, we perform skeletonization via our novel
approach (Sec. 4) to obtain the position of joints and bones.
Finally, the extracted skeleton is embedded into the target
user-defined mesh using the Pinnochio framework [6].

Consider a single view depth camera setup which pro-
vides a set of depth images, D = {Dt ∈ RH×W }, where
t,H,W represents timestep, height and width of frames re-
spectively.1 We segment the object of interest based on the
depth values to obtain a binary image mask. We assume the
camera is stationary during the recording and camera intrin-
sic parameters K ∈ R3X3 are known. Using the camera
parameters, for every pixel u ∈ R2 in depth image Dt is
back-projected to create the point cloud P = {pu}.

pu = Dt(ux, uy) ·K−1

ux

uy

1

 (1)

For a depth video of T frames, we choose one frame in
the video as the source S. An incomplete mesh MS =
{VS , FS} is obtained from the source depth image where its
vertices VS = PS and the faces FS are obtained by connect-
ing adjacent pixels if the distance between their associated
vertices is less than a fixed threshold (0.05 in our experi-
ments). Ideally, the source frame should be chosen as the
one which best represents the rest state of the object, min-
imizing noise, self-contact, and self-occlusions. However,
for simplicity we always used the first frame of the video as
the source frame in our experiments.

3.1. Non-rigid-reconstruction (NRR)

Our first step is to obtain the trajectory of the vertices
of the incomplete mesh MS by aligning it to all the fu-
ture frames using non-rigid registration. To enforce spatial
coherence, we represent the motion field using an embed-
ded deformation graph [46] G = {VG, EG,RT

G, T T
G }. Here

each node gj ∈ VG is equipped with a time-varying rigid
transformation, i.e. a rotation matrix Rt

j ∈ R3×3 and trans-
lation vector T t

j for each timestep t. The trajectory for each
vertex vi ∈ VS at timestep t ∈ T is computed using the
deformation graph as

Traj ti =

NG∑
j=0

WG(i, j)(Rt
j(vi − gj) + gj + T t

j ), (2)

1We experiment using the synthetic datasets processed from Deform-
ingThings4D [63]. The details of preprocessing is described in supplemental
material.

where WG(i, j) determines the influence of graph node gj
on vertex vi. It is defined via

WG(i, j) = αe−(∥vi−gj∥2
2)/(2σ

2
nc) (3)

where α is the normalization constant so that weights sum
to one, and the node coverage parameter σnc controls the
weightage of multiple graph nodes on the vertices. We addi-
tionally enforce that ∥WG(i, :)∥0 ≤ 4.

We fine-tune the registration using RANSAC and N-ICP
[20]. For each timestep t, the graph deformation parameters
{Rt

G, T t
G}, are estimated by optimising the following energy

function E(G):

E(G) = λcorrespEcorresp(G) + λsmoothEsmooth(G),

Ecorresp(G) =
∑

vi∈VS

∥Traj ti − P t
x∥22,

Esmooth(G) =
∑

(i,j)∈EG

∥Rt
i(gj − gi) + gi + T t

i − (gj + T t
j )∥22,

(4)
where P t

x is the closest point to Traj ti in the new point
cloud P t. In each iteration, K points are sampled from
VS and transformed using Eq. 2. The data term Ecorresp

seeks to align the incomplete mesh MS to P t. The as-rigid-
as-possible [44] constraint Esmooth enforces nearby graph
nodes to have similar transformations. Additional implemen-
tation details can be found in the supplementary material.

3.2. Skeletonization

Using the trajectory of the incomplete mesh we want
to obtain the motion skeleton MS to represent the object
structure and its motion. To do so, we propose a novel
skeletonization technique that utilizes both shape and motion
information. We describe this method in full detail in Sec. 4;
here we give a brief summary of the approach.

In a nutshell, we first compute a curve skeleton CS from
the mesh geometry and use it to obtain the part segmenta-
tion and higher level connectivity of the skeleton (Sec. 4.2).
Next, each curve segment and its associated part are subdi-
vided into bones and articulated motion clusters respectively
(Sec. 4.3). Lastly, the motion of the skeleton SM is extracted
using the articulated motion AM of its vertices (Sec. 4.4).

3.3. Skeleton Embedding

To automate the rigging, we adapt the motion skeleton
MS to the target/reference mesh MT = {VT , FT }. Then
the adapted target skeleton T S is attached to MT by calcu-
lating linear blend skinning weights WT with similar con-
straints as Eq. 2. This also alleviates the requirement for the
complete surface information for the source shape, unlike
dense correspondence techniques like [17].

Finding T S involves solving maximum subgraph isomor-
phism between the source skeleton and the medial surface of
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the target/reference shape (which can be represented either
via a curve skeleton [4] or a graph [6]). The challenge in
designing a general shape correspondence algorithm stems
from the fact the combinatorial search space is exponen-
tial. To solve this difficult problem, we rely on the Pinoc-
chio [6] framework which uses an A* algorithm on all possi-
ble matches. In case of large pose and topological variations,
Pinocchio may not find matches for all joints.

3.4. Motion Retargetting

We assume the motion that needs to be retargeted should
be visible in the video meaning the motion should not be
hidden due to self-occlusion. First MS and T S are con-
verted to rooted trees. The joint closest to the center of the
source mesh, and its corresponding joint in T S , are taken to
be the root joints. Parent-child relationships are defined for
all other nodes accordingly.

At timestep t, for joint j ∈ JTS and its parent p ∈ JTS .
Rotation matrix Rt

j aligns the normalized vector
−−−→
j − p to

−−−−−−−−→
SM t

j − SM t
p. The motion of the target skeleton TM is

computed as:

TM t
j = Rt

j(j − p) + TM t
p (5)

Having specified the motion of the target skeleton, the
final re-targetted motion RM of the target mesh MT can be
determined via linear blend skinning:

RM t
v =

∑
b∈BTS

W (v, b)(Rt
j(v − p) + TM t

p) (6)

where v is the vertex of MT , and b is the bone in the target
skeleton which has joint j and p as its adjacent joints.

4. Proposed Skeletonization
The input to our algorithm is the incomplete mesh

MS = {VS , FS} of the source object and its trajectory
Traj ∈ RT×|VS |×3, where T is the number of timesteps.
The trajectory is obtained using Eq. 2 after optimizing the
transformation parameters of the deformation graph using
NRR. The output is a kinematic pose tree, i.e. a motion skele-
ton MS = {JMS , BMS} where JMS is a set of joints in R3

and bones BMS are the edges connecting the joints, along
with its skeletal motion SM ∈ RT×|JMS |×3.

4.1. Preliminaries

We distinguish between a motion skeleton, which repre-
sents the object’s motion degrees of freedom as a hierarchy
of nearly rigid parts (i.e. bones) connected by joints, and a
curve skeleton, which is simply an abstracted 1D represen-
tation of an object’s geometry via a tree-structured network
of curves [13]. Curve-skeletons naturally incorporate the no-
tion of object parts and therefore are used in animation [30],

shape retrieval [9] and shape correspondence [4]. In our
method, we first compute a curve skeleton to identify the
overall topology of the source character, i.e. the head, torso,
limbs, etc., and then subdivide the segments of the curve
skeleton based on observed motion to obtain the motion
skeleton. Our results in Sec. 5 show that the inclusion of a
curve skeleton facilitates better correspondence and motion
re-targeting.

More precisely, a curve skeleton CS is a graph, typically
a tree, whose nodes are points ji ∈ R3 that together approx-
imate the medial axis of a given shape. We refer to nodes
with degree 1, 2, and ≥ 3 as terminal, intermediate, and
junction nodes respectively. Terminal and junction nodes
together form the functional nodes. A path consisting of
intermediate nodes between two functional nodes i and k is
called a curve and denoted Cik.

Additionally, each node i in the curve skeleton is asso-
ciated with a subset Si of the vertices of the original shape.
These subsets form a partition of the set of shape vertices,
i.e. they are disjoint and their union is the entire set VS .
Typically, each subset forms a cylindrical ring around the
corresponding skeleton node, or for an incomplete shape,
a strip. By taking unions of these subsets, we can asso-
ciate a curve region CRik =

⋃
l∈Cik

Sl with each curve Cik.
These curve regions segment the shape into geometrically
significant parts.

4.2. Curve skeleton extraction

We compute the curve skeleton from the incomplete
source mesh MS using the local separators method of
Bærentzen et al. [5]. Their method chooses the skeleton
nodes so that each associated Si is a local separator, i.e. a
subset which if removed would disconnect MS into two
or more disjoint components. Unlike other skeletonization
methods, it operates on the graph representation of a mesh,
and is not limited to watertight meshes. In the Supplemen-
tary, we compare various curve skeleton extraction methods
and explain in detail our design choice of using [5].

The curve skeleton produced by their method is not guar-
anteed to be a tree, so we collapse each cycle into a single
node before proceeding. Furthermore, on incomplete meshes
resulting from single-view depth images, we find that the
algorithm produces spurious short branches and, of course,
separate trees for different connected components. To ad-
dress these issues, we prune the skeleton by removing curves
of length ≤ 3, and connect separate components together
based on the least edge length variation and boundary infor-
mation of local separators in pixel space.

Finally, Bærentzen et al.’s method places each node of the
curve skeleton at the centroid of its associated mesh vertices
Si. We replace this simple scheme for node placement with
an approach inspired from ROSA [49] to better handle in-
complete shapes, as follows. We enforce the node to lie near
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the medial surface of the object by constraining the node to
the intersection of a separator’s vertex normals. Hence the
optimal position of a node j∗i is obtained as

j∗i = argmin
ji∈R3

∑
v∈Si

λcpp∥(ji − v)× n(v)∥22 + λeucl∥ji − v∥22

+λsmooth

∑
k∈N(i)

∥ji − jk∥22

(7)
where n(v) is the vertex normal for vertex v, N(i) are the
neighbours of node ji.

4.3. Curve Partitioning to estimate bones

While the curve regions CRik induced by the curve
skeleton extraction give us a simple part decomposition of
the shape, they do not incorporate any motion information.
Therefore, they may need to be subdivided further into func-
tional parts, i.e. rigid bones connected by joints, to obtain
the final motion skeleton. We do so by repeatedly splitting
each curve Cik to reduce the reconstruction error between
the original trajectory and its rigid approximation.

We initialize the motion skeleton MS by defining a single
bone b for each curve Cik in CS. The curve-segment CRik

represents the motion cluster whose trajectory is governed
by the rigid transformation of bone b. Let Rt

b, T t
b , be the

rotation and translation parameters for bone b at timestep t.
We define the reconstruction cost,

RC(i, k) =
1

T

T∑
t=1

∑
v∈Cik

∥Trajtv − (Rt
bv + T t

b )∥22. (8)

To find the optimal rotation Rt
b and translation T t

b for bone
b we solve the absolute orientation problem [54] using the
Kabsch algorithm [16] (explained in Supplementary).

For every bone, we traverse the intermediate nodes of
its underlying curve, and find the one at which splitting the
curve would give the lowest reconstruction error:

r∗ = argmin
r∈Cik

RC(i, r − 1) +RC(r, k) (9)

If the relative change in RC is greater than a threshold ϵsplit,
we replace the bone with two bones associated with curves
Cir and Crk and connected at the joint jr, and repeat. Oth-
erwise, we keep the original bone.

4.4. Skeleton motion

Lastly, we estimate the deformation of the underlying
skeleton which leads to the articulated motion of the source
object. This skeleton motion SM will be transferred to the
target object during motion retargetting.

To make the bones’ transformation deform the surface,
the articulated motion AM ∈ RT×|VS |×3 is calculated by

deforming each vertex v using a weighted combination of
bones as defined below,

AM t
v =

∑
b∈BMS

W (v, b) ∗ (Rt
bv + T t

b ) (10)

where W (v, b) represents the influence of bone b on vertex
v. We compute these skinning weights W ∈ R|VS |×|BMS |

using SSDR [18], which finds the optimal weights subject to
the constraints

W (v, b) ≥ 0, (11)∑
b∈BMS

W (v, b) = 1, (12)

|{b ∈ BMS : W (v, b) > 0}| ≤ 4. (13)

Using the reconstructed motion, the location of each joint
at timestep t is obtained as:

SM t
j = j +

∑
v∈Sj

(AM t
v − v) (14)

5. Experiments and Results

Experimental Setup: We perform the experiments on an
Alienware laptop with an Intel i7 CPU, 32GB RAM, and an
8GB Nvidia GeForce GTX 1080. The hyperparameters are
listed in the supplementary material for reproducibility.
Datasets and Preprocessing: As our goal is motion transfer
between generic real-depth videos to virtual characters of
semantically similar but differing shapes, we use Deform-
ingThings4D [63], a dataset of non-rigidly deforming objects.
For every example, we computed a source depth video by as-
signing a random camera view and calculating depth images
using Blender Eevee2. A detailed description of other bench-
mark datasets and preprocessing to obtain a single view for
our experiments can be found in the supplementary material.

5.1. Comparison with the state-of-the-art

Shape correspondence between dissimilar shapes is an ill-
defined problem, and there is no rigorous definition of what
constitutes good correspondence of parts from the source to
the target. Instead, one can qualitatively identify poor corre-
spondences where semantically different parts are matched
to each other, e.g., a mapping of a source character’s head to
a target character’s leg. Conversely, a correspondence that
respects the semantics of parts can be considered as a high-
quality correspondence. We have tested our approach on a
wide variety of model pairs with similar semantic structures
(Fig. 1 and Fig. 3 show just a small subset of our results). We
find Transfer4D to be robust to some degree of variation in
poses, although it fails if the character is rotated 180 degrees.

2https://docs.blender.org/manual/en/latest/render/eevee/index.html
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Method Percentage ↑ Reconstruction ↓ Local ↓
Joints Embedded Error Pose Error

Zhang et al [64] 31±21 % 0.91±32 0.36±0.18

Le et al . [18] 52±38 % 0.71±38 0.28±0.16

Neural Marionette [15] - 0.51±0.25 0.23±0.07

Ours 84±22 % 0.37±23 0.18±0.09

Table 1. Overall performance scores of motion retargetting across
skeletonization variants

We do not perform any parameter tuning, and use the default
thresholds for all results.

Comparison with contemporary methods: We compare
our method both qualitatively and quantitatively against a
set of well-known unsupervised methods, namely Zhang et
al. [64], Le et al. [18], and the recent Neural Marionette [15].
For [64] we use our own implementation since the code is
not available. For [18] we use the authors’ code for skinning,
but perform skeletonization ourselves as the reference code
fails on incomplete meshes. For [15] we use only the code
provided by the authors. We did not compare against Lu et
al. [29] as the source code was not released, and we could
not reproduce the results in their manuscript with our own
implementation.

In order to have a ground-truth target motion for evalua-
tion, we transfer motion from the incomplete source back to
the complete mesh of the same shape as the target. Thus the
ideal result is to recover the original motion of the complete
mesh. Neural Marionette [15] carries out the entire anima-
tion transfer process, while for Zhang et al.and Le et al.we
use their method for skeletonization and continue with the
remaining steps of our animation transfer pipeline.

Fig. 4 shows a qualitative comparison of motion transfer
using our technique and others methods. Tab. 1 shows the
quantitative performance scores. We report (i) the percent-
age of joints that were successfully embedded into the same
shape, (ii) the reconstruction error between the re-targeted
motion and the original motion, and (iii) the local pose er-
ror, i.e. the reconstruction error after rigidly aligning the
re-targeted motion with the original motion at each timestep.
The supplementary provides details about the performance
scores, samples used for evaluation, and additional quan-
titative comparisons of our technique with state-of-the-art
methods.

From Fig. 4 and Tab. 1, it can be observed that our method
outperforms all three tested approaches both qualitatively
and quantitatively. As Neural Marionette uses a volumetric
representation without preprocessing, it is unable to handle
an incomplete point cloud sequence. Le et al. [18] and
Zhang et al.’s method uses only motion information without
structural cues, resulting in a skeleton that is less effective
for embedding.

Results on real scanned videos: Fig. 5 shows anima-
tion transfer results from real captured RGBD videos. We
experimented with three examples. In (a), we transferred

Figure 3. Motion/Animation Transfer results from Transfer4D on
sequences from DeformingThings4D [63] dataset: Skeleton in the
source was extracted using our proposed approach and embedded
into the target mesh. Notice that our approach is able to transfer
motion to diverse creatures emphasizing the generality of our ap-
proach.

Figure 4. Qualitative comparison of our proposed skeletonization
against the baselines: Neural Marionette [15], Zhang et al. [64], Le
et al. [18]. Top row: the motion skeleton and the motion clusters
for each method; note that Neural Marionette only detects key
points and does not compute skinning weights. Bottom row: the
skeleton mapped to the target shape – by Neural Marionette itself,
or embedded using Pinocchio [6] in the case of the other methods.

the motion of a single-view human puppeteering a doll back
to the same object and to biped examples from ModelsRe-
source dataset [56]. In (b) and (c), we used a video of an
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Figure 5. Animation Transfer on real scanned sequences. (a) Don-
key doll [52] (b) Adult from DeepDeform [7]. We show successful
animation transfer results on the left and a failure case due to self-
occlusion on the right.

adult moving his arms from the DeepDeform dataset [7]
and retargeted it to a gorilla and upper body of SMPL mesh
respectively, with manual editing for plausible motion trans-
fer. However, we encountered a failure case in (c), where
self-occlusion prevented us from estimating the pose and
retargeting the motion of the left hand, as highlighted in red
ellipses. We also observed inaccuracies in embedding the
hip joint to other biped examples using Pinocchio.

5.2. Discussion

Our system is aimed to be a frugal alternative to motion
capture setups. The supplementary material shows the cost
comparison of our setup with the prior works.

With respect to semantic correspondence between source
and target shapes: (a) We assume that there would not be
large topological variations between the shapes. Since our
approach depends on Pinocchio [6] framework for skeletal
embedding, if there is a part of the source object which
cannot be mapped to the target our approach tends to fail.
For example, if the algorithm is used to map a human to an
octopus mesh, our approach may not have a corresponding
part in the human to match with every part of the octopus.
Finding partial embedding could potentially lead to failure
in this case. (b) Our approach fails in situations of large
pose variations between source and target. In addition, the
global orientation of the target shape should be aligned with
the source shape (as depicted in Fig. 1). An embedding of a
human upside down will also be upside down which leading
to an implausible motion transfer.

There are methods such that NeuroMorph [10], and Elec-
tor Voters method [4] that target a somewhat similar problem
albeit with an assumption of source to be noise-free and
complete. Thus, a fair comparison would not be possible
with our setting from a single-view frugal sensor which gives
rise to incomplete point cloud. Methods like ROSA [49],
Point2Skeleton [25] are designed to work on static 3D
meshes, and do not incorporate motion information which is
necessary for motion transfer.

5.3. Limitations and Future Work

We list a few assumptions and limitations of our method
below. (1) NRR: We use the traditional setup of RANSAC
and N-ICP [20] for NRR. This makes our setup susceptible to
failure in case of large deformation between the source and
target frame. We also conducted the experiments with other
methods but found N-ICP performs better on our chosen met-
rics (see Sec. 2.5 in supplementary) (2) Error propagation:
An error in one stage of our pipeline will affect all subse-
quent stages. However, we could reduce errors within each
step by implementing additional constraints, like temporal
smoothing. Furthermore, metrics proposed in Sec 2.5 in sup-
plementary and Tab. 1 can be used to detect a failure in NRR
and skeleton embedding, respectively. (3) Detailed motion
capture: Our primary focus is on articulated motion. Fine
details such as wrinkles on clothing or facial expressions are
not captured or transferred by our system. Likewise, highly
nonrigid motions such as loose-fitting dresses or gowns can
also lead to artifacts. (4) Improvement in shape correspon-
dence: Our use of Pinocchio leads to a limitation that the
source and target shapes should be in approximately the same
pose for skeleton embedding to succeed. The supplemen-
tary material shows some potential failure cases arising in
Transfer4D when the assumptions are violated. In the future,
we plan to incorporate pose-invariant shape correspondence
modules building on [4] for additional supervision. (5) LBS:
We currently use linear blend skinning(LBS) to deform the
target mesh. However, LBS cannot capture non-rigid sur-
face deformation. In future, we could replace the skinning
module with alternatives such as SkinningNet [32] or neural
blend shapes [22] . (6) Data dependence: As skinning de-
composition relies on motion data, a limited motion range
in the source could lead to an irregular skeleton, which may
result in an unsuccessful transfer.

6. Conclusions

We presented Transfer4D, a first pipeline in the direction
of unsupervised animation transfer from single-view com-
modity sensors to virtual characters modeled as polygonal
mesh. In addition, we propose a novel skeletonization ap-
proach that helps in motion transfer reducing artifacts that
arise solely through motion skeletonization. We also high-
light the challenges faced and a few limitations of our and
the existing approaches to be more effective for the democ-
ratization of animation transfer such as handling noisy data,
pose, and large topological variations between source and
target shapes.
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