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Abstract

An effective framework for learning 3D representations

for perception tasks is distilling rich self-supervised image

features via contrastive learning. However, image-to-point

representation learning for autonomous driving datasets

faces two main challenges: 1) the abundance of self-

similarity, which results in the contrastive losses pushing

away semantically similar point and image regions and thus

disturbing the local semantic structure of the learned rep-

resentations, and 2) severe class imbalance as pretraining

gets dominated by over-represented classes. We propose to

alleviate the self-similarity problem through a novel seman-

tically tolerant image-to-point contrastive loss that takes

into consideration the semantic distance between positive

and negative image regions to minimize contrasting seman-

tically similar point and image regions. Additionally, we

address class imbalance by designing a class-agnostic bal-

anced loss that approximates the degree of class imbalance

through an aggregate sample-to-samples semantic similar-

ity measure. We demonstrate that our semantically-tolerant

contrastive loss with class balancing improves state-of-the-

art 2D-to-3D representation learning in all evaluation set-

tings on 3D semantic segmentation. Our method con-

sistently outperforms state-of-the-art 2D-to-3D representa-

tion learning frameworks across a wide range of 2D self-

supervised pretrained models.

1. Introduction

Self-supervised learning (SSL) has shown significant

success in learning useful representations from unlabeled

images [7, 9, 11, 22], mainly due to large, diverse, and bal-

anced 2D image datasets. These successes promise to alle-

viate the requirement for large labeled datasets, which can

be expensive, not attainable, or task-specific. These issues

are exacerbated when generating labels for 3D point clouds,

which are usually much more difficult to annotate [27] than

2D images. Additionally, the sparse nature of point clouds

generated using a LiDAR sensor, as is common in outdoor

autonomous driving data, substantially increases the diffi-

Figure 1. Bottom row: Superpixel-to-superpixel cosine similarity

with respect to, bottom left: a road anchor, and bottom right: a

vehicle anchor (both marked in red). Superpixel-driven contrastive

loss [21] treats all superpixels excluding the anchor as negative

samples. As such, loss will be dominated by gradients from se-

mantically similar negative samples, disturbing the local seman-

tic structure of the learned 3D representations. Our loss uses su-

perpixel similarity to 1) Reduce the contribution of false negative

samples, and 2) Balance the contribution of well-represented (i.e.,

road) and under-represented (i.e., vehicle) anchors

culty of manually generating per-point labels, particularly

at large distances.

A common approach to learn 3D representations is

through multimodal invariance [16], where 3D represen-

tations are learned to be invariant to features extracted

from image encoders trained with self-supervised learn-

ing [17, 21]. The current state-of-the-art, SLidR [21], en-

courages learning representations of 3D point regions (su-

perpoints) to match pre-trained representations of 2D image

regions (superpixels) through a novel contrastive loss. By

contrasting 2D and 3D regions, SLidR [21] enables learning

representations from point clouds with varying point densi-

ties, as is common in autonomous driving datasets.

Unfortunately, SlidR’s region-based sampling does not

address self-similarity, which results when fewer unique

semantic classes exist in the data relative to the number

of chosen contrastive pairs during training. Under self-

similarity, many negative samples will belong to the same

semantic class as the positive sample used to compute the
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contrastive loss, pushing apart their embeddings and break-

ing the local semantic structure of learned 3D representa-

tion [24](see Figure 1). This issue is further exacerbated

by the implicit hardness-aware property of contrastive loss,

where the largest gradient contributions come from the most

semantically similar negative samples [24](see 3.1.2).

In addition, autonomous driving datasets are highly im-

balanced, for example, in the nuScenes dataset [6], the

’Pedestrian’ class covers 0.25% of the data, while ’vege-

tation’ class covers 22.19% of the data. Since the class of

the positive sample is unknown during pretraining, SLidR’s

loss gives an equal weight to all samples in the batch.

Hence, the 3D pretraining is predominately driven by gra-

dients from a few over-represented samples, leading to poor

performance on under-represented samples.

In this work, we simultaneously address the challenge

of contrasting semantically similar point and image re-

gions and the challenge of learning 3D representations from

highly imbalanced autonomous driving datasets. Figure 1

shows that image regions semantically similar to the an-

chor exhibit high cosine similarity in the 2D self-supervised

feature space. Our first key idea is to exploit the seman-

tic distance between positive and negative pooled image

features to guide negative sample selection. Reducing the

contribution of false negative samples, which are abundant

in autonomous driving datasets due to the self-similarity,

prevents the disturbance of the local semantic structure of

the pre-trained 3D representations [24]. Figure 2 shows

that most anchors come from over-represented classes (i.e.,

road, vegetation) resulting in a 3D point encoder that is less

discriminative with respect to under-represented classes. To

address this challenge, we propose using aggregate seman-

tic similarity between samples as a proxy for class imbal-

ance. By balancing the contribution of over and under-

representated anchors, we improve the learned 3D represen-

tations of under-represented semantic classes (i.e., pedestri-

ans and vehicles). We summarize our approach with two

main contributions, which we present below.

Semantically-Tolerant Loss. To address the similarity of

samples in 2D-to-3D representation learning frameworks,

we propose a novel contrastive loss that relies on 2D self-

supervised image features to infer the semantic distance

between positive and negative pooled image features. We

propose to either directly reduce the gradient contribution

of semantically-similar negative samples or exclude the K-

nearest samples based on the semantic distance to the posi-

tive sample.

Class Agnostic Balanced Loss. To address pre-training us-

ing highly imbalanced 3D data, we propose a novel class ag-

nostic balancing for contrastive losses that weights the con-

tribution of each 3D region in a point cloud based on the ag-

gregate semantic similarity of its corresponding 2D region

with all negative samples. We reason that samples with high

MoCoV2 SwAV

DenseCL DINO

Figure 2. t-SNE [23] visualization of superpixel-level features

for a given batch of nuScenes [6] images. Each superpixel fea-

ture is colorized based on its semantic class derived from LiDAR

ground truth point-wise labels. Here, we show that MoCoV2 [10],

SwAV [7], DenseCL [25] and DINO [8] weights generate mean-

ingful semantic clusters on the superpixel level.

aggregate semantic similarity to other samples come from

over-represented classes, while under-represented samples

are semantically similar to very few other samples. Hence,

we reduce the contribution of over-represented samples,

while increasing that of under-represented samples.

By extending the state-of-the-art 2D-to-3D representa-

tion learning frameworks using our proposed semantically-

tolerant contrastive loss with class balancing, we show that

we can improve their performance on in-distribution lin-

ear probing and finetuning semantic segmentation, as well

as on out-of-distribution few-shot semantic segmentation.

We also show that our proposed semantically-tolerant loss

improves 3D semantic segmentation performance across a

wide range of 2D self-supervised pretrained image features,

consistently outperforming state-of-the-art 2D-to-3D repre-

sentation learning frameworks.

2. Related Work

2.1. Self-Supervised 2D Representation Learning

Learning 2D representations via instance-level discrim-

ination has shown to be an effective pre-text task for SSL

frameworks [26]. These frameworks learn unsupervised

representations by maximizing the mutual information [3]

between two augmented views of an image using one of

two objectives. Similarity maximization objective includ-

ing contrastive methods [9, 10, 25] minimize the distance

between the representations of the two views of the same

instance, while maximizing the distance to other instances.

On the other hand, redundancy minimization [4, 28] ob-
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jective minimizes the statistical correlation between the di-

mensions of the learned representation while also maximiz-

ing similarity between representations of the same instance.

SSL frameworks can also be categorized based on whether

their losses are designed to discriminate pixel-level [25],

superpixel-level [13] or instance-level [9] representations.

DetCon [13] has demonstrated that designing contrastive

losses on image regions named superpixels leads to effi-

cient pretraining and better performance especially on dense

tasks like 2D semantic segmentation and object detection

compared to instance-level contrastive losses.

In this paper, we employ the self-supervised 2D rep-

resentations as a supervisory signal to learn 3D repre-

sentations. We demonstrate that the semantic structure

learned by 2D SSL methods can be used to address chal-

lenges in learning 3D representations for autonomous driv-

ing datasets including abundance of self-similarity and se-

vere class imbalance.

2.2. Self-Supervised 3D Representation Learning

Self-supervised 3D representation learning can be cat-

egorized into perspective-invariant, format-invariant and

multimodal invariant methods [16]. Perspective invariant

methods like PointContrast [27] learn point representations

that are invariant to different views of the point cloud.

These methods are primarily designed for indoor RGB-D

datasets, where full 3D reconstruction of the scene is pos-

sible [29]. To address the limitation of requiring multiple

views, DepthContrast [29], a format-invariant method, uses

only single view point cloud data, and learns 3D represen-

tations that are invariant to point and voxel representations.

By design, the contrastive loss in DepthContrast [29] learns

global scene-level representations and therefore is prone to

losing information on small objects [21].

Multi-modal invariant methods extract image represen-

tations from pretrained image encoders, and use a con-

trastive loss to learn 3D representations by maximizing

the similarity to 2D representations. PPKT [17] con-

trasts representations of pairs of point and pixel correspon-

dences. This method is mainly designed for indoor RGB-

D datasets, where dense point-to-pixel correspondences ex-

ist [21]. SLidR [21] is the first 3D representation learn-

ing method that is primarily designed for autonomous driv-

ing datasets. Inspired by DetCon [13], they use unsuper-

vised image segmentation algorithms [1] to segment im-

ages into superpixels. By projecting the point cloud onto

the superpixel mask, each point is assigned a superpoint.

Each superpoint and its corresponding superpixel form a

positive pair and the contrastive loss is thus defined at the

superpixel-level. SLidR [21] formulation has multiple ad-

vantages; First, constructing semantically coherent image

and point cloud corresponding regions, leads to learning

useful object-level representations [13]. In addition, unlike

PPKT [17], grouping superpoint and superpixel represen-

tations using average pooling increases robustness against

camera and LiDAR calibration errors [21]. Finally, the

density of LiDAR returns increases as a function of dis-

tance [14, 18, 19] resulting in very few number of points at

mid-to-long range objects. The Random sampling strategy

of positive pairs in PointContrast [27] and PPKT [17] ap-

plied to outdoor scenes results in a biased sampling towards

dense nearby points. SLidR [21] breaks down the scene

based on image superpixels, which leads to constrastive

pairs covering the entire 3D scene. Each pair has the same

weight in the contrastive loss regardless of the number of

points in these regions [21].

The contrastive losses proposed in PPKT [17] and

SLidR [21] are not suited for autonoumous driving data due

to two main reasons. First, the high level of self-similarity,

which results in the number contrastive pairs from unique

semantic classes being much less than the number of pairs

in any given batch. This phenomenon will lead to the

contastive loss considering semantically similar samples as

negative samples and pushing their representations apart.

Second, autonomous driving datasets suffer from severe

class imbalance which can lead to a small over-represented

subset of the semantic class dominating the self-supervised

pretraining stage. We address the first challenge by for-

mulating a semantically tolerant loss which prevents con-

trasting semantically similar samples. We address the sec-

ond challenge by formulating a class-agnostic balanced loss

that uses aggregate sample-to-samples semantic distance as

a proxy for class imbalance.

3. Methodology

3.1. Superpixel-Driven Contrastive Loss

3.1.1 Background

Given a set of point clouds representing multiple scenes

{pi = {ℓi, fi} | i = 1, . . . , U}, where ℓi ∈ R
Ni×3 is

a tensor of 3D location of Ni points representing the

ith scene, and fi ∈ R
Ni×L are their associated point-

wise features (i.e., intensity and elongation). We also

have a set of camera-to-LiDAR synchronized images
{{

I1i , . . . , I
J
i

}

| i = 1, . . . , U
}

, where I
j
i ∈ R

H×W×3

and J is the number of cameras per scene. Using the

unsupervised segmentation algorithm SLIC [1], each

pixel of image I
j
i is segmented into a set of super-

pixels X j
i and

{

Xi =
{

X 1
i , . . . ,X

J
i

}

| i = 1, . . . , U
}

denotes the set of multi-scene superpixels X .

To generate the set of corresponding superpoints
{

Pi =
{

P1
i , . . . ,P

J
i

}

| i = 1, . . . , U
}

, camera-to-LiDAR

calibration matrices are used to map 3D points to pixel

locations. Superpixels with no corresponding superpoints

(i.e., superpixels outside FOV of the LiDAR) are removed

from set X and therefore |X | = |P|.
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Figure 3. An overview of our self-supervised image-to-point distillation framework. LiDAR and camera data are encoded and their

respective features are projected onto an embedding space where the contrastive loss is computed. Then, superpixels are used to group the

3D and 2D embeddings. In addition, the fixed 2D self-supervised features are grouped and used to estimate the superpixel-to-superpixel

similarity. Finally, our loss utilizes the similarity estimates to: 1) Reduce the contribution of false negative superpixel embeddings by

masking the k-nearest neigbouring superpixels, and 2) Balance the contribution of over and under-represented samples based on the

distribution of the aggregate superpixel feature similarities.

Let the point cloud encoder be a 3D deep neural net-

work fθP : RN×(3+L) → R
N×D, with randomly initial-

ized, trainable parameters θP . Let the image encoder be

a 2D neural network gθI : RH×W×3 → R
H
s
×W

s
×C , with

parameters θI initialized from any 2D self-supervised pre-

trained parameters. The goal is to use the pretrained image

features at the superpixel level as a supervisory training sig-

nal for the point cloud encoder.

To compute the superpixel-driven contrastive loss, a

trainable projection layer hωP
: R

N×D → R
N×E maps

the output of the point cloud encoder to the contrastive loss

embedding space. In addition, a trainable projection layer

hωI
: R

H
s
×W

s
×C → R

H
s
×W

s
×E maps pixel-level image

features to the contrastive loss embedding space. The loss is

computed between superpoint and superpixel embeddings.

First, P and X are used to group point and pixel embed-

dings respectively. Let M = |X | = |P|. An average

pooling function is then applied to the point and pixel em-

beddings within each group, to extract multi-scene super-

point embeddings Q ∈ R
M×E and superpixel embeddings

K ∈ R
M×E . The superpixel-driven loss is formulated as:

L (Q,K) = −
1

M

M
∑

i=0

log

[

e(⟨qi,ki⟩/τ)

∑

j ̸=i e
(⟨qi,kj⟩/τ) + e(⟨qi,ki⟩/τ)

]

,

(1)

where ⟨qi,kj⟩ is a measure of similarity computed as the

dot product between the ℓ2-normalized superpoint and su-

perpixel embeddings and τ is the temperature scale [9].

3.1.2 Limitations

Self-similarity in Autonomous Driving Data. Looking

at Figure 1, we observe that many image regions defined

by superpixels belong to the same semantic class. We call

this self-similarity. For a given batch, each superpoint and

its corresponding superpixel embedding are considered pos-

itive samples, while the remaining pairs are treated as neg-

ative samples. Due to the self-similarity, there is a high

probability for the contrastive loss in SLidR [21] (and a

higher probability in PPKT [17]) of pushing away semanti-

cally similar samples.

Hardness-aware Property of Contrastive Loss. The suc-

cess of the softmax-based contrastive loss has been at-

tributed to its hardness-aware property [24]. The tem-

perature parameter τ controls the distribution of nega-

tive gradients, where low temperatures lead to larger gra-

dient contribution from nearest neighbour negative sam-

ples. Authors in [24] have demonstrated that there exists a

uniformity-tolerance dilemma in softmax-based contrastive

losses. They show that high temperatures lead to seman-

tically tolerant embeddings, but can suffer from embed-
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ding collapse, while low temperatures lead to a uniform

distribution of embeddings, preventing embedding collapse.

Nonetheless, low temperatures also lead to less tolerant em-

beddings, where similar samples are not closely clustered.

Both PPKT [17] and SLidR [21] use a low temperature of

τ = 0.04 and τ = 0.07 respectively. Due to the implicit

hardness-aware property of the contrastive loss, the highest

gradient contribution to the pre-training signal comes from

pushing away semantically similar samples which disturbs

the local semantic structure of the learned representation.

3.2. Semantically-Tolerant Contrastive Loss

We observe that in self-supervised image-to-point cloud

knowledge distillation frameworks [17, 21], pre-trained

models provide a strong prior on the relationship between

superpixel features. To show this, we use ResNet-50 pre-

trained on ImageNet [20] using four 2D self-supervised

methods. First, we use each pre-trained model to map a

batch of 16 images from nuScenes dataset [6] to output fea-

tures gθI : RH×W×3 → R
H
s
×W

s
×C . Using X , pixel fea-

tures are then grouped and an average pooling function is

applied to extract superpixel features F ∈ R
M×C . To vi-

sualize F, we reduce the dimensionality of the features us-

ing t-SNE [23] and show the first 2 dimensions in Figure 2.

Each point corresponds to a superpixel feature fi ∈ M × C

colorized using the dominant point-wise ground truth label

of their corresponding superpoint.

As seen in Figure 2, extracted superpixel features from

nuScenes [6] images form relatively coherent semantic

clusters. SLidR [21] not only ignores this strong prior in

their contrastive loss formulation but also suffers due to the

hardness-aware property [24] of the contrastive loss, which

will in its current form, primarily focus on pushing away se-

mantically similar superpoints and superpixels embeddings.

In addition, we observe a high level of self-similarity, where

the ratio between the total number of superpixels (i.e., 9000)

and the number of unique semantic classes (i.e., 13) in a

batch is very high, leading to an increase in false negatives.

Similarity-aware Loss. Our goal is to address the issue

of contrasting semantically similar superpoint and super-

pixel embeddings. This issue is exacerbated due to the

high self-similarity in autonomous driving data, and the

hardness-aware property of the contrastive loss. We pro-

pose a semantically-tolerant contrastive loss that utilizes su-

perpixel similarities in the feature space to re-weight the

contribution of semantically similar negative samples. Our

loss reduces the gradient contribution from negative super-

pixel embeddings that are semantically similar to the posi-

tive sample. Our loss can be written as:

Lα (Q,K) =

−
1

M

M
∑

i=0

log

[

e(⟨qi,ki⟩/τ)

∑

j ̸=i e
((1−αij) . ⟨qi,kj⟩/τ) + e(⟨qi,ki⟩/τ)

]

,

(2)

where αij = ⟨fi, fj⟩ is a measure of similarity defined as

the dot product of the ℓ2 normalized superpixel features F.

Here, fi ∈ R
C .

Pij =

[

e((1−αij) . ⟨qi,kj⟩/τ)

∑

j ̸=i e
((1−αij) . ⟨qi,kj⟩/τ) + e(⟨qi,ki⟩/τ)

]

. (3)

Looking at the gradient of the proposed loss with respect to

the negative similarity ⟨qi,kj⟩ where j ̸= i:

∂Lα (qi,K)

∂ ⟨qi,kj⟩
=

(1− αij)

τ
Pij . (4)

In Lα, the gradient of the loss with respect to the negative

sample kj , is weighted by the dissimilarity between the fea-

tures of positive superpixel fi and the negative superpixel

fj . Therefore, there is less contribution from kj’s that are

semantically similar to ki. When αij = 1.0 the pos/neg

superpixel features are identical, and
∂Lα(qi,K)
∂⟨qi,kj⟩

= 0.0

preventing contrasting semantically similar pairs. When

αij = 0.0 then
∂Lα(qi,K)
∂⟨qi,kj⟩

=
Pij

τ and we revert back to

the SLidR [21] formulation.

Nearest-Neighbour-aware Loss. Training with Lα is a

much easier loss to minimize compared to L since the

closest negative samples which are also the hardest neg-

atives have lower contribution to the loss. For instance,

when the mean of superpixel-to-superpixel feature sim-

ilarities is high for a given 2D SSL pretrained model,
∑

j ̸=i e
((1−αij) . ⟨qi,ki⟩/τ) << e(⟨qi,ki⟩/τ) and thus very

few negative samples will contribute to the loss. In this

case, Lα can be easily minimized without learning useful

representations. One approach to address this issue, is to

suppress negative samples with low similarity values by set-

ting αij < αmin to 0.0, where αmin is a tunable parameter.

Hence, we ensure we have enough negative samples to learn

useful representations while preventing contrasting against

semantically similar negative samples. However, αmin has

to be tuned for each 2D pretrained model. Empirically, we

find that the linear separability of the 3D representations is

very sensitive to the choice of αmin (see Table 6).

We hypothesize that the values of superpixel-to-

superpixel similarities are not well-calibrated and vary

based on the 2D pretrained model. Therefore, these simi-

larities should not be directly used in the contrastive loss.

For a given positive sample, we hypothesize that the order
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of similarities across different 2D pretrained models is con-

sistent. Hence, the order of similarities is more informative

than the similarity values. To avoid directly incorporating

un-calibrated values of αij in the loss, we propose remov-

ing the K-nearest neighbours from the set of negative sam-

ples based on αij . To this end, for each postive sample qi,

we sort αij , ∀j ̸= i and compute αiK that contains the K-

nearest neighbours. Here, Cij is an indicator of whether fj
is semantically similar to fi.

Cij =

{

1.0, if αij < αiK

0.0, otherwise
(5)

The loss can then be formulated as:

Lknn (Q,K) =

−
1

M

M
∑

i=0

log

[

e(⟨qi,ki⟩/τ)

∑

j ̸=i Cij . e(⟨qi,kj⟩/τ) + e(⟨qi,ki⟩/τ)

]

.

(6)

Using Lknn, a fixed number of negative samples, exclud-

ing the K-nearest neighbors are used as the negative set.

We show in Table 6 that excluding the K-nearest neighbors

results in better linear separability compared to directly in-

corporating αij in the contrastive loss.

3.3. Class-Agnostic Balanced Contrastive Loss

Autonomous driving datasets are highly imbalanced

(see Figure 2), for instance, in nuScenes [6] only 0.05%
of the superpixels belong to ’motorcycle’ and ’bicycle’ cat-

egories, while 45% of the superpixels belong to ’road’ and

’vegetation’ categories. For indoor 3D point cloud datasets,

the problem is less severe, where the rarest category ’sink’

in ScanNet V2 [10] consists of 2.75% of the points [15].

Since the category of a sample is unknown during pre-

training, PPKT [17] and SLidR [21] assume a fixed weight

of 1
M on the loss from each sample within a batch. Since

the training signal is dominated by gradients from samples

of over-represented categories, the learned representations

for under-represented categories might not be optimal.

To address this issue, we reason that superpixel-to-

superpixel similarity can also be used as a proxy for class

imbalance. For example, for an over-represented anchor

qi in a batch, its associated superpixel feature fi will have

high αij with a large number of negative samples, while an

under-represented anchor, will have low αij with most neg-

ative samples. To balance the training, first, we compute

votes for each anchor based on similarity vi =
∑M

j=1 αij .

Then, a min-max normalization is applied vi = vi−vmin

vmax

to suppress noise. Finally, for each anchor qi, we assign a

weight wi inversely proportional to vi. The semantically-

tolerant loss with class-agnostic balancing can be formu-

lated as:

LST (Q,K) =

−

M
∑

i=0

wi

w
log

[

e(⟨qi,ki⟩/τ)

∑

j ̸=i Cij . e(⟨qi,kj⟩/τ) + e(⟨qi,ki⟩/τ)

]

.

(7)

Where wi = 1.0− vi and w =
∑M

i=0 wi.

4. Experiments

4.1. Pre-training

Backbones. To represent the input point cloud, we trans-

form the 3D points from Cartesian coordinates (x, y, z) to

cylindrical coordinates (ρ, ϕ, z). The input is voxelized us-

ing 3D cylindrical partitioning [30], where the voxel size is

(δρ = 10cm, δϕ = 1◦, δz = 10cm). For the 3D backbone,

similar to SLidR [21], we use the Minkowski U-Net with

3 × 3 × 3 kernels for all sparse convolutional layers. For

the 2D backbone, we use the ResNet-50 [12] architecture

and initialize the model parameters using a multitude of 2D

self-supervised pretrained models including MoCoV2 [10],

SwAV [7], DINO [8], OBoW [11] and DenseCL [25]. For

all experiments except 2D SSL frameworks, the 2D back-

bone for PPKT [17], SLidR [21] and ST-SLidR is initialized

using MoCoV2 [10].

Dataset. For pre-training, we use the nuScenes [6] dataset,

which contains 700 training scenes. Following SLidR [21],

we further split the 700 scenes into 600 for pre-training and

100 scenes for selecting the optimal hyper-parameters. Dur-

ing pretraining, only keyframes from the 600 scenes are

used to train both SLidR and ST-SLidR.

Training and Data Augmentations. For all experiments,

we pre-train the point cloud encoder, fθP , the superpoint

embedding layer, hωP
and the superpixel embedding layer,

hωI
, for 50 epochs on 2 A100 GPUs with a batch size of

16. Similar to SLidR [21], we use an SGD optimizer with

a momentum of 0.9, an initial learning rate of 0.5 and a

cosine annealing learning rate scheduler. Finally, for regu-

larization, we use a weight decay of 0.0001 and dampening

of 0.1. For data augmentation, we apply linear transforma-

tions to the point cloud including random flipping in the x

and y-axis, and rotating around z-axis. In addition, similar

to DepthContrast [29], we randomly select a cube and drop

all points within the cube. For images, we apply random

crop-resize and horizontal flip.

4.2. Evaluation

To assess the quality of the pre-trained 3D representa-

tions, a point-wise linear classifier is added to the output of

fθP . Two protocols are used to evaluate the performance on
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3D

Initialization
Reference

nuScenes KITTI Waymo

Lin. Prob

100%

Finetune

1%

Finetune

1%

Finetune

1%

Random N/A 8.10 30.30 39.50 39.41

PointContrast [27] ECCV 2020 21.90 32.50 41.10 -

DepthContrast [29] ICCV 2021 22.10 31.70 41.50 -

PPKT [17] arVix 2021 35.90 37.52 44.00 -

SLidR [21] CVPR 2022 38.40 38.83 43.96 47.12

ST-SLidR - 40.48 40.75 44.72 47.93

Improvement +2.08 +1.92 +0.76 +0.81

Table 1. Semantic segmentation results on nuScenes [6], Se-

manticKITTI [5] and Waymo [22] validation sets using 3D self-

supervised methods. On nuScenes, we evaluate linear probing

using 100% of the annotated training set and for finetuning, we

evaluate using 1% of the data. In addition, we evaluate out-of-

distribution performance on SemanticKITTI and Waymo datasets

using 1% of the training set. All models are pretrained using the

nuScenes dataset.

a semantic segmentation task, linear probing [2], and fine-

tuning. For linear probing, the parameters of fθP are frozen

and only the classifier head is trained on 100% of the train-

ing data from the nuScenes dataset. Since gradients are not

propagating back to fθP , the linear probe protocol directly

evaluates the quality of the pre-trained representations. We

evaluate the performance of the linear probing protocol on

the nuScenes validation dataset.

For fine-tuning, the representations are evaluated under

a low sample count, where the model is finetuned end-to-

end using only 1% of the annotated training data. The fine-

tuning protocol allows us to study the utility of the pre-

trained representations under a limited annotation budget.

We study the finetuning performance on the nuScenes val-

idation dataset and also evaluate the utility of the learned

pre-trained nuScenes representations during finetuning on

out-of-distribution data from the SemanticKITTI [5] and

Waymo [22] datasets. The number of classes for nuScenes,

SemanticKITTI and Waymo datasets are 16, 19 and 22 re-

spectively. The results are reported on the official validation

sets of all datasets. For training, we use a linear combi-

nation of the Lovasz and cross-entropy loss, and the same

training hyperparameters as SLidR.

4.3. Results

Comparison with Baselines. In Table 1, we present the

performance of Random initialization, PointContrast [27],

and DepthContrast [29] reported in [21]. For PPKT [17],

SLidR [21] and ST-SLidR, we run 3 pre-training experi-

ments using SLidR’s code base and report the mean per-

formance for each setting. We observe that models initial-

ized using weights from 3D SSL frameworks provide sig-

nificant improvements over random initialization. In addi-

tion, in an outdoor setting where the density of the point

cloud falls off rapidly at mid-to-long range, 3D SSL meth-

3D

Initialization

2D

Initialization

nuScenes KITTI

Lin. Prob

100%

Finetune

1%

Finetune

1%

SLidR
MoCoV2 [10]

38.40 38.83 43.96

ST-SLidR 40.48 40.75 44.72

Improvement +2.08 +1.92 +0.76

SLidR
SwAV [7]

39.11 38.81 44.15

ST-SLidR 40.49 40.86 44.98

Improvement +1.38 +2.05 +0.83

SLidR
DINO [8]

37.76 38.57 43.94

ST-SLidR 40.31 40.52 44.24

Improvement +2.55 +1.95 +0.30

SLidR
OBoW [11]

36.56 38.55 43.84

ST-SLidR 39.81 40.08 44.58

Improvement +3.25 +1.53 +0.74

SLidR
DenseCL [25]

34.90 37.50 43.44

ST-SLidR 36.93 39.21 43.34

Improvement +2.03 +1.71 -0.10

Table 2. The performance of vanilla SLidR compared to our pro-

posed loss (ST-SlidR) when using different pretrained 2D self-

supervised models during training.

ods using superpixel-driven loss like SLidR [21] leads to

improved performance compared to point-level losses like

PointContrast [27] and PPKT [17] or scene-level losses

like DepthContrast [29]. Pre-training using our proposed

semantically-tolerant and balanced loss ST-SLidR provides

a significant mIoU improvement of +2.08% for linear prob-

ing and +1.92% for few-shot fine-tuning tasks over state-of-

the-art SLidR on nuScenes datasets. In addition, compared

to SLidR, ST-SLidR also achieves better generalization in

out-of-distribution few-shot semantic segmentation on Se-

manticKITTI and Waymo datasets. We also show that our

proposed loss can improve the quality of 3D representations

of pixel-to-point contrastive losses such as PPKT [17] (see

Table 7 in Appendix)

2D SSL Frameworks. In Table 2, we present results for ex-

periments using weights pre-trained with different 2D SSL

frameworks. We observe that ST-SLidR provides signifi-

cant improvements over SLidR of at least 1.38% using lin-

ear probing and 1.5% for fine-tuning on nuscenes dataset

across all 2D pretrained models. This shows the robust-

ness of ST-SLidR to selection of the 2D SSL pretrained

model, indicating real benefit to feature transfer from 2D

to 3D point encoders.

Annotation Efficiency. In Table 3 we present results on the

utility of the pre-trained representations as a function of the

percentage of nuScenes training set. Here, we use the same

training parameters selected by SLidR [21] including learn-

ing rate and number of training epochs to evaluate the se-
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3D Initialization 1% 5% 10% 25% 100%

Random 28.64 47.84 56.15 65.48 74.66

SLidR 38.83 52.49 59.84 66.91 74.79

ST-SLidR 40.75 54.69 60.75 67.70 75.14

Improvement +1.92 +2.20 +0.91 +0.79 +0.35

Table 3. Finetune results on nuScenes as a function of the percent-

age of annotated data. Improvements are shown with respect to

SLidR [21]

Method
Lin. Prob 100% Finetune 1%

min maj min maj

SLidR 27.46 62.47 22.96 73.75

ST-SLidR 30.64 62.15 25.56 74.15

Improvement +3.18 -0.32 +2.61 +0.40

Table 4. We report mIOU for minority (min) and majority (maj)

classes of nuScenes dataset. We group classes based on whether

their superpixels occupy more than 5% of the superpixels in

nuScenes training set.

Sematic Tolerant

Loss

Class Balanced

Loss

Lin. Prob

100%

Finetune

1%

✗ ✗ 37.87 38.96

✗ ✓ 38.33 39.73

✓ ✗ 40.04 40.19

✓ ✓ 40.48 40.75

Table 5. Contribution of semantic awareness and class agnostic

balancing on ST-SLidR.

Loss
Lin. Prob 100%

MoCoV2

Lin. Prob 100%

SwAV

αmin = 0.0 37.99 36.21

αmin = 0.2 38.64 36.86

αmin = 0.5 39.48 40.03

αmin = 0.8 38.23 39.15

K = 1% 40.04 40.42

K = 5% 40.38 40.84

K = 10% 40.35 40.05

Table 6. Comparison between similarity-aware Lα versus nearest-

neighbour-aware Lknn loss. Here, we report mIOU on the valida-

tion set of nuScenes [6] set.

mantic segmentation fine-tuning performance of SLidR and

ST-SLidR as a function of the number of labelled scenes.

We observe that ST-SLidR outperforms SLidR by +1.92%,

+2.20%, +0.91%, +0.79% and +0.35% when fine-tuning on

1%, 5%, 10%, 25% and 100% of the dataset, respectively.

Class Imbalance. We conduct an experiment to study

which semantic classes gain the most from the semanti-

cally tolerant contrastive loss. We compute the percentage

of superpixels for each semantic class in the nuScenes pre-

training set. Then, we create two sets of classes. The mi-

nority set contains all classes with fewer than 5% of the

superpixels in the pre-training set. The remaining classes

are added to the majority set. Out of the 16 classes in the

nuScenes dataset, 11 classes are categorized as minority

classes. In Table 4, the mean IoU for minority and ma-

jority sets for linear probing and fine-tuning on nuScenes

validation set is presented. Compared to SLidR, ST-SLidR

learns representations that significantly improve segmenta-

tion performance by +3.18% for linear probing and +2.61%

for fine-tuning on the 11 minority classes. Interestingly, the

significant improvement on minority classes comes with al-

most no degradation on majority classes.

4.4. Ablations

Contribution of Loss Components. We conduct ablation

studies to validate the contribution of the two components of

ST-SLidR. Here, semantic tolerant loss denotes Lknn with

K set to 1% of the mini-batch. Table 5 shows that (1) Both

semantic tolerant and class balancing can improve the qual-

ity of the learned representation on their own, (2) Semantic

tolerant loss significantly improves the linear separability of

the 3D representations as fewer false negative samples con-

tribute to the loss, (3) Using both components achieves the

best performance on linear probing and few-shot semantic

segmentation.

Similarity versus Nearest-Neighbour-aware Loss. We

conduct an ablation study to show the quality of the 3D

representations for similarity-aware loss Lα and nearest

neighbour-aware loss Lknn. For pre-training experiments

using Lα, we vary the minimum similarity threshold αmin

and for Lknn, we vary percentage of top-K nearest neigh-

bours to be excluded from the set of negative samples. Ta-

ble 6 shows pre-training with Lknn results in 3D represen-

tations that are much more linearly separable than Lα.

5. Conclusion

We present a novel 2D-to-3D representation learning
framework for autonomous driving datasets that reduces the
contribution of false negative samples by explicitly consid-
ering the similarity of self-supervised image features. In
addition we propose balancing the pretraining between over
and under-represented samples by using aggregate sample-
to-samples similarity as a proxy for class imbalance. Our
proposed contributions are shown to additively improve
common 2D-to-3D representation learning methods in all
evaluation settings on 3D semantic segmentation, especially
for under-represented classes.
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