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Abstract

Automatic mitochondria segmentation enjoys great pop-
ularity with the development of deep learning. However,
existing methods rely heavily on the labor-intensive manual
gathering by experienced domain experts. And naively ap-
plying semi-supervised segmentation methods in the natural
image field to mitigate the labeling cost is undesirable. In
this work, we analyze the gap between mitochondrial im-
ages and natural images and rethink how to achieve effec-
tive semi-supervised mitochondria segmentation, from the
perspective of reliable prototype-level supervision. We pro-
pose a novel end-to-end dual-reliable (DualRel) network,
including a reliable pixel aggregation module and a reliable
prototype selection module. The proposed DualRel enjoys
several merits. First, to learn the prototypes well without
any explicit supervision, we carefully design the referential
correlation to rectify the direct pairwise correlation. Sec-
ond, the reliable prototype selection module is responsible
for further evaluating the reliability of prototypes in con-
structing prototype-level consistency regularization. Exten-
sive experimental results on three challenging benchmarks
demonstrate that our method performs favorably against
state-of-the-art semi-supervised segmentation methods. Im-
portantly, with extremely few samples used for training, Du-
alRel is also on par with current state-of-the-art fully super-
vised methods.

1. Introduction
Mitochondria, as one of the crucial organelles, are the

primary energy providers for cell activities and are essen-
tial for metabolism. Quantification of mitochondrial mor-
phology can not only promote basic scientific research (e.g.,
cellular physiology [1, 5]), but also provide new insight for
clinical diagnosis (e.g., neurodegenerative diseases [20] and
diabetes [24]). Recently, with the development of deep
learning, semantic segmentation [2, 14, 18, 27, 30, 33] en-
ables in-depth exploration of mitochondrial morphology
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Figure 1. Illustration of our motivation. (a) shows the confusion
map and density (i.e., the expected inverse confidence per pixel)
of mitochondrial and natural images. (b) shows the unreliability
caused by direct pairwise prototype-pixel correlation that is condi-
tioned only on visual similarity. (c) shows how to construct pixel-
reference correlation to rectify the direct pairwise correlation in a
referential correlation manner.

from high-resolution electron microscopy (EM) images and
make conspicuous achievements. However, their flexibil-
ity and scalability are limited in the actual deployment be-
cause the numerous cluttered irrelevant organelles that re-
quire labor-intensive manual discrimination and gathering
by experienced domain experts [10, 21]. Therefore, we be-
gin to turn attention to semi-supervised segmentation with
the assumption that enormous unlabeled data is accessible,
aiming to alleviate the data-hungry issue.

Semi-supervised segmentation enjoys great popularity in
the field of natural images, and representative works such as
CPS [3], which imposes pixel-level consistency regulariza-
tion and establishes state-of-the-art performance. It natu-
rally comes into mind to directly apply a CPS-like method
to semi-supervised mitochondria segmentation. However,
there exist a large gap between mitochondrial and natu-
ral images. As shown in Fig. 1 (a), we observe that the
confusion density (i.e., the expected inverse confidence per
pixel) in mitochondrial images significantly surpasses coun-
terpart in natural images, implying that directly employing
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pixel-level consistency regularization as supervision signals
on mitochondrial images will inevitably increase the risk
of unreliability. The most intuitive example is that there
exist considerable boundary regions in mitochondrial im-
ages, and the segmentation network is naturally equivocal
for these regions, as proven in [15]. In this case, some rel-
atively small mitochondria are easily overwhelmed by this
ambiguity, leading to sub-optimal results.

In order to seek more reliable supervision signals to al-
leviate the undependable problem caused by pixel-level su-
pervision, we draw inspiration from the inbuilt resistance
to noisy pixels of prototypes and construct more robust
and reliable prototype-level supervision. To achieve this
goal, two issues need to be considered. (1) Unreliable
pixels. Considering the cluttered background caused by
under/overexposure and out-of-focus problems during EM
imaging, the prototype inevitably absorbs unreliable pixels
(i.e., heterogeneous semantic clues) during the interaction
of corresponding pixels with a suitable pattern. We ar-
gue that directly forcing pairwise prototype-pixel correla-
tion is primarily at blame. As shown in Fig. 1 (b), due to
the foreground-background ambiguity, the foreground pro-
totype f1 is erroneously closer to p2 located in the back-
ground than counterpart point p1 with similar pattern situ-
ated in the foreground. Therefore, it is highly desirable to
suppress the unreliable pixels caused by the direct pairwise
prototype-pixel correlation that is only conditioned on vi-
sual similarity during prototype learning process. (2) Unre-
liable prototypes. Intuitively, not all prototypes are equiva-
lent for building prototype-level consistency regularization.
For example, for a prototype that focuses on mitochondrial
boundary patterns, the inherent unreliability of the pixels
belonging to these patterns, as discussed above, will also
taint the purity of this prototype with equivocality. There-
fore, the prototype-level supervision signals should be fur-
ther optimized to guarantee that the true reliable prototypes
enjoy higher weights.

To mitigate the above issues, we rethink how to achieve
effective consistency regularization for semi-supervised mi-
tochondria segmentation, from the perspective of reliable
prototype-level supervision. We propose a Dual-Reliable
(DualRel) network including a reliable pixel aggregation
module and a reliable prototype selection module. In the
reliable pixel aggregation module (RPiA), to learn the
prototypes well without any explicit supervision, we care-
fully design the referential correlation to rectify the direct
pairwise correlation, enabling the prototype absorb counter-
part reliable pixels with the same semantic pattern during
the interaction with the pixels. The main idea is, for each
pixel/prototype, we can obtain the referential correlation
(i.e., a likehood vector) by comparing this pixel/prototype
with a set of reliable reference points. In essence, the refer-
ential correlation reflects the consensus among reliable ref-

erence points with a broader receptive field and thus it en-
codes the relative semantic comparability of the reference
points that can be relied upon, which is from a different per-
spective than the absolute pairwise prototype-pixel correla-
tion. Intuitively, each pair of true prototype-pixel correla-
tion (e.g., the f1-p1 pair in Fig. 1 (c) derived from the proto-
types and mitochondria images should be not only visually
similar to each other (i.e., high direct pairwise prototype-
pixel correlation), but also similar to any other reference
point (i.e., similar referential correlation pair). Moreover,
we assemble referential correlation into the cross-attention
mechanism with the ability to capture long-range dependen-
cies. In this case, the relatively equivocal pixels (e.g., the
f1-p2 pair in Fig. 1 (c) will be suppressed while the reliable
ones are highlighted to reduce the correspondence noise. In
the reliable prototype selection module (RPrS), in order
to further evaluate the reliability of prototypes in construct-
ing prototype-level consistency regularization, we draw in-
spiration from bayesian deep learning [12] and devise a
reliability-aware consistency loss to pursue implicitly learn
the reliability about each prototype in a data-driven way. In
this way, the equivocal prototypes will be suppressed while
the reliable ones are highlighted in the supervision signals.

In this work, our contributions can be concluded as fol-
lows: (1) To the best of our knowledge, this is the first work
to rethink how to achieve effective consistency regulariza-
tion for semi-supervised mitochondria segmentation, from
the perspective of reliable prototype-level supervision. We
analyze the gap between mitochondrial images and natu-
ral images, hoping our work will provide some insight for
researchers in this field. (2) We propose a dual-reliable
(DualRel) network in a unified framework. Specifically,
we design the reliable pixel aggregation module to rectify
the direct pairwise correlation, the reliable prototype se-
lection module to further evaluate the reliability of proto-
types in constructing prototype-level consistency regular-
ization. (3) Extensive experimental results on three chal-
lenging benchmarks demonstrate that our method performs
favorably against state-of-the-art semi-supervised segmen-
tation methods. Importantly, with extremely few samples
used for training, DualRel is also on par with current state-
of-the-art fully supervised methods.

2. Related Work

2.1. Mitochondria Segmentation

Segmenting mitochondria in EM images is vital for re-
searchers to explore cellular functions and subcellular activ-
ities. Rather than traditional methods utilizing hand-crafted
features [14,18,27], DL-based networks have shown signif-
icant performance improvement on mitochondria segmenta-
tion. The pioneering work Lucchi et al. [19] design a deep
neural network based on supervoxels to model shapes of mi-
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tochondria. Oztel et al. [26] propose a deep convolutional
neural network with a sliding window strategy and post-
processing steps to boost the performance. Wei et al. [35]
introduce a 3D U-Net based network and release a new chal-
lenging dataset containing mitochondria images with higher
resolution. However, all previous methods only focus on
the fully-supervised training, which require a large amount
of labeled data. In this work, we introduce semi-supervised
learning into mitochondria segmentation, aiming to allevi-
ate the data-hungry issue.

2.2. Semi-supervised Semantic Segmentation

With the development of semi-supervised learning, var-
ious kinds of semi-supervised semantic segmentation algo-
rithms have been proposed. GAN-based methods [9,22,29]
try to synthesize additional training data or generate the
pseudo labels for unlabeled data by using adversarial loss.
Recently, the consistency regularization [6,23,34] has been
intensely studied in semi-supervised semantic segmenta-
tion. The main idea of this type of approach is that the inter-
mediate features or predictions should maintain consistency
across different semantic-preserving transformations on the
input or different network initialization [36, 37]. MT [31]
is a representative work that first adopts the teacher net-
work to guide the learning of the student network in semi-
supervised semantic segmentation. Alternatively, CCT [25]
introduces dual independent models to supervise each other
with the soft probability output, while CPS [3] is super-
vised with hard pseudo segmentation maps. GCT [11] em-
ploys two segmentation networks with the same structure
but different weight initialization and enforces the consis-
tency between the predictions. However, the above pixel-
level supervision-based methods perform poorly on semi-
supervised mitochondria tasks.

3. Method
In this section, we first formulate the semi-supervised

mitochondria segmentation task and present the overview
of the proposed DualRel. Then we describe the details of
the reliable pixel aggregation module (RPiA) and reliable
prototype selection module (RPrs) of DualRel. Finally, the
training and inference procedure are discussed.

3.1. Overview

In semi-supervised mitochondria segmentation task, we
wish to train a segmentation network with training data
DL ∪DU . In the labeled set DL = {ILi ,Yi}Ni=0, each im-
age is associated with a ground truth label Y ∈ {0, 1}H×W ,
where 1 denotes foreground while 0 denotes background.
In the unlabeled set DU = {IUj }Mj=0, M images is pro-
vided without ground truth. Given an EM image I (for
brevity, we omit the superscript L/U and subscript i/j),
let X ∈ Rh×w×D denotes the feature map extracted from

feature extractor (e.g., ResNet50 [8]), where h, w and D
denote the height, width and channel number of the feature
map, respectively. Subsequently, the feature map X is fed
into the upsampling module (e.g., U-Net [28]) which out-
puts pixel embedding E ∈ RH×W×C with the same spatial
scale as original input image. As illustrated in Fig. 2, the
proposed DualRel includes two branches of feature extrac-
tor and upsampling module, which are of the same structure
but different weight initialization. Such a two-branch struc-
ture is devised to construct consistency supervision signals
for unlabeled data, which is a popular paradigm in semi-
supervised learning. Besides, a reliable pixel aggregation
module and a reliable prototype selection module are intro-
duced to construct prototype-level consistency regulariza-
tion for semi-supervised mitochondria segmentation.

3.2. Reliable Pixel Aggregation

To construct prototype-level supervision, we prepend a
set of learnable embeddings F = {fk}Kk=1 (referred to as
mito filters). Each filter fk is represented as a C-dimension
vector to interact with the feature map X and absorb coun-
terpart reliable pixels with the same semantic pattern. Then,
we adopt a cross-attention mechanism [32] to realize the in-
teraction and obtain mito features F̃ = {f̃k}Kk=1.

Since the cross-attention requires a 1D sequence as the
input, we first utilize a 1 × 1 convolution kernel to reduce
the channel number of the feature map X from D to C, and
then flatten the spatial dimensions to produce the feature
sequence X̃ = {x̃i}hwi=1 ∈ Rhw×C . Specifically, we denote
mito filters {fk}Kk=1 as queries, the feature map X̃ as keys
and values. Formally,

qk = fkW
Q,ki = x̃iW

K ,vi = x̃iW
V , (1)

where WQ,WK ,WV ∈ RC×C are linear projections,
k = 1, 2, ...,K and i = 1, 2, ..., hw. Then the pairwise
correlation sk,i between each query qk and the ith key ki is
given as

sk,i =
exp(βk,i)∑hw
j=1 exp(βk,j)

, βk,i =
qkk

T
i√

C
, (2)

where
√
C is a scaling factor to stabilize training and T

refers to the transpose operation.
Due to the susceptibility of pairwise filter-pixel corre-

lation, the mito filter inevitably absorbs unreliable pixels
during the interaction. We carefully design the referential
correlation assembled in cross-attention to mitigate such
issue. Specifically, we define N reference points X̃R =
{x̃R

n }Nn=1 ∈ RN×C (detailed in the supplementary mate-
rial). Respectively calculating the filter-reference correla-
tion and the pixel-reference correlation as same as Eq. (2):

SFR
k = softmax(

(fkW
Q)(X̃RWK)T√

C
), (3)
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Figure 2. Illustration of the proposed DualRel. DualRel is mainly composed of a reliable pixel aggregation module to rectify the direct
pairwise correlation, and a reliable prototype selection module responsible for further evaluating the reliability of prototypes in constructing
prototype-level consistency regularization. “GAP” represents a global average pooling layer [16] and “Merge” is described in Sec. 3.4.

SPR
i = softmax(

(x̃iW
Q)(X̃RWK)T√

C
), (4)

where SFR
k ∈ R1×N and SPR

i ∈ R1×N are regarded as
the referential correlation. And then, we get the similarity
between the referential correlations by:

ck,i = SFR
k (SPR

i )T, (5)

which is used to rectify the direct pairwise correlation.
Then, the mito features {f̃k}Kk=1 can be got by blending

values with the rectified correlations:

f̃k =

hw∑
i

ck,i · sk,i · vi, (6)

3.3. Reliable Prototype Selection

Before describing the reliable prototype selection mech-
anism, we first formulate the process of obtaining the mito
prototypes P = {pk}Kk=1. First, calculating the activation
maps A = {Ak}Kk=1 ∈ RK×H×W by:

Ak = sigmoid(fkE
T), (7)

where Ak denotes the activation map of the kth mito feature
on pixel embedding E. Then, based on the activation maps
A, we generate mito prototypes {pk}Kk=1 by global average
pooling (GAP):

pk =
1

HW

H∑
i=1

W∑
j=1

Ak,i,j ·Ei,j . (8)

Intuitively, not all prototypes are equivalent for building
prototype-level consistency regularization. In order to

further evaluate the reliability of prototypes in construct-
ing prototype-level consistency regularization, we devise a
reliability-aware consistency loss to pursue implicitly learn
the reliability about each prototype in a data-driven way.
Firstly, we estimate the reliability R = {rk}Kk=1 for each
prototype. In specific, we concatenate the mito features f̃1k
and f̃2k (the superscript denotes which baranch the mito fea-
tures from) in channel dimension and feed them into a two
layers MLP followed by the sigmoid function, as in Eq. (9):

rk = sigmoid(MLP(concat(f̃1k , f̃
2
k )). (9)

In order to guarantee that the true reliable prototypes en-
joy higher weights and the equivocal ones are suppressed,
we regard the R as a attenuation factor and get the reliable
prototype consistency loss as:

Lrpc =
1

K

K∑
k=1

(e
1− 1

rk × L2(p
1
k,p

2
k)− λ× rk), (10)

where L2(·) denotes L2 distance and the λ is the weight for
the regularization term preventing the estimated reliability
from zero.

3.4. Training and inference

For the follow-up training and inference, we need to
merge the activation maps A into foreground-background
probability map Ỹ ∈ R2×H×W . In our implementation,
we simply treat the summation of the first half of the ac-
tivation maps as foreground probability (corresponding the
summation of the 1st to the K

2

th
activation maps), and the

summation of the other half as background probability.
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Besides, considering the large size and shape variation
of the mitochondria, the mito prototype learning may focus
on the same (e.g., the entire foreground), making the re-
liable prototype selection module degeneration. Therefore,
we impose a diversity loss to expand the discrepancy among
mito features. Formally,

Ldiv =

K∑
i=1

K∑
j=1,i̸=j

(
⟨f̃i, f̃j⟩

∥f̃i∥2∥f̃j∥2
). (11)

The intuition behind this loss is trivial. If the ith and jth

features give a high attention to the same region, the Ldiv

will be large and prompt these features to adjust themselves
adaptively.

During Training, we calculate the supervise loss for the
output prediction of two branch with labeled data by

Lsup =
1

N

N∑
i=1

(CE(Ỹ1,Y) + CE(Ỹ2,Y)), (12)

where CE(·) denotes the standard cross entropy loss. As
a result, our DualRel is trained by minimizing the overall
objective as follows:

L = Lsup + Lrpc + λdiv × Ldiv, (13)

where λdiv is the trade-off weight.
During inference, we get the predicted mask Ŷ by apply

argmax operation on probability map Ỹ from one branch,
without extra computation cost.

4. Experiments
4.1. Datasets and Evaluation Metrics

We conduct experiments on the most popular bench-
marks including Lucchi [19], Lucchi++ [2], MitoEM
dataset [35]. Lucchi [19] contains two sub-volumes, ac-
quired from the CA1 hippocampus region of the mouse
brain for training and testing. Each sub-volume consists
of 165 × 1024 × 768 EM images provided with manual
mitochondria segmentation mask. And Lucchi++ [2] is re-
annotated by three neuroscience and biology experts, and
has the same size as Lucchi with more accurate mitochon-
dria segmentation mask. MitoEM dataset [35] contains
two volumes attained from rat and human cortex, dubbed
mito-R and mito-H respectively. Each volume consists of
400 training images, 100 validation images and 500 test im-
ages with a resolution of 4096 × 4096. Among them, the
ground-truth labels are publicly available for the training
set and the validation set. In our experiments, we train on
training set and evaluate on validation set.
Evaluation Metrics. We adopt Dice similarity coefficient
(DSC) and Jaccard-index coefficient (JAC) to evaluate the
accuracy of segmentation in our experiments.

Table 1. Comparison with state-of-the-art re-implemented meth-
ods on Lucchi [19] and Lucchi++ [2] dataset under different parti-
tion protocols. Partition protocols denote the ratio of labeled data
used for training, followed by the actual number of mitochondrial
images.

1/32 (5) 1/16 (10) 1/8 (20) 1/2 (82)

Method JAC DSC JAC DSC JAC DSC JAC DSC

Lucchi

MT[NIPS17] [31] 71.85 82.53 72.48 82.83 75.49 84.72 78.60 86.73
CCT[CVPR20] [25] 84.75 91.62 85.48 91.73 85.84 91.94 86.60 92.73
GCT[ECCV20] [11] 83.51 90.93 84.64 92.02 85.86 91.72 86.20 92.41
CPS[CVPR21] [3] 84.55 91.57 84.61 91.18 85.16 91.57 85.51 92.03

DualRel 85.63 92.24 86.35 92.42 87.21 93.16 87.62 93.31

Lucchi++

MT[NIPS17] [31] 79.51 87.11 82.89 90.17 86.91 92.33 87.24 93.42
CCT[CVPR20] [25] 87.36 92.63 87.84 93.22 88.54 93.74 89.36 94.19
GCT[ECCV20] [11] 86.60 92.16 86.95 92.05 87.86 93.12 88.69 93.79
CPS[CVPR21] [3] 86.36 92.42 87.22 93.07 87.87 93.36 88.30 93.52

DualRel 87.81 93.42 88.22 93.74 89.91 94.63 90.54 95.52

4.2. Implementation Details

In the semi-supervised setting, we sample a certain ratio
from the training set as labeled set DL, and the rest are treat
as unlabled set DU . For a fair comparison, we follow the
following guidelines in training and inference stage for all
re-implemented methods. We adopt ResNet50 [8] as back-
bone network for feature extraction by removing the global
average pooling (GAP) layer and fully connected layer, and
utilize U-Net structure [28] for upsampling. During train-
ing, we feed the network with 512× 512 images randomly
cropped from original EM images with random mirror, ran-
dom rotate and elastic transform augmentation. Extra color
jitter is adopted to reduce overfitting. We use mini-batch
SGD to train our model with momentum set to 0.9 and
weight decay fixed as 0.0005. We initialize the learning
rate with 5× 10−3 with batch size of 4, and halve the learn-
ing rate at the 50%, 70% and 90% of the overall training
epoch. During inference, We adopt a sliding window of
size 512× 512 and step 256.

4.3. Comparison with State-of-the-art Methods

We reproduce the most representative and competitive
methods [3,11,25,31] in the semi-supervised natural image
semantic segmentation task, and report their performance
on Lucchi derivatives (i.e., Lucchi and Lucchi++) and Mi-
toEM dataset, establishing a semi-supervised mitochondria
segmentation benchmark.
Lucchi derivatives. Tab. 1 shows the comparison of our
method with the state-of-the-art re-implemented methods
on Lucchi and Lucchi++ dataset. We consistently observe
that our DualRel outperforms all other methods under all
partition protocols, which strongly proves the effectiveness
of our method. Specifically, our approach achieves 89.9%
JAC, 94.6% DSC on Lucchi++ and 87.2% JAC, 93.1% DSC
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Table 2. Comparison with state-of-the-art re-implemented meth-
ods on MitoEM [35] dataset under different partition protocols.

1/32 (12) 1/16 (25) 1/8 (50) 1/2 (200)

Method JAC DSC JAC DSC JAC DSC JAC DSC

mito-R

MT[NIPS17] [31] 81.11 87.52 84.64 90.61 84.91 90.82 86.99 92.41
CCT[CVPR20] [25] 88.91 93.22 89.48 93.88 89.71 94.03 89.74 94.12
GCT[ECCV20] [11] 88.22 92.81 88.61 92.73 89.03 93.41 89.11 93.72
CPS[CVPR21] [3] 88.71 93.71 89.62 94.41 89.71 94.52 90.02 94.72

DualRel 89.61 94.52 90.31 94.93 90.72 95.11 90.91 95.23

mito-H

MT[NIPS17] [31] 81.90 89.32 82.71 89.62 83.57 90.36 84.63 91.14
CCT[CVPR20] [25] 83.42 90.61 84.18 90.75 84.87 91.24 85.07 91.37
GCT[ECCV20] [11] 82.12 89.81 83.32 90.91 84.62 91.02 84.81 91.06
CPS[CVPR21] [3] 84.22 91.81 84.29 91.47 85.42 92.12 86.31 92.65

DualRel 85.61 92.22 85.93 92.44 86.21 92.43 86.53 92.72

on Lucchi under 1/8 partition protocol (only 20 labeled im-
ages). This means that even if we only label a small pro-
portion of images, we can train a satisfactory segmentation
model in an appropriate way. Compared to the best method
CPS [3] in the field of natural image, our DualRel achieves
a large margin of 2.05%/1.59% in JAC/DSC under 1/8 par-
tition protocol, which favorably manifests the benefits of
prototype-level consistency regularization.
MitoEM dataset. In Tab. 2 we report the performance on
MitoEM dataset, which is much more complex than Lucchi
and Lucchi++, with larger image size, more messy back-
ground and more diverse mitochondrial morphology. Du-
alRel also achieves convincing performance even when the
labeled data is scarce. Under 1/32 partition protocol, i.e.,
training the network with solely 12 labeled images and 388
unlabeled images, we obtain 89.6% JAC, 94.5% DSC on
mito-R and 85% JAC, 91.9% DSC on mito-H. This demon-
strates the the stability of our method, which can model the
reliability of the prototype for a more robust prototype-level
supervision, even in the face of more complex scene.
Comparison with fully supervised methods. Tab. 3 tab-
ulates the quantitative results compared with fully super-
vised methods. We observe that with only 5 annotated im-
ages, DualRel even surpasses fully supervised methods that
utilize all annotated samples, such as 2D U-Net [28], by
0.7%/1.2% in JAC/DSC. When the number of available la-
beled samples increases (e.g., half the total images), our
method is on par with state-of-the-art fully supervised meth-
ods (e.g., Casser [2]) without any post-processing. This
sheds light on the great promise of semi-supervised mito-
chondria segmentation tasks, where light labeling cost can
yield competitive performance.

4.4. Ablation Study and Analysis

To look deeper into our method, we perform a series of
ablation studies on Lucchi dataset with ResNet50 as back-
bone under 1/8 partition protocol to analyze each compo-

Table 3. Comparison with state-of-the-art fully supervised meth-
ods on Lucchi dataset [19]. “Post-Processing” stands for whether
to use post-processing such as Z-Filtering.

Method Post-Processing labels JAC DSC

Lucchi [18] % 165 75.5 86.0
Peng and Yuan [27] % 165 83.3 90.9
2D U-Net [28] % 165 84.4 91.5
Cheng (2D) [4] % 165 86.5 92.8
Liu [17] " 165 86.4 92.6
Khadangi [13] % 165 86.5 92.7
Casser [2] " 165 88.4 93.8

DualRel (1/32) % 5 85.6 92.2
DualRel (1/2) % 82 87.6 93.3

Table 4. Evaluation of the effectiveness of different components
on Lucchi dataset.

Pixel-level

Threshold JAC DSC

CPS [3]

0 85.16 91.57
0.5 85.20 91.62
0.7 84.07 91.48
0.9 83.93 90.89

Prototype-level

RPiA RPrS JAC DSC
w/o ref. w/ ref.

" 85.97 91.94

" 86.57 92.72

" " 87.21 93.16

nent of our DualRel, including the reliable pixel aggregation
module (RPiA), and the reliable prototype selection module
(RPrS). Note that we remove all modules except the two
branches of feature extractor and upsampling module and
a separate cross-attention mechanism, to directly construct
prototype-level consistency regularization as our baseline.
Analysis of the Pixel-level Consistency Regularization.
In Sec. 1, we intuitively demonstrate that there exits gap
between natural images and mitochondrial images, and di-
rectly employing pixel-level consistency regularization on
mitochondrial images will inevitably increase the risk of
unreliability. Naively, we can select high-confidence pix-
els based on a pre-defined threshold to attempt to alleviate
the unreliability. The upper part of Tab. 4 tabulates the im-
pact of different thresholds on the semi-supervised model
based on pixel-level supervision. We observe that select-
ing high confidence points brings negligible improvement
and even impairs model performance when the threshold is
set too high. Then, we further quantitatively analyze the
reasons for this case from the perspective of expected cal-
ibration error (ECE) [7], which measures the discrepancy
between the confidence and accuracy of the network output,
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Table 5. Comparison with state-of-the-art methods in model cali-
bration and study on different network configurations.

(a) Quantification of expected
calibration error (ECE).

Method ECE (↓)
(‰)

MT 15.2

CCT 12.5

GCT 10.2

CPS 8.3

DualRel 1.8

(b) Ablation on different architecture.

JAC DSC

CNN 86.99 92.65
Transformer 87.21 93.16

(c) Performance comparison with and
without diversity loss.

JAC DSC

w/o div. 86.57 92.87
w/ div. 87.21 93.16

as known as calibration, has been explored. Poorer network
calibration, weaker the correlation between the confidence
and accuracy of the network output. In other words, even
if the network predicts with high confidence, there is a high
probability that it will be unreliable. Tab. 5a shows the cali-
bration of different methods, the larger the value, the poorer
the calibration. Therefore, it is impracticable to select reli-
able points only conditioned on confidence.
Analysis of the Prototype-level Consistency Regular-
ization. As shown in Tab. 4, the baseline that utilizes
prototype-level supervision achieves a clear lead, compared
to methods based on pixel-level consistency regularization.
Moreover, Tab. 5a shows our DualRel achieves better cali-
bration benefiting from RPiA and RPrS module, which is in
line with the design idea of prototype-level supervision.
Effectiveness of the Reliable Pixel Aggregation Module.
As shown in Tab. 4, the introduction of the referential cor-
relation (ref.) in RPiA achieves a certain performance lift
compared with the baseline (i.e., a separate cross-attention
mechanism without ref.), that is, 91.94% vs. 92.72% in
DSC. The improvement can be mainly ascribed to the strong
ability of the RPiA to rectify the direct pairwise correlation,
enabling the prototype absorbs counterpart reliable pixels
with the same semantic pattern during the interaction with
the pixels.
Effectiveness of the Reliable Prototype Selection Mod-
ule. The addition of RPrS also contributes to a remarkable
performance (86.57% vs. 87.21%). This proves the neces-
sity of suppressing the equivocal prototypes, our RPrS can
further evaluate the reliability of prototypes in constructing
prototype-level consistency regularization.
Effectiveness of Transformer-based Cross-attention
Mechanism. We perform the ablation study that replaces
the Transformer-like cross-attention by using convolutional
networks with similar parameters in Tab. 5b. In detail, We
use the convolutional layers followed by a softmax func-
tion to change the channel size of the feature map to obtain
K mito features when replacing cross attention. The feed-
forward network (FFN) is replaced by the convolutional lay-
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Figure 3. Evaluation of the number of prototypes K, and the hy-
perparameters λdiv .

ers, and the rest of the model remains the same. We observe
that cross-attention achieves better performance thanks to
the long-range modeling capabilities of the transformer.
Effectiveness of Diversity Loss. As shown in Tab. 5c, with
the utilization of diversity loss, further improvements can
be observed. Diversity loss prevents the prototypes from
focusing on similar local semantic clues. And diverse proto-
types can capture mitochondria variations and achieve more
precise segmentation.
Hyperparameter Evaluations. As shown in Fig. 3, we
evaluate how K and λdiv affects our model learning. we
can observe that the performance continues to grow until
K = 12, which means it is sufficient to mine 12 seman-
tic patterns of mitochondria. And λdiv controls the relative
importance of the diversity loss, our model achieves much
better performance when λdiv = 0.05.

4.5. Vasualization

Visualization of Predictions. To further analyze and un-
derstand the proposed method, we visualize a series of seg-
mentation results and prototype activation areas. As shown
in Fig. 4, it can be noticed that other methods tend to in-
correctly segment the non-target region (dyed in blue) or
are unable to activate all the mitochondria (dyed in red).
We deem the main reason is that numerous ambiguous pix-
els inherent in EM images severely confuse the models de-
signed for natural images. With the assistance of the RPiA,
the negative effects of unreliable pixels are mostly elimi-
nated. Besides, the RPrS assigns larger weights to the more
reliable prototypes to obtain robust prototype-level super-
vision. Our DualRel generates more accurate prediction
masks compared with other methods, which demonstrates
the effectiveness of the cooperation of the above two mod-
ules.
Visualization of Correlation Weights. To more intuitively
demonstrate the unreliable pixels suppression ability en-
dowed by RPiA, we conduct qualitative visualization on the
correlation maps between the mito filters and the image fea-
tures. As shown in Fig. 6, we find that in the absence of
RPiA, pixel features that with distinct semantics sometimes
share high similarity with specific prototypes as shown in
the parts marked by the red box. We claim that this is detri-
mental because aggregating features that not align to the
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Figure 4. Qualitative results of the proposed DualRel and other methods under 1/8 ratio on Lucchi.
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Figure 5. The visualization of the reliability of prototypes and its corresponding activation maps.
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Figure 6. Visualization of the pixel-prototype correlation weights.

prototypes with large weights will lead to confusion. The
second row presents the results with RPiA, we observe a
significant reduction in false activation, demonstrating the
effectiveness of RPiA in suppressing false matches.

Visualization of Reliability and Activation Maps. To
vividly present the working mechanism of reliable proto-
type selection module (RPrS), we visualize the reliability
of prototypes and its corresponding activation maps. As
shown in Fig. 5, some prototypes with clear foreground
or background semantic clues occupy larger weights (i.e.,

4th and 5th columns), while some prototypes focusing on
mitochondrial boundary patterns are assigned with smaller
weights (i.e., 3rd and 6th columns). This is in line with
the design idea of RPrS, that is, pursuing implicitly learn-
ing the reliability of each prototype in a data-driven way. In
this case, the equivocal prototypes will be suppressed while
the reliable ones are highlighted in the supervision signals.

5. Conclusion

In this paper, we rethink how to achieve effective semi-
supervised mitochondria segmentation. We propose a novel
end-to-end dual-reliable (DualRel) network, including a re-
liable pixel aggregation module and a reliable prototype se-
lection module. Extensive experimental results demonstrate
the effectiveness. This work is expected to open a new
venue for future research in this field.
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