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Abstract

Automatic remote sensing tools can help inform many
large-scale challenges such as disaster management, cli-
mate change, etc. While a vast amount of spatio-temporal
satellite image data is readily available, most of it remains
unlabelled. Without labels, this data is not very useful for
supervised learning algorithms. Self-supervised learning
instead provides a way to learn effective representations for
various downstream tasks without labels. In this work, we
leverage characteristics unique to satellite images to learn
better self-supervised features. Specifically, we use the tem-
poral signal to contrast images with long-term and short-
term differences, and we leverage the fact that satellite im-
ages do not change frequently. Using these characteristics,
we formulate a new loss contrastive loss called Change-
Aware Contrastive (CACo) Loss. Further, we also present a
novel method of sampling different geographical regions.
We show that leveraging these properties leads to better
performance on diverse downstream tasks. For example,
we see a 6.5% relative improvement for semantic segmenta-
tion and an 8.5% relative improvement for change detection
over the best-performing baseline with our method.

1. Introduction

Our planet is surrounded by a large number of satellites
constantly collecting images of the world. This massive
trove of visual information can help monitor phenomena at
the world-scale, and inform solutions to global problems
such as climate change or loss of biodiversity. Automatic
vision tools can help by, for example, monitoring land-use
change over time [36] or the evolution of urban areas [0].

However, training all these models requires labeled data.
Unfortunately, labeling the massive trove of satellite images
is expensive, more so than internet images because of the
expertise necessary. This issue is exacerbated by the differ-
ent label requirements of many monitoring applications.

One way to alleviate this problem of limited labeled
data is to use self-supervised learning techniques to learn
a good feature representation from unlabeled satellite im-
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Figure 1. Images of the same location at three different times.
Changes from 2016 to 2020 are due to major urban development,
while those from July to September are seasonal variations. Our
approach, CACo, learns features that are sensitive to the former
but invariant to the latter.

agery. This representation can then be further finetuned
with much fewer labels for specific applications. Mod-
ern self-supervised learning approaches are based on con-
trastive learning. These techniques train a feature space so
that each image in the dataset is embedded close to aug-
mented versions of itself (e.g., with jittered colors) but far
from other images of the dataset. A possible approach is to
directly apply these techniques on satellite image datasets.
However, the spatio-temporal structure of satellite imagery
is much richer than the unstructured collections of internet
images typically used in standard self-supervised learning.
In this work, we ask, how can we best leverage the structure
of satellite images for better self-supervised learning?

The first important aspect of the spatio-temporal struc-
ture of satellite images is the availability of multiple
temporally-spaced images for the same location. Past work
has used this structure to sample images spread over a few
weeks or months from each location to encourage invari-
ance to seasonal variations [25]. However, we can access
images not just over a few months, but over many years.
Over such long time spans, we often see significant, per-
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manent change, such as the construction of houses, the dry-
ing of lakes, or the logging of forests (Fig. 1). While we
want feature representations to be invariant to temporary,
seasonal change, we want the representation to be sensitive
to permanent, long-term change. To capture this intuition,
we sample multiple images from the same location covering
both short and long time spans and encourage invariance to
the former but sensitivity to the latter.

A second and more important aspect of satellite images
is that permanent change is spatially rare. Change is con-
centrated near urban areas, but many parts of the planet see
little change. When there is no change, we want our feature
representation to be the same even over long time spans.
We capture this insight with a novel strategy to robustly
estimate whether or not there is a long-term change, even
in the middle of training, by comparing long-term feature
differences to short-term variations. We then design a loss
function that is conditional on this change estimate: it en-
courages invariances to long-term differences depending on
whether a change occurs or not. We call this novel loss
function Change-aware Contrastive Loss (or CaCo).

The above loss function uses the temporal structure of
satellite images. We can also utilize geographical struc-
ture by carefully sampling the most informative locations
on the planet. We provide an improvement over a previ-
ously proposed geographical sampling [25]. We show that
sampling closer to cities, and ignoring samples completely
in the ocean can result in a dataset much more useful for
learning a general representation for various downstream
tasks. We evaluate our new representation on a diverse set
of downstream tasks such as landcover classification, se-
mantic segmentation, and change detection. Our method
achieves significant relative improvements (ranging from
6.5% to 8.5%) over the state-of-the-art for a variety tasks
such as segmentation and change detection.

To summarize, we make the following contributions:

* We propose a new self-supervised learning loss that
uses long-term temporal information in satellite im-
agery to encourage invariance to seasonal variations
but sensitivity to permanent, long-term changes.

e We introduce a novel approach to robustly estimate
whether a location has undergone significant change
by comparing long-term changes to seasonal varia-
tions. Our new change-aware loss function (CACo)
uses this to decide when to encourage invariance.

* We use an improved geographical sampling that pro-
vides more diverse data for representation learning.

2. Related Work

Self-supervised Learning. Self-supervised learning
methods can be used to learn a good general representation
from a dataset without any labels. These methods obtain

supervisory signals or inductive bias from the unlabelled
data itself. Earlier self-supervised works used ‘“pretext
tasks” such as rotation prediction [15], solving jigsaw
puzzles [28], colorization [44], or missing data comple-
tion [17]. More recently contrastive learning methods have
been shown to learn a better representation than pretext
tasks. Methods for contrastive learning such as NPID [43],
PIRL [26], MoCo [8, 18], SImCLR [7], and BYOL [16], use
instance discrimination to learn a feature representation.
While these methods can be applied even to satellite
images, in this work we leverage the structure of satellite
images that can be used for self-supervised learning.

Self-supervised Learning in Remote Sensing. Increas-
ingly, self-supervised learning is being applied to the area
of remote sensing. Prior works have used signals from unla-
beled data such as location [2,20], seasonal variations [25],
or texture [ 1], as a signal for self-supervision. Recent meth-
ods use transformers [12] and diffusion models [4] for self-
supervised representation [10,32].

Remote Sensing Applications and Data Several remote
sensing applications require vision tools for automatic
recognition at scale. Applications such as landcover clas-
sification [19, 34] or segmentation [36, 40] benefit from
the advances in vision algorithms for scene classification
and semantic segmentation. Several object detection ap-
plications have also been developed using object detection
algorithms such as for detecting constructions [9], build-
ings [38], trees [41], or floating objects [14]. Segmentation
methods also help in extracting structural information like
road networks [3, 22, 39], crop types [37], or clouds [27]
from remote sensing images. Many applications such as
change detection [ | 1] require temporal information for re-
gions as well. Temporal information and changes are also
used to find long-term semantic events [24]. In this work,
we aim to learn a representation without supervision, that
leads to better performance on all these downstream tasks.
The image data for these algorithms and datasets are ob-
tained from a few different sources. Sentinel-2 [13] pro-
vides multispectral images (13 bands) at 10m resolution
with a temporal revisit of 5 days. Several other satellites
provide higher resolution information such as World View-3
and PlanetScope. We use Sentinel-2 satellite imagery as
it provides frequent temporal information that we use in
our self-supervised formulation. Furthermore, many of the
downstream tasks [1 1, 19,24,36] use Sentinel-2 imagery.

3. Method
3.1. Overview

We propose a self-supervised method that can leverage
properties that are unique to satellite images. One such
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property is the availability of long-term temporal informa-
tion for any location on earth. For example, two images of
the same location captured months apart will likely be the
same except for seasonal variations; variations our features
should be invariant to. In contrast, two images captured
decades apart might show big, structural changes such as
new buildings or sparser forests. Of course, this may not be
true for all locations. Indeed, such long-term change is rare,
and is concentrated in regions of human activity. But these
long-term changes are important for many downstream ap-
plications such as modeling urban growth, or monitoring
climate change. Our key insight is therefore to find these
rare but meaningful long-term changes, and ensure that they
are reflected as changes in the feature space as well.

Past work on using temporal data for representation
learning on satellite imagery only uses short-term seasonal
variations but not long-term change [25]. We review this
work, which is called Seasonal Contrast (or SeCo) [25],
in Sec. 3.2. We then explain how we can use long-term
temporal information in Sec. 3.3, and address the challenge
of spatial rarity in Sec. 3.4. Finally, we look at how we can
efficiently sample more informative locations when collect-
ing unlabelled training data in Sec. 3.5.

3.2. Background: Seasonal Contrast (SeCo)

Contrastive learning techniques train feature representa-
tions from unlabeled images by discriminating between in-
dividual instances. In particular, they pull augmentations of
the same image closer together in feature space and push
apart representations of two different images. SeCo is a
contrastive learning-based representation learning frame-
work for remote sensing images. SeCo uses MoCo v2 [8],
to perform contrastive learning. In MoCo v2, in each iter-
ation, one generates two views for an image using random
augmentations. One is the “query” image I, and the other
is the “positive key” I+ that is pulled closer to the query
in the representation space. It also has a set of other images
from the dataset, Z,—, that are treated as negative keys and
are pushed apart from query image I, in the latent space.
The precise loss function in MoCo v2 called InfoNCE [29],
for a representation function f, can be written as:

exp(f(Ig) - f(L+)/T)
2 exp(f(1q) - f(Ix)/T)

IkGka U{IkJr}

L= —log (D)

The key idea in SeCo is to also use short-term temporal
differences (over a few months) at a location as augmenta-
tions. Since these images are a few months apart, these im-
ages represent different seasons (hence the name seasonal
contrast). The negative keys are then images from other lo-
cations. More specifically SeCo trains a representation with
3 subspaces, 1) a subspace invariant to both season and arti-
ficial augmentations, ii) a subspace invariant to season only,

and iii) a subspace invariant to augmentation only. The ad-
ditional invariance to seasonal differences results in a better
representation than simply using MoCo v2 on this data.

3.3. Using Long-term Temporal Information

SeCo introduces invariance to seasonal variations. How-
ever, invariance is not enough. We also want our feature
representation to be informative. For this, simply pushing
apart images from different locations (which already look
quite different) may not be enough.

As discussed above, we argue that to produce a richer
feature representation, we should use information from
longer temporal spans. Over the span of years, we might
observe big, structural changes such as new construction
or urban growth. We want our feature representation to
be sensitive to these major changes. Thus, while short-
term temporal differences are typically seasonal and should
be treated as augmentations as in SeCo, long-term tempo-
ral differences might correspond to permanent change, and
should be reflected as a significant change in the underlying
feature representation. This suggests that for a query image
from a particular location, an image captured at the same lo-
cation several years later should be treated as a negative in
the contrastive learning objective. We formalize this below.

Data: Let {l1,l5---[,} be n different locations in our
dataset. For each location, we have 2 sets of images cap-
tured around time points ¢; and ¢, that have a gap of 4 years
between them. We represent these sets by Itl and It2 Each

set Il 7, contains images sampled over a few months around
i, and thus these i images have only short-term or seasonal
differences between them. See Fig. 2 (a) for a schematic of
this data sampling strategy.

Loss: Let [;/ T2, 1j7+42

randomly from I (jis 1or2). I}’ and IijJFAQ are a
few months apart So like SeCo, we still want their repre-
sentations to be pulled closer. However, images with larger
time differences, for example, I, b+A1 and Iy t2+21 ghould

potentially be pushed apart Fmally, images from two dif-
I J +A1 d Itj +A1

Itj be two images sampled
t; +Aq

ferent locations such as , should always
be pushed apart 1rrespect1ve of time. This intuition is re-
flected in Fig. 2 (c).

Following SeCo, we implement this loss function using
MoCo v2 by adapting the positive key image [+ and nega-
tive key set Z;,— in Eq. (1). As discussed above, SeCo has 3
subspaces. We add our modifications to all 3 subspaces.
However, for ease of explanation, we only describe the
change to the subspace that is invariant to seasons. For this
subspace, for a query image, I, = I f;"’Al , the positive key
is the same as in SeCo: the seasonal pair (I+
But we modify the negative key set to not only include im-
ages from other locations but also images from the same

_ 1titA2
)
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Figure 2. Overview of our self-supervised framework. (a) Shows the notation for images and the temporal sampling strategy we use to
create our dataset for training. (b) Shows the contrastive learning performed by SeCo in the temporally invariant subspace. The red arrows
show examples that need to be pushed apart from the top left example. The green arrows indicate examples to be pulled closer. Different
lightness (value) represents different short-term temporal pairs and different colors (hue) indicate different locations (see Sec. 3.2). (c)
Shows our method when using long-term temporal pairs. Different shapes indicate a difference of 4 years between examples (see Sec. 3.3).
(d) Shows the contrastive learning performed by our CACo loss term. The dashed red arrows indicate examples, that are pushed apart iff
our method estimates a change has occurred between the long-term pairs (see Sec. 3.4).

location with a large time difference as follows:

Ty = {Iltiz+Ak ke {LQ}}U
{IltZ"rAk ch#£i,5e{1,2}ke{1,2}} (2)

In each training iteration, we sample 4 images (long and
short-time pairs) for each location instead of 2 like SeCo,
so each batch contains half as many locations.

3.4. Change-aware Contrastive Learning

The training method in the previous section assumes that
regions always change after a long time (a few years). How-
ever, this assumption is not always true: in remote areas
away from human activity, there may be no change even
over several years. For such locations, pushing apart fea-
tures of temporally distant image pairs may be counterpro-
ductive and destroy needed invariances.

If we know whether a location has changed or not, we
can make our loss function conditional on this information.
If it has changed between Ii‘1+A1 and Iltq,”Al, we push
them apart as described in Sec. 3.3. If not, we refrain from
adding the temporally distant image to the negative set. This
conditional loss function is illustrated in Fig. 2 (d).

However, the challenge is knowing which locations have
changed. Change detection can be performed by looking
at feature differences between temporally separated image

pairs [21,23,35,42], but this requires a feature representa-
tion we do not have. We solve this chicken-and-egg prob-
lem by bootstrapping our feature representation. We start
from a randomly initialized model, using which we extract
features for different locations and use feature differences
as an estimate for change. Using these change values, we
use our conditional loss to train the model. We then keep
alternating between training the model using changes and
estimating the changes using the partially trained model. In
the initial stages, the change estimates could be very poor as
the model has random weights. However, as training pro-
gresses we expect better features, and, in turn, better esti-
mates of changes. One might worry about degenerate solu-
tions, but the other contrastive loss terms based on location
(that do not depend on this inferred change) ensure that the
feature representation avoids any pathological cases.

Obtaining changes using features. The absolute dis-
tance between features scales differently for different types
of locations, and does not directly reflect the magnitude of
actual change. For example, urban locations with less vege-
tation look the same over the seasons, but temperate forests
will change a lot with the seasons. So instead of using the
absolute distance between two long-term images, we in-
stead use the ratio of distances between long-term images
and short-term images (images with a seasonal difference).
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This ratio normalizes the scaling differences between im-
ages from different locations. If f is the partially trained
feature extractor at epoch k, we use the following ratio as
an indicator of change for location /;

A A
e e el
(I 0) = fiZ 5212
Since, at each epoch, the seasonal images are selected
randomly for each location, we use an exponential moving

average over ratios from previous epochs to obtain a more
stable estimate for change as follows

rﬁ, =(1- B)RgC + ﬂri_l

3)

We use a Gaussian Mixture Model (GMM) on rfi values
to find our two clusters for change and no change. Loca-
tions with smaller r{j are treated as having no long-term
change, and those with larger rfi values are deemed to have
undergone significant change (see Fig. 3).

For MoCo v2, we use features from the momentum en-
coder for images to calculate the ratio estimate. To maintain
training speed, we compute and store the ratios during the
training iterations themselves, even as the feature extractor
is being updated. In preliminary experiments, we found that
the exponential moving average was sufficient to regularize
against the noise induced by the changing feature extractor.

Our change-aware formulation uses change information
in long-term pairs. On the other hand, there could be short-
term pairs with sudden changes such as due to disasters like
landslides or earthquakes. However, we notice that in prac-
tice such changes are extremely rare. Out of the top 200
examples with the highest short-term change score only 3
pairs showed a sudden change. Because short-term changes
are so rare, it is not useful to consider them in our pipeline.

3.5. Improving Geographical Sampling

Another property specific to satellite imagery is that we
can control the geographic distribution of sampled images.
Leveraging this freedom, SeCo collects data from a 100 km
radius around the 10k most populated cities of the world.
However, we argue that 100 kms is too large a radius.

Sampling far from cities results in uninformative images
(such as images entirely over oceans, (see supplementary
Fig. 3)). In fact, 22% of the dataset has such uninformative
images and this hurts the quality of the representation.

The median area of the 10k cities sampled is approx-
imately 24 km?, which represents a radius of ~ 5 km.
Based on this observation, we use 2d-gaussian sampling
with 0 = 5 km. This means that 95% of the data comes
from a radius of 20 = 10 kms around the city center. Addi-
tionally, if the sampled location is completely in the ocean,
we reject that sample and sample again (We use a landmass
map of the earth to check this). Our improved sampling
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Figure 3. The histogram of change estimates separated into two
groups (blue and green) by the GMM. Pairs of examples with a
higher estimate can be seen to have major construction and land-
cover changes (2 pairs on the right). Whereas pairs with a lower
estimate only have seasonal changes.

methods result in a dataset with a more diverse set of loca-
tions that are more informative. As we show in experiments,
this additionally improves the quality of the representation.

4. Results
4.1. Implementation details and Baselines

We evaluate our model by measuring its representation
ability on various downstream tasks. We evaluate the fol-
lowing baselines for comparison.

Random init.: is randomly initialized and is either fine-
tuned or linear probed for downstream tasks.

ImageNet: is pre-trained on supervised ImageNet [31].
MoCo v2: uses self-supervised learning without the tem-
poral or change information.

SeCo: is Seasonal Contrast [25] and uses only short-term
changes as augmentations.

GSSL: uses temporal and geographical information for
contrastive learning [2]. Since the data this model was
trained on is of different resolution retrain it on our data.
SatMAE [10]: is a Masked autoencoder [ 1 7] that uses ViT-
Large as backbone. The comparison is not apples-to-apples
as the model has larger capacity. The model is trained on
713k images therefore it is comparable to our 1m images
trained model.

DDPM-CD [4]: uses a denoising diffusion model as back-
bone. It is also trained on a million scale dataset.

We show results with both a ResNet-18 and a ResNet-
50 backbone. Similar to SeCo our models are trained with
a batch size of 256 and with 16,384 negative embeddings.
We also use the same optimizer, learning rate, schedule, and
temperature scaling as in the SeCo implementation.

We experiment with two datasets for self-supervised pre-
training: one with 100k images and the other with 1 million

5265



Data  Pre-training ResNet-18  ResNet-50
i Random init. 64.21 55.32
ImageNet. 86.16 89.08
MoCo v2 87.22 89.75
GSSL 87.74 90.19
100k SeCo 90.05 93.12
CACo (ours) 93.08 94.48
SeCo 93.99 95.63
Im SatMAE (ViT-L) - 93.03
DDPM-CD - 87.67
CACo (ours) 94.72 95.90

Table 1. Performance of our representation on the EuroSat classi-
fication task with linear probing, in top-1 Accuracy. Our method
provides a more accurate classification, with different backbones.

images. These datasets contain RGB images from Sentinel-
2 [13]. The long-time difference between the two sets Iltil

and Ilt? is 4 years. The maximum time difference within a

set Iltj is 1 year. We train our model and baselines for 1000
and 200 epochs on the 100k and 1m dataset respectively.

4.2. Landcover classification

Nine (out of seventeen) of the UN’s Sustainable Devel-
opment Goals require global monitoring of land cover [5].
Thus, improving the performance of models for landcover
classification would result in better monitoring of these
goals. We evaluate our method on two datasets for land-
cover classification: EuroSat [19] and BigEarthNet [34].

EuroSat has 10-classes with a total of 27k images 64 x 64
images from Sentinel-2. We use the same train/val split pro-
posed by the dataset. We add a linear layer to the frozen pre-
trained backbone, to perform the linear evaluation. More
details about the training are in the supplementary.

Tab. 1 shows the top-1 classification accuracy of vari-
ous pre-trained backbones on the EuroSat dataset. We first
note that all satellite image-specific methods outperform
generic pretraining on ImageNet, suggesting the importance
of training a representation specifically for satellite imagery.
They also outperform the MoCo v2 baseline trained on
satellite images, indicating the importance of well-designed
loss functions that use the structure of satellite imagery.

Compared to SeCo, our approach (CACo) results in
3 points of improvement with the linear classifier (with
ResNet-18 and 100k data). This validates our insight that
invariance to seasonal changes is not enough; the features
must also be trained to be sensitive to long-term change. In
fact, CACo trained on 100k images produces a represen-
tation competitive with SeCo trained on 1m images. Thus
our method can save an order of magnitude of images and
training time over the SeCo baseline while producing rep-

ResNet-18 ResNet-50
10% 100% 10% 100%

Random init.  42.87 4595 4476 45.22

Data  Pre-training

ImageNet. 6543 6640 7036 71.37
MoCo v2 6543 67.20 7038 72.88
100k GSSL 6578 67.36 70.65 72.86
SeCo 65.80 6743 70.69 73.42
CACo (ours) 67.89 6943 71.55 73.63
SeCo 67.68 6995 7289 74.82
Im SatMAE - - 6793 6945
DDPM-CD - - 6547 6731
CACo (ours) 68.64 7041 73.40 74.98
Table 2. Performance of our method on BigEarthNet land-

cover classification, in mean Average Precision (mAP). The two
columns use different percentages of data (10% and 100%) of
BigEarthNet data for training the linear layer.

resentations of similar quality.

We also evaluate our method on the BigEarthNet dataset,
which is a multi-label classification dataset with 17 classes.
The dataset is significantly larger than EuroSat, containing
590k sentinel-2 image patches. We use the RGB bands to
perform classification on this dataset. Since this is a multi-
label classification problem, we use mean Average Preci-
sion (mAP) to evaluate the performance.

Tab. 2 compares the performance of our model to the
baselines on BigEarthNet'. Even on BigEarthNet, our
method performs better than the baselines.

4.3. Change detection

We also evaluate our model on the OSCD change de-
tection dataset [6]. It contains 24 pairs of images from the
Sentinel-2 satellites between 2015 and 2018. The dataset is
split into 14 training images and 10 testing images.

Our model architecture follows past work [11,25]. The
input to the model is an image pair, each of which is fed into
the frozen, pre-trained feature extractor (we use the ResNet-
18 models). We extract feature maps after each downsam-
pling layer for each image. We then take the absolute dif-
ference between the corresponding feature maps from the
two images. These differences are passed as input to a U-
Net Decoder [30]. The U-Net decoder is then trained with
change supervision. More details about the training and ar-
chitecture can be found in the supplementary.

Results are shown in Tab. 3. We report the Fl-score
obtained by using a threshold of 0.5. Our method results
in better features for change detection resulting in about 4

'We obtained the SeCo number by training a model using the authors’
publicly released code and dataset, but this does not match the published
number [25]. Repeated attempts to contact the authors were unanswered.
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Backbone  Pre-training Prec. Rec. Fl-score
Random init.  69.73  18.24 28.91
ImageNet. 70.22  23.58 35.30
ResNet-18 — vioco v2 6221 2757 3821
GSSL 62.29  34.08 44.06
SeCo 64.15 36.89 46.84
CACo (ours) 60.68 4294 50.29
Random init.  65.46 22.43 3341
ResNet-50 ImageNet. 70.05 30.96 42.94
GSSL 62.16 36.83 46.26
SeCo 63.21 38.26 47.67

CACo (ours) 62.87 44.49 52.11

Table 3. Performance of our method on the Change Detection
Task. We report the precision, recall and F1-score at a threshold
of 0.5 for various ResNet backbones, trained on the 100k dataset.

Pre-training linear finetuning
Random init.  41.53 38.62
ImageNet. 43.75 43.78
MoCo v2 47.97 47.15
GSSL 46.77 48.10
SeCo 46.83 48.18
CACo (ours) 50.20 51.29

Table 4. Performance of our method on the DynamicEarthNet seg-
mentation task. We report the mloU score for the ResNet-18 back-
bone, trained on the 100k dataset.

points of improvement in the F1 scores for both ResNet-18
and ResNet-50. This large improvement on change detec-
tion is likely because we explicitly train our representation
to be sensitive to long-term change.

4.4. Semantic segmentation

We also evaluate our method on a satellite images seg-
mentation task. DynamicEarthNet [360] is a dataset used
to evaluate landcover segmentation over 7 classes. The
dataset contains images from Planet satellites for 65 loca-
tions. Each location has 24 1024 x 1024 images with labels.
The locations are split into 55 for training and 10 for testing.

Similar to change detection model, we use a U-net with
ResNet-18 as the encoder. But unlike them, we input a sin-
gle image and use feature maps instead of feature differ-
ences in the decoder. Due to the dataset imbalance, we use
Dice Loss [33] for training (see supplementary for details).

Tab. 4 shows the mloU (intersection over union averaged
over classes) for our method on DynamicEarthNet valida-
tion images. Our method is better than SeCo by more than
3 points, and ImageNet pre-training by more than 6 points.

Pre-training CaiRoad CalFire

AP@50 AP@400 AP@10 AP@40
ImageNet 41.79 32.26 52.61 44.99
MoCo v2 41.78 33.02 54.83 48.20
SeCo 39.63 34.72 62.87 51.87
CACo (ours) 44.38 35.99 65.71 53.44

Table 5. Performance of our method on change event retrieval for
the CaiRoad and CalFire benchmarks. We show average preci-
sion@K for ResNet-18 backbones trained on the 100k dataset.

Precision@K of NN Classifier:CaiRoad
0.60 08

Precision@K of NN Classifier:CalFire
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Figure 4. Precision@K of our backbone on CaiRoad (Left) and
CalFire (Right) retrieval benchmark. Our method has better Preci-
sion@K than baselines for most K values on both benchmarks.

4.5. Evaluation on Change Events

We evaluate our method on a recently released change
events benchmark [24]. Change events are spatio-temporal
semantic structures that are caused by a real-world event.
The goal is to classify these change events. The benchmark
contains two datasets: one from Cairo where we find road
construction events (called CaiRoad), and the other from
California where we find forest fire events (CalFire).

We use the model proposed by Mall et al. [24], taking in
a sequence of images and binary change masks for consec-
utive pairs. The model encodes image pairs using ResNet-
18, average pooling the feature map with the downscaled
change mask as weights. The final feature vector is obtained
by temporal averaging. The representation is learned using
SimCLR on change events (see supplementary).

We follow the same procedure, but the ResNet-18 back-
bone is initialized with the trained weights, and then fine-
tuned per [24]. We evaluate by measuring average preci-
sion@K (AP@K) for different backbone architectures.

Tab. 5 shows the AP@K for different backbones, on the
CaiRoad and CalFire benchmarks. Our method results in
better retrieval for both types of events. Fig. 4 shows the
precision@K for various methods on these benchmarks.

4.6. Ablation

We evaluate the design choices made by our method
in Sec. 3. We look at improvements made by different com-
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Pre-training EuroSat  DynamicEarth-

(Acc.) Net (mloU)
SeCo 90.05 46.83
+ Improved Sampling 91.42 47.24
+ Long-term temporal Contrast 92.56 49.68
+ Change-awareness (Ours) 93.08 50.20

Table 6. Performance with different sub-components of CACo
on EuroSat classification, with ResNet-18 pre-trained on the 100k
dataset. All three of our novel contributions lead to an improve-
ment in performance on downstream tasks.

Pre-training  EuroSat (Acc.) OSCD (F1)
SeCo 87.97 44.05
CACo 90.83 47.50

Table 7. Accuracy on EuroSat when using a ResNet-18 backbone
pre-trained using SimCLR instead of MoCo v2. Our insights gen-
eralize to other self-supervised frameworks like SimCLR as well.

ponents such as better data, long-term temporal informa-
tion, and change estimates. We also show that our method
generalizes to other self-supervised frameworks.

Are the new components of our method essential? In
Tab. 6 we evaluate the impact of each component of our
approach on the final performance as measured on EuroSat
and DynamicEarthNet. We find that each component adds
a significant improvement. It is telling that incorporating
long-term temporal contrast has a particularly large impact
on DynamicEarthNet, indicating that long-term contrast is
especially needed for pixel-level localization tasks.

Can our method work with other self-supervised frame-
works? We replace the MoCo v2 framework with Sim-
CLR [7]. SimCLR requires a large batch size to find more
hard negative examples; we use a batch size of 512 instead
of 256 for all the methods. Tab. 7 shows the performance of
SeCo and CACo using SimCLR. Our model performs better
than SeCo by 3 points when using SimCLR as well. This
indicates that our insights are general and can be applied in
the future to new self-supervision frameworks.

How useful is the ratio estimate? In Sec. 3.4 we pro-
posed to estimate using rfi to estimate changes. We now
look at other estimates for change in Tab. 8. Directly us-
ing the feature distance between the long-term pair, instead
of the ratio leads to an almost 2-point drop in performance.
Removing the exponential moving average (i.e., using Rf’
instead of rfi ; see Eq. (3)) also reduces performance by
about 1 point. Another alternative is to measure the ratio

Change Estimate EuroSat (Acc.)

long-term distance 91.17
R} 91.98
Align 92.92
r'fi (ours) 93.08

Table 8. Performance of different change estimates with ResNet-
18 on 100k dataset. Rfi (Eq. (3)) is the estimate without the mov-
ing average. Long-term distance is the numerator of the Rﬁ_ . Align
uses seasonally aligned long-term pairs without smoothing.

with long-term pairs that are seasonally aligned. Align gives
similar results to rfi , but requires a more sophisticated sam-
pling. In sum, these results suggest that how one identifies
changed regions can have a big impact on performance.

5. Discussion and Conclusions

Potential Negative Societal Impact and Limitations.
As in all visual recognition, there is the possibility of neg-
ative impact through violations of privacy. To mitigate
this concern we intentionally use low-resolution satellite
images (1 pixel ~ 10m). The use of our proposed tech-
niques for surveillance should be appropriately regulated.
Our work currently is limited in its ability to generalize
to multiple resolutions. Though object detection tasks use
higher-resolution images for better object delineation, our
representation trained on medium-resolution images can-
not directly generalize to them; although we can retrain our
method on high-resolution images for these tasks.

Conclusions. We present a novel self-supervised frame-
work to learn representations well suited for remote sensing
applications. We introduce a new loss that robustly lever-
ages the long-term temporal information readily available
for satellite images. We also propose a better location sam-
pling method to provide more informative data. Our evalu-
ation on diverse downstream tasks shows that our approach
(CACo) is very versatile and leads to better downstream ac-
curacy than prior art (with relative improvements of 8.5%
on change detection and 6.5% on semantic segmentation).
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