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Abstract

Recently, self-supervised neural networks have
shown excellent image denoising performance. How-
ever, current dataset free methods are either computa-
tionally expensive, require a noise model, or have inad-
equate image quality. In this work we show that a simple
2-layer network, without any training data or knowledge
of the noise distribution, can enable high-quality im-
age denoising at low computational cost. Our approach
is motivated by Noise2Noise and Neighbor2Neighbor
and works well for denoising pixel-wise independent
noise. Our experiments on artificial, real-world cam-
era, and microscope noise show that our method termed
ZS-N2N (Zero Shot Noise2Noise) often outperforms ex-
isting dataset-free methods at a reduced cost, making it
suitable for use cases with scarce data availability and
limited compute.

1. Introduction
Image denoising is the process of removing distor-

tions from images, to enhance them visually and to re-
construct fine details. The latter is especially important
for medical images, where fine details are necessary for
an accurate diagnosis.

Current state-of-the-art image denoising techniques
rely on large data sets of clean-noisy image pairs and of-
ten consist of a neural network trained to map the noisy
to the clean image. The drawbacks of dataset based
methods are that data collection, even without ground
truths, is expensive and time-consuming, and second, a
network trained on dataset suffers from a performance
drop if the test images come from a different distribu-
tion of images. These drawbacks motivate research in
dataset-free methods.

All current zero-shot models are either suitable only
for specific noise distributions and need previous knowl-
edge of the noise level [7, 20], require a lot of compute
(time, memory, GPU) to denoise an image [24], have

poor denoising quality [28], or do not generalise to dif-
ferent noise distributions or levels [15, 24]. We propose
a method that builds on the recent Noise2Noise [17] and
Neighbour2Neighbour [12] papers and aims to circum-
vent these issues to reach a good trade-off between de-
noising quality and computational resources. We make
only minimal assumptions on the noise statistics (pixel-
wise independence), and do not require training data.
Our method does not require an explicit noise model,
and is therefore suitable for various noise types and can
be employed when the noise distribution or level are un-
known. The only assumption we make about the noise
is that it is unstructured and has zero mean.

In a nutshell, we convolve the noisy test image with
two fixed filters, which yields two downsampled images.
We next train a lightweight network with regularization
to map one downsampled image to the other. Our strat-
egy builds on the recent Noise2Noise [17] and Neigh-
bour2Neighbour [12] papers, however we take those
methods one step further by enabling denoising without
any training data. Even with an extremely small network
and without any training data, our method achieves good
denoising quality and often even outperforms large net-
works trained on datasets.

The key attributes of our work are as follows:

• Compute. Dataset free neural network based al-
gorithms [24, 28] require solving an optimization
problem involving millions of parameters to de-
noise an image. The huge parameter count re-
quires large memory storage, advanced GPUs, and
long denoising times. In this work we show that
our method, that utilizes a simple 2 layer network,
with only 20k parameters, can often outperform
networks with millions of parameters while reduc-
ing the computational cost significantly and being
easily executable on a CPU.

• Generalisation. Existing zero-shot methods often
to do not generalise well. For example, BM3D [7],
a classical denoising algorithm does not general-
ize well to non-Gaussian noise, and blind spot net-
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Figure 1. Left and middle plots: PSNR scores for Gaus-
sian and Poission denoising for different noise levels. Note
BM3D’s poor performance on Poisson compared to Gaussian
noise. Right plot: Time required in seconds to denoise one
256 ⇥ 256 colour image on CPU and GPU, tested on Pois-
son noise with � = 50. Except for BM3D, all methods have
shorter times on GPU. Only S2S in some cases outperforms
our method, however it is about 100 times slower. S2S* de-
notes the ensemble free version of S2S.

works [15] [24] (discussed later in detail) fail to
denoise well in the regime of low noise level. Ex-
tensive experiments on different noise distributions
and noise levels show that our proposed approach
can generalise better to different conditions better
than existing methods.

In summary, our proposed method is dataset and
noise model-free, and achieves a better trade-off be-
tween generalization, denoising quality, and computa-
tional resources compared to existing zero-shot meth-
ods, as displayed in Figure 1. We compare to the stan-
dard zero shot baselines, including BM3D, and the re-
cent neural network-based algorithms DIP [28] and S2S
[24]. Only BM3D is faster than our method but achieves
poor results on non-Gaussian noise. Only S2S some-
times outperforms our method, but is orders of magni-
tude slower, often fails on low noise levels [14], and re-
quires ensembling to achieve acceptable performance.

2. Related Work
Supervised methods achieve state-of-the-art perfor-
mance by training a network end-to-end to map a noisy
image to a clean one. Networks that work well are
CNNs [3, 32], vision transformers [19], or MLP based
architectures [21, 27].

Noise2Noise [17] yields excellent performance from
training on two noisy images of the same static scene,
without any ground truth images. Given that the noise
has zero mean, training a network to map one noisy im-
age to another noisy image of the same scene performs
as well as mapping to the ground truth. While hav-
ing access to a pair of noisy images of the same scene
is in practice hard to achieve, the Noise2Noise method

has motivated further research in self-supervised meth-
ods [12] that require only single noisy images.

Self-supervised methods are trained on datasets con-
sisting of only noisy images. Noise2Void [15] and
Noise2Self [2] are two blind spot prediction ap-
proaches for image denoising. Given a set of noisy
images {yi}n1 , The idea is to minimize the loss
1
n

Pn
i=1 L(f✓(M i(yi)),yi), where L is a loss function,

f✓ is a network, and M
i is an operator that masks some

pixels, hence the name blind spot. Assuming that the
neighbouring pixels of a clean image are highly corre-
lated, and that the noise pixels are independent, a net-
work trained to reconstruct a masked pixel, can only
predict the signal value from the neighbouring visible
pixels, but not the noise.

Recently, several works [4, 26, 34] attempted to use
Stein’s unbiased risk estimator for Gaussian denoising.
Such methods work well only for Gaussian noise and
require the noise level to be known in advance. A more
general framework is Noisier2Noise [23] which works
for any noise distribution, but the distribution must be
known in advance.

The newly proposed Neighbour2Neighbour [12]
builds on the Noise2Noise [17] method, where the as-
sumptions are that the noise has zero mean and is
pixel-wise independent. Neighbour2Neighbour extends
Noise2Noise by enabling training without noisy image
pairs. It does so by sub-sampling single noisy images to
create pairs of noisy images, where Noise2Noise can be
applied.

Zero-Shot/ Dataset free Methods. Most similar to
our work is Noise2Fast [18], which also builds on
Noise2Noise and Neighbour2Neighbour to achieve
dataset-free denoising. However, the method is only
evaluated on grayscale images, uses a relatively large
network, and requires an early stopping criterion. Our
work improves on Noise2Fast by easily denoising
grayscale or RGB images, and designing a consistency
loss that alleviates the need to early stop. Moreover,
we use a much smaller network which saves compute.
Specifically, our network is twelve times smaller and
a forward pass through it is seven times faster. To the
best of our knowledge, our work is the first to utilize
a small 2-layer network and achieve competitive qual-
ity for image restoration. We show that on grayscale
images, our method despite achieving similar scores to
Noise2Fast [18], produces better quality images. This
is likely due to Noise2Fast dropping pixel values when
downsampling, whereas our method always keeps all in-
formation retained.

Besides this work, classical non-learning-based
methods, such as BM3D [7] and Anscombe [20], work
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well for Gaussian and Poisson noise, respectively, and
require the noise level as an input.

DIP (Deep Image Prior) [28] and its variants such as
the Deep Decoder [11] build on the fact that CNNs have
an inductive bias towards natural images, in that they can
fit natural images much faster than noise. Therefore, a
network trained, with early stopping, to map a random
input to the noisy image will denoise the image. The
denoising performance of DIP is often poor, and is de-
pendent on the number of training epochs, which is hard
to determine in advance.

Self2Self [24] utilizes the idea of the blind spot net-
works (reconstructing masked pixels) on a single image,
but with dropout ensembling. However, this method is
not computationally efficient, in that it requires long du-
rations to denoise an image. According to the authors,
it takes 1.2 hours to denoise one 256 ⇥ 256 image on a
GPU. Compared to other blind spot networks, Self2Self
achieves significantly better denoising scores, since it re-
lies on ensembling, i.e., averaging the output of several
networks. However, ensemble learning over smoothens
the image, causing a loss of some details, despite the
improvement in PSNR scores [8].

Similar to almost all supervised and self-supervised
methods, both Self2Self and DIP use a UNet [25] or a
variant of it as the backbone network in their architec-
tures. A UNet typically has millions of parameters, mak-
ing it unsuitable for compute limited applications. Our
work departs from this scheme, by designing a shallow
and simple network with few parameters.

3. Method
Our method builds on the Noise2Noise [17], for train-

ing a network on pairs of noisy images, and the Neigh-
bour2Neighbour (NB2NB) [12], which generates such
pairs from a single noisy image. Our main idea is to
generate a pair of noisy images from a single noisy im-
age and train a small network only on this pair. We start
with a brief summary of Noise2Noise and then introduce
our method.

3.1. Background: Noise2Noise and Neigh-
bour2Neighbour

Supervised denoising methods are typically neural
networks f✓ that map a noisy image y to an estimate
f✓(y) of the clean image x. Supervised denoising meth-
ods are typically trained on pairs of clean images x and
noisy measurements y = x + e, where e is noise. We
refer to supervised denoising as Noise2Clean (N2C).

Neural networks can also be trained on differ-
ent noisy observations of the same clean image.
Noise2Noise (N2N) [17] assumes access to a set of
pairs of noisy images y1 = x + e1,y2 = x + e2,

where e1, e2 are independent noise vectors. A net-
work f✓ is then trained to minimize the empirical risk
1
n

Pn
i=1

��f✓(yi
1) � yi

2

��2
2
. This makes sense, since in

expectation over such noisy instances, and assuming
zero mean noise, training a network in a supervised man-
ner to map a noisy image to another noisy image is
equivalent to mapping it to a clean image i.e.,

argmin
✓

E
⇥
kf✓(y1)� xk22

⇤
= argmin

✓
E
⇥
kf✓(y1)� y2k22

⇤
.

(1)
The proof is given in the supplementary material.
In theory N2N training reaches the same performance

as N2C training if the dataset is infinitely large. In prac-
tice, since the training set is limited in size, N2N falls
slightly short of N2C. For example, N2N training with
a UNet on 50k images gives a performance drop of only
about 0.02 dB compared to N2C with a UNet.

Despite the great performance of N2N, its usability
is often limited, since it is difficult to obtain a pair of
noisy images of the same static scene. For instance, the
object being captured might be non-static, or the lighting
conditions change rapidly.

Neighbour2Neighbour (NB2NB) [12] extends N2N
and allows training only on a set of single noisy images,
by sub-sampling a noisy image to create a pair of noisy
images. Similar to N2N, NB2NB exhibits strong denois-
ing performance when trained on many images.

3.2. Zero-Shot Noise2Noise
Our work extends Noise2Noise [17] and Neigh-

bour2Neighbour [12] by enabling training on only one
single noisy image. To avoid overfitting to the single
image, we use a very shallow network and an explicit
regularization term.

Almost all self- or un-supervised denoising methods,
including ours, rely on the premise that a clean natu-
ral image has different attributes than random noise. As
shown in [12], a noisy image can be decomposed into
a pair of downsampled images. Based on the premise
that nearby pixels of a clean image are highly correlated
and often have similar values, while the noise pixels are
unstructured and independent, the downsampled pair of
noisy images has similar signal but independent noise.
This pair can therefore serve as an approximation of two
noisy observations of the same scene, where one obser-
vation is used as the input, and the other as the target, as
in N2N.

Our approach is to first decompose the image into
a pair of downsampled images and second train a
lightweight network with regularization to map one
downsampled image to the other. Applying the so-
trained network to a noisy image yields the denoised im-
age. We first explain how we generate the downsampled
images, and then how we fit the network.
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Image Pair Downsampler The pair downsampler
takes as input an image y of size H ⇥ W ⇥ C and
generates two images D1(y) and D2(y), each of size
H/2⇥W/2⇥C. The downsampler generates those im-
ages by dividing the image into non-overlapping patches
of size 2 ⇥ 2, taking an average of the diagonal pixels
of each patch and assigning it to the first low-resolution
image, then the average of the anti-diagonal pixels and
assigning it to the second low-resolution image. See Fig-
ure 2 for an illustration of the pair downsampler.

The downsampler is implemented with convolutions
as follows. The first low-resolution image is obtained by
applying a 2D convolution with stride two and fixed ker-

nel k1 =


0 0.5

0.5 0

�
to the original image as D1(y) =

y ~ k1, and the second image is obtained by apply-
ing a 2D convolution with stride two and fixed kernel

k2 =


0.5 0
0 0.5

�
to the original image as D2(y) =

y~k2. The convolutions are implemented channel-wise
and therefore the downsampling scheme is applicable to
any arbitrary number of input channels.

a1

d1

b1

c1

a2 b2

c2 d2

a3 a4b3 b4

c3 c4d3 d4

a1+d1 

2
a2+d2 

2
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2
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2

b1+c1 

2
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2
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2
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2

Figure 2. The Image Pair Downsampler decomposes an im-
age into two images of half the spatial resolution by averaging
diagonal pixels of 2⇥2 non-overlapping patches. In the above
example the input is a 4⇥4 image, and the output is two 2⇥2
images.

Zero-shot-image denoising method. Given a test im-
age y to denoise, our method is conceptually similar to
first fitting a small image-to-image neural network f✓ to
map the first downsampled image D1(y) to the second
one, D2(y) by minimizing the loss

L(✓) = kf✓(D1(y)) �D2(y)k22. (2)

Once we fitted the network, we can apply it to the origi-
nal noisy observation to estimate the denoised image as
x̂ = f✓̂(y).

However, our experiments showed that resid-
ual learning, a symmetric loss, and an additional
consistency-enforcing term are critical for good perfor-
mance. We next explain the elements of our loss func-
tion. In residual learning, the network is optimized to fit

the noise instead of the image. The loss then becomes

L(✓) = kD1(y) � f✓(D1(y)) �D2(y)k22. (3)

Following [6], where a symmetric loss was used in
the context of self-supervised pretraining of a siamese
network, we additionally adopt a symmetric loss, which
yields the residual loss:

Lres.(✓) =
1

2

⇣
kD1(y) � f✓(D1(y)) �D2(y)k22+

kD2(y) � f✓(D2(y)) �D1(y)k22
⌘
.

(4)
In addition, we enforce consistency by ensuring that

first denoising the image y and then downsampling it, is
similar to what we get when first downsampling y and
then denoising it, i.e., we consider a loss of the form:

L(✓) = kD(y) � f✓(D(y)) �D(y � f✓(y))k22. (5)

Again adopting a symmetric loss, the consistency loss
becomes:

Lcons.(✓) =
1
2

⇣
kD1(y)� f✓(D1(y))�D1(y � f✓(y))k22

+kD2(y)� f✓(D2(y))�D2(y � f✓(y))k22
⌘
.

(6)
Note that for the residual loss, the network only has the
downsampled images as input. Only in the consistency
loss, the network gets to see the image in full spatial
resolution. Including the consistency loss enables better
denoising performance and helps to avoid overfitting. It
can therefore be seen as a regularizing term.

In summary, we minimize the loss L(✓) = Lres.(✓)+
Lcons.(✓) using gradient descent, which yields the net-
work parameters ✓̂. With those, we estimate the de-
noised image as x̂ = y � f✓̂(y). Note that only the
network parameters ✓ are optimized during the gradient
descent updates, since the downsampling operations D1

and D2 are fixed. Convergence typically requires 1k to
2k iterations, which thanks to using a lightweight net-
work takes less than half a minute on a GPU and around
one minute on a CPU.

Network Many supervised and self-supervised meth-
ods use a relatively large network, often a UNet [25].
Instead, we use a very simple two-layer image-to-image
network. It consists of only two convolutional operators
with kernel size 3 ⇥ 3 followed by one operator of 1⇥1
convolutions. This network has about 20k parameters,
which is small compared to typical denoising networks.
An exact comparison of the network sizes can be found
in section 4.4. There are no normalization or pooling
layers. The low parameter count and simple structure
enables fast denoising even when deployed on a CPU.

14021



In the ablation studies we show that using a UNet in-
stead of a lightweight network leads to overfitting and
much worse denoising performance.

4. Experiments
We compare our denoising algorithm (ZS-N2N) to

several baselines. The baselines include dataset based
methods, as well as other zero-shot methods. For the
dataset based methods, we include both supervised (with
clean images) and self-supervised (only noisy images)
methods. We test all methods on artificial and real-world
noise. We provide ablation studies in the supplementary
material.

The results highlight the dependency of dataset based
methods on the dataset they are trained on and suggest
that given a small training set, they are outperformed by
dataset free ones. Furthermore, the experiments show
that methods based on noise models achieve good per-
formance for the specific noise model, but do not gener-
alise to other distributions.

Concerning the dataset and noise model free meth-
ods, our proposed method is either on par or better than
other baselines on Gaussian, Poisson, and real world
camera and microscope noise. Our method only falls
short of Self2Self [24] on high noise levels, however, it
requires only 1

200 of the denoising time of Self2Self and
2% of it’s memory. Moreover, Self2self’s performance
on low noise levels is insufficient. Therefore, consider-
ing denoising quality, generalistion, and computational
resources, our method achieves a better trade-off com-
pared to existing methods as shown in Figure 1.

4.1. Baselines
We compare to Noise2Clean (N2C) with a UNet,

which is the current state-of-the-art denoising algorithm.
There exits several other networks that perform on par
with the UNet, such as DnCNN [32] and RED30 [22],
but the UNet is orders of magnitude faster, since it is
not very deep, and has a multi-resolution structure. The
UNet is therefore the standard choice in all recent de-
noising papers [12, 15, 17, 23].

For the self-supervised methods, we compare to
Neighbour2Neighbour (NB2NB) [12] and Noise2Void
(N2V) [15]. We exclude the methods that require an
explicit noise model, such as [4, 16, 23, 34], since these
methods work well on synthetic denoising tasks for the
given noise distribution, but fail to generalize to un-
known noise distributions or real-world noise [12, 30].
This is due to the fact that the synthetic noise is in-
sufficient for simulating real camera noise, which is
signal-dependent and substantially altered by the cam-
era’s imaging system.

Regarding the zero-shot methods, which are most

similar to ours, we compare to the deep learning based
algorithms: DIP [28] and Self2Self (S2S) [24], and also
to the classical algorithm: BM3D [7]. Note that apart of
our method (and BM3D), all baselines use a U-Net or a
variation of it as a denoising backbone.

The performance of DIP is very sensitive to the num-
ber of gradient descent steps. We used the ground truth
images to determine the best early stopping iteration.
The DIP results can therefore be seen as an over opti-
mistic performance of the method. For a fair compari-
son, we report the results of the best performing model
for the other baselines. A comparison of the sensitivity
of the methods to the number of optimization steps can
be found in the supplementary material.

The original implementation of S2S uses an ensem-
ble of multiple networks, i.e, averaging the outputs of
several networks. All other baselines do not utilize en-
sembling or averaging. For a fair comparison, we ad-
ditionally report the results of S2S without any ensem-
bling, which we denote by S2S*. S2S denotes the origi-
nal implementation with an ensemble of 50 networks.

4.2. Synthetic Noise
The dataset based methods (N2C, NB2NB, N2V) are

trained on 500 colour images from ImageNet [10]. All
methods are tested on the Kodak24 1 and McMaster18
[13] datasets. All training and test images are center-
cropped to patches of size 256 ⇥ 256.

We examine Gaussian and Poisson noise with noise
levels � and � respectively. We consider the fixed noise
levels �,�= 10, 25, 50. The � values for Gaussian noise
correspond to pixel values in the interval [0,255], while
the � values for Poisson noise correspond to values in
the interval [0,1].

For the dataset based methods, we also consider blind
denoising during training with the range of noise levels
�,� 2 [10, 50]. During training, a �,� value is sampled
uniformly from the given range for each image in each
training epoch, unlike the fixed noise levels, where all
training images are contaminated with the same noise
level. Blind denoising is what is used in practice, since
an exact noise level is typically not given, but rather a
range of noise levels.

In table 1, we present the denoising performance of
the different methods. For the dataset based methods,
�,� is known, denotes that the network trained on that
exact noise level is used for testing, while unknown de-
notes the blind denoising, where the network trained
on the range of noise levels [10,50] is used for testing.
BM3D requires as input the value of the noise level. For
Gaussian denoising the known � value was used, while
for Possion denoising the noise level was estimated us-

1
http://r0k.us/graphics/kodak/
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ing the method in [5]. Note that ZS-N2N, DIP, and S2S
do not utilize any prior information on the noise distri-
bution or level.

As seen from the results, the dataset based meth-
ods often fall slightly short of the dataset free methods.
This is due to the fact that they were only trained on
500 images, whereas they reach good performance when
trained on larger datasets. In the supplementary mate-
rial, we show that when N2C is trained on 4000 images,
it outperforms all other baselines and its performance
can keep improving with more training data. Another
drawback of dataset based methods is that they are sen-
sitive to the data they are trained on. They experience a
performance drop when trained on a range of noise lev-
els as opposed to a specific noise level as the test set.

Regarding the zero-shot methods, DIP exhibited
worse scores in all simulations. BM3D is tailored to
work well for Gaussian denoising, where the exact noise
variance is known and required as input. However, its
performance dropped for Poisson noise, where the noise
level was estimated.

ZS-N2N and S2S do not rely on a specific noise
model and therefore work consistently well for both
Gaussian and Poisson noise. However, S2S suffers from
at least two drawbacks. The first is it heavily relies on
ensembling to achieve good scores as seen by compar-
ing the results of S2S with S2S*. Despite improving the
scores, ensembling oversmoothens the image causing a
loss in some visual features [8]. Note that all other base-
lines are ensemble free. The second drawback is that
it performs worse than all other baselines on low noise
levels, as seen in the Gaussian noise with � = 10.

Considering that DIP performs poorly, that BM3D
only works well for Gaussian noise, and that S2S’s per-
formance without ensembling and on low noise levels is
unsatisfactory, our method, ZS-N2N is the only dataset
free denoising algorithm that performs well on different
noise distributions and levels.

4.3. Real-World Noise
Camera noise: Following [24], we evaluate on the
PolyU dataset [29] which consists of high-resolution im-
ages from various scenes captured by 5 cameras from the
3 leading brands of cameras: Canon, Nikon, and Sony.
We also consider the SIDD [1], which consists of images
captured by several smartphone cameras under different
lighting conditions and noise patterns.

Since the computational cost for running S2S is high,
we randomly choose 20 images from both datasets to
test on. The SIDD validation set has images of size
256 ⇥ 256. For consistency, we center-crop the PolyU
images to patches of size 256 ⇥ 256. The results are
shown in table 2. All methods perform similarly except
for BM3D and the ensemble free version of S2S, which

exhibit a notable performance drop.

Dataset ZS-N2N DIP S2S S2S* BM3D
PolyU 36.92 37.07 37.01 33.12 36.11
SIDD 34.07 34.31 33.98 30.77 28.19

Table 2. Denoising PSNR in dB on real world camera noise.

Microscope noise: We additionally evaluate on the
Fluorescence Microscopy dataset [33], which contains
real grayscale fluorescence images obtained with com-
mercial confocal, two-photon, and wide-field micro-
scopes and representative biological samples such as
cells, zebrafish, and mouse brain tissues. We pick ran-
dom images from the test set to test on. We also compare
to Noise2Fast (N2F) [18], for which code for denoising
grayscale is available. The results are depicted in table
3.

Image Photon
BPAE

Photon
Mice

Confocal
BPAE

Average

ZS-N2N 30.73 31.42 35.85 32.67
DIP 29.22 30.01 35.51 31.58
S2S 30.90 31.51 31.01 31.14
S2S* 29.49 29.99 29.54 29.67
BM3D 27.19 29.48 33.23 29.97
N2F 30.93 31.07 36.01 32.67

Table 3. PSNR in dB on real world microscope noise.

Our method and Noise2Fast achieve similar scores
and slightly outperform the other baselines. Despite the
similarity in scores, when inspecting the denoised im-
ages visually, we see differences: Our method produces
visually sharper images and preserves slightly more de-
tails, while the Noise2Fast images are relatively smooth.
This is most noticeable on images with fine details, such
as MRI images, see Figure 3 for a knee image from the
fastMRI dataset [31]. The blurriness in the Noise2Fast
images is likely due to the downsampling scheme used,
which drops some pixel values, and the ensembling per-
formed to obtain the final image estimate, which over-
smoothens the image [8]. Our method, on the other
hand, preserves all pixel values during downsampling,
and is ensemble free.

4.4. Computational Efficiency
In this section we focus on the computational effi-

ciency. We consider the denoising time and the memory
requirements represented by the number of network pa-
rameters. Since in some applications a GPU is not avail-
able [9], we additionally consider the denoising time on
a CPU. The GPU tested is Quadro RTX 6000 and the
CPU is Intel Core i9-9940X 3.30GHz.
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Noise Method Kodak24 McMaster18

Gaussian

� known? � = 10 � = 25 � = 50 � = 10 � = 25 � = 50

da
ta

se
t-b

as
ed N2C yes 33.45 28.27 25.47 33.03 28.46 25.86

no 32.16 28.18 24.45 31.97 28.26 24.78

NB2NB yes 33.01 27.90 25.02 32.63 28.01 25.25
no 31.79 27.80 24.15 31.19 27.85 23.95

N2V yes 30.19 26.21 24.07 30.95 26.50 23.94
no 28.95 26.03 23.19 29.64 26.31 22.67

da
ta

se
t-f

re
e ZS-N2N (ours) - 33.69 29.07 24.81 34.21 28.80 24.02

DIP - 32.28 27.38 23.95 33.07 27.61 23.03
S2S - 29.54 28.39 26.22 30.78 28.71 25.03
S2S* - 26.93 26.29 24.83 27.64 26.48 23.79

BM3D yes 33.74 29.02 25.51 34.51 29.21 24.51

Poisson

� known? � = 50 � = 25 � = 10 � = 50 � = 25 � = 10

da
ta

se
t-b

as
ed N2C yes 29.42 27.49 26.25 29.89 28.20 26.42

no 28.92 27.14 23.13 28.62 27.51 24.32

NB2NB yes 29.19 27.01 25.71 29.41 27.79 25.95
no 28.53 26.88 23.60 28.03 27.66 24.58

N2V yes 27.73 25.55 23.77 27.86 25.65 23.47
no 27.04 25.28 21.93 26.34 25.52 22.07

da
ta

se
t-f

re
e ZS-N2N (ours) - 29.45 27.52 24.92 30.36 28.41 25.75

DIP - 27.51 25.84 23.81 28.73 27.37 24.67
S2S - 28.89 28.31 27.29 30.11 29.40 27.71
S2S* - 26.75 26.40 25.63 27.55 27.24 26.39

BM3D no 28.36 26.58 24.20 27.33 24.77 21.59

Table 1. PSNR scores in dB for Gaussian and Poisson denoising. Best result is in bold, second best result is underlined. The
dataset based methods are italicized. Note DIP’s mediocre scores and BM3D’s performance drop between Gaussian and Poission
noise. S2S has significantly lower scores in low noise as seen with � = 10 and its ensemble free version S2S* has inadequate
performance. Denoised samples can be found in the supplementary material.

In table 4 we display the time required to denoise one
colour image of size 256 ⇥ 256 at inference, as well as
the total number of trainable parameters of a model. The
dataset based methods are trained for long durations, but
after training, the network parameters are fixed, and in-
ference is almost instantaneous, since it is just a forward
pass through the model. The time taken for denoising
is therefore negligible compared to the zero-shot meth-
ods, whose parameters are optimized for each test image
separately.

In the original implementation of S2S, the authors
report a denoising time of 1.2 hours for a 256 ⇥ 256
colour image on GPU. However, we noticed that only
half of the gradient update iterations are needed for con-
vergence. We therefore report only half of their GPU
time.

Concerning the denoising time, dataset based meth-
ods are the fastest, since a forward pass through a fixed
network requires only milli seconds. Regarding the deep
learning based zero-shot methods, ZS-N2N is signifi-
cantly more computationally efficient. Specifically, on
CPU it is 200 times and 35 times faster than S2S and

DIP respectively and has only 2% and 1% of their mem-
ory requirements. Only the classical BM3D is computa-
tionally more efficient than ZS-N2N.

4.5. Discussion

Dataset based methods typically achieve state-of-the-
art results but our experiments manifested two of their
shortcomings: They don’t perform well when trained on
small datasets, and the performance drops when the test
data differs from the training data, as seen by varying the
noise levels. This highlights the importance of dataset
free denoising algorithms.

Methods that rely on an explicit model of the noise
distribution such as Noisier2Noise [23] and Anscombe
[20] or those tailored to work well for specific distribu-
tions such as BM3D, do not generalize well to other dis-
tributions. Their performance therefore degrades when
the noise distribution is unknown, or the noise level must
be estimated. This has been manifested by BM3D’s
competitive performance on Gaussian noise, but its fail-
ure to keep up with the other baselines on Poission and
real world noise. These findings highlight the advantage
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Clean

Clean

Clean

Noisy 20.7 dB

Noisy 20.7 dB

Noisy 20.7 dB

Noise2Fast 28.0 dB

Noise2Fast 28.0 dB

Noise2Fast 28.0 dB

Ours 27.8 dB

Ours 27.8 dB

Ours 27.8 dB

Figure 3. Visual comparison between our method and Noise2Fast for denoising Gaussian noise on a knee MRI. Both methods
achieve similar PSNR, but notice how the center and left edge are blurry and oversmooth in Noise2Fast. Our method produces a
sharper image with less loss of details.

Method N2C NB2NB N2V ZS-N2N DIP S2S BM3D
GPU time - - - 20 sec. 3 min. 35 min. 4 sec.
CPU time - - - 80 sec. 45 min. 4.5 hr. 4 sec.

Network size 3.3M 1.3M 2.2M 22k 2.2M 1M -

Table 4. Computational Resources. First and Second Rows: Time taken to denoise one image on average on GPU and CPU.
The time for the dataset based methods is discarded, since it is negligible. BM3D does not benefit from the GPU, as there is no
optimization involved. Bottom Row: Number of parameters of a network.

of noise model free techniques.
Regarding the three dataset free and noise model free

methods considered, DIP was often lagging behind S2S
and ZS-N2N, despite using the ground truths to find
the best possible early stopping iteration. S2S’s perfor-
mance without ensembling is inadequate, and even with
ensembling, it does not work well on low noise levels.
Moreover, it requires more than 0.5 hours to denoise an
image on a GPU and 4.5 hours on a CPU.

Except for ZS-N2N, all deep learning based baselines
have millions of parameters, making them computation-
ally expensive. Considering ZS-N2N’s ability to gener-
alize to various denoising conditions with relatively fast
denoising time, very few parameters, and CPU compat-
ibility, we can conclude that it offers a good trade-off
between denoising quality and computational resources.

5. Conclusion
We proposed a novel zero-shot image denoising al-

gorithm that does not require any training examples or
knowledge of the noise model or level. Our work uses a

simple 2-layer network, and allows denoising in a rela-
tively short period of time even when executed without a
GPU. The method can perform well on simulated noise
as well as real-world camera and microscope noise, and
achieves a good trade-off between generalization, de-
noising quality and computational resources compared
to existing dataset free methods. A demo of our im-
plementation including our code and hyperparameters
can be found in the following colab notebook: https:
//colab.research.google.com/drive/

1i82nyizTdszyHkaHBuKPbWnTzao8HF9b
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