
SLACK: Stable Learning of Augmentations
with Cold-start and KL regularization

Juliette Marrie1,2 Michael Arbel1 Diane Larlus2 Julien Mairal1

1 Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK 2 NAVER LABS Europe

Abstract

Data augmentation is known to improve the generaliza-
tion capabilities of neural networks, provided that the set
of transformations is chosen with care, a selection often
performed manually. Automatic data augmentation aims at
automating this process. However, most recent approaches
still rely on some prior information; they start from a small
pool of manually-selected default transformations that are
either used to pretrain the network or forced to be part of
the policy learned by the automatic data augmentation al-
gorithm. In this paper, we propose to directly learn the
augmentation policy without leveraging such prior knowl-
edge. The resulting bilevel optimization problem becomes
more challenging due to the larger search space and the
inherent instability of bilevel optimization algorithms. To
mitigate these issues (i) we follow a successive cold-start
strategy with a Kullback-Leibler regularization, and (ii) we
parameterize magnitudes as continuous distributions. Our
approach leads to competitive results on standard bench-
marks despite a more challenging setting, and generalizes
beyond natural images.1

1. Introduction
Data augmentation, which encourages predictions to be

stable with respect to particular image transformations, has
become an essential component in visual recognition sys-
tems. While the data augmentation process is conceptually
simple, choosing the optimal set of image transformations
for a given task or dataset is challenging. For instance,
designing a good set for ImageNet [4] or even CIFAR-
10/100 [13] has been the result of a long-standing research
effort. Whereas data augmentation strategies that have been
chosen by hand for ImageNet have been used successfully
for many recognition tasks involving natural images, they
may fail to generalize to other domains such as medical
imaging, remote sensing or hyperspectral imaging.

1Project page: https://europe.naverlabs.com/slack

This has motivated automating the design of data aug-
mentation strategies [10,12,14–16,19,27,31]. Those are of-
ten represented as a stochastic policy that randomly draws a
combination of transformations along with their magnitudes
from a large predefined set, each time an image is sampled.
The goal becomes to learn strategies that effectively com-
pose multiple transformations, which is a challenging task
given the large search space of augmentations.

A natural framework for learning the parameters of this
policy is that of bilevel optimization. Intuitively, one looks
for the best possible policy such that a neural network
trained with this policy on a training set (inner problem)
generalizes well on a distinct validation set (outer problem).
Optimizing the resulting formulation is challenging as the
outer problem depends on the solution of the inner problem.
Classical techniques for solving this bilevel problem, such
as unrolled optimization, can become highly unstable as the
network weights become progressively suboptimal for the
current policy during the learning process.

Moreover, augmentations are often non-differentiable
in the parameters of the policy, thus requiring techniques
other than direct differentiation, such as Bayesian optimiza-
tion [15], gradient approximations (e.g. RELAX [7]), or the
score method / REINFORCE [28] algorithm. While these
techniques bypass the differentiability issues, they can suf-
fer from large bias or variance. As a result, learning aug-
mentation policies is a difficult problem whose challenges
are exacerbated by the inherent instability of the optimiza-
tion techniques developed to solve bilevel problems, such
as unrolled optimization [1].

A standard way to improve stability and make the auto-
matic data augmentation problem simpler is to reduce the
search space. This is often achieved by learning the pol-
icy on top of “default” transformations such as Cutout [5],
random cropping and resizing, or color jittering, all known
to be well-suited to natural images which compose stan-
dard benchmarks such as CIFAR or ImageNet, or by dis-
carding transformations known to be harmful such as In-
vert. Fixing some of the transformations and removing oth-
ers mitigate the challenges inherent to learning a compo-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

24306

Figure 1. For different domains of the DomainNet dataset [21] (one per line), we show an image from that domain (left) and that image
transformed using the three most likely (middle) and the three least likely (right) augmentations for that domain, as estimated by SLACK.

sition of transformations. TrivialAugment [19] also shows
that state-of-the-art results can be achieved on these pre-
vious benchmarks simply by directly applying the policy
classically used for initializing auto-augmentation models,
up to minor modifications. Moreover, all methods rely on
carefully chosen ranges that constraint the transformation’s
magnitudes. Despite its effectiveness, manually selecting
default transformations and magnitude ranges restricts the
applicability of such policies to natural images and prevents
generalisation to other domains.

In this paper, our goal is to choose augmentation strate-
gies without relying on default transformations nor on hand-
selected magnitude ranges known to suit common bench-
marks. To achieve this objective, we first introduce a simple
interpretable model for the augmentation policies which al-
lows learning both the frequency by which a given augmen-
tation is selected and the magnitude by which it is applied.
Then, we propose a method for learning these augmenta-
tion policies by solving a bilevel optimization problem. Our
method relies on the REINFORCE technique for computing
the gradient of the policy and on unrolled optimization for
learning the policy, both of which can result in instabilities
and yield high variance estimates.

To address these issues, we introduce an efficient multi-
stage algorithm with a cold-start strategy and a Kullback-
Leibler (KL) regularization that are designed to improve the
stability of the process for learning the data augmentation
policy. More precisely, the algorithm first pre-trains a net-
work with a data augmentation policy uniformly sampling
over all transformations. Then, each stage uses a “cold-
start” strategy by restarting from the pre-trained network
and performs incremental updates of the current policy.

This multi-stage approach with cold start prevents the
network from becoming progressively suboptimal as the
policy is updated using unrolled optimization. The KL reg-
ularization defines a trust region for the policy to compen-
sate for the possibly high variance of gradient estimates ob-
tained using the REINFORCE technique and encourages
exploration during training, preventing collapse to trivial
solutions. This regularization is inspired by proximal point
algorithms in convex optimization [22], which have also
been successful in reinforcement learning tasks [23].

By combining the regularized multi-stage approach with
our interpretable model of the augmentation policies, we
obtained the proposed SLACK method, which stands for
Stable Learning of Augmentations with Cold-start and
Kullback-Leibler regularization. SLACK is an efficient
data augmentation learning method that is able to ad-
dress the challenging bilevel optimization problem of learn-
ing a stochastic data augmentation policy without relying
strongly on prior knowledge. Figure 1 illustrates the trans-
formations found by SLACK to be most important / detri-
mental on a dataset of different domains including non-
natural images.

To summarize, our contribution is threefold. (i) We pro-
pose a simple and interpretable model of the policies which
allows learning both frequency and magnitudes of the aug-
mentations. (ii) We propose a regularized multi-stage strat-
egy to improve the stability of the bilevel optimization algo-
rithm used for solving the data augmentation learning prob-
lem. (iii) We evaluate our method on challenging experi-
mental settings, and show that it finds competitive augmen-
tation strategies on natural images without resorting to prior
information and generalizes to other domains.

24307

2. Related Work

The choice of image transformation (also known as data
augmentation) has become central in the design of computer
vision pipelines. To remove the burden of manual selec-
tion, automatic data augmentation strategies have been pro-
posed [20, 26]. AutoAugment [2], one of the earliest meth-
ods, uses for instance a recurrent neural network for design-
ing the augmentation policy. Because such an approach re-
quires retraining a prediction model at each iteration, it is
prohibitively slow, and more efficient alternatives have been
proposed. They aim at reducing the training cost using, e.g.,
population-based training [12], Bayesian optimization [15],
and more recently, gradient-based approaches based on
bilevel optimization [9,10,14,15,18,27,30], relying on var-
ious gradient estimation techniques such as RELAX [7] or
the Score method [28]. While the former is inherently bi-
ased, the latter is theoretically exact, but has a high variance
when approximated in the context of stochastic optimiza-
tion. Therefore, these approximations may lead to diverging
gradient updates. Our method alleviates this by introducing
a KL regularization that defines a trust-region for the policy.

Automatic augmentation using prior knowledge. Most
previous works learn augmentations using a small network
learned on a subset of the dataset of interest, before re-
training the prediction model on a larger network using the
full (augmented) data. This choice is appealing to recent
gradient-based methods [9, 14] as the search phase for an
augmentation policy is often reduced to minutes. Neverthe-
less, [10, 30] have observed that policies found with such a
reduced setup may be suboptimal compared to approaches
exploiting full datasets for training both the augmentation
policy and the prediction model. This observation was con-
firmed in [3], which shows that a naive grid search could
actually yield state-of-the-art results when directly training
on the full-size network and the full data. These results
are however obtained at the expense of using strong prior
knowledge: augmentation policies are applied on top of de-
fault transformations that are manually and independently
chosen for each benchmark. Lately, [19] has shown that
with a few additional careful choices regarding the augmen-
tation policies, applying a single random transformation on
top of the default ones could lead to state-of-the-art results.

To avoid relying on default augmentations, DeepAA [31]
has recently proposed a greedy approach that is able to learn
these transformations. Yet, learning is performed after a
“pre-training” phase leveraging the usual default transfor-
mations. Moreover, while such a greedy approach sim-
plifies the search procedure and reduces its stochasticity,
the resulting computational cost is high. Instead, our ap-
proach improves stability and allows directly learning the
joint probability of sampling multiple transformations, re-
ducing the search time twofold compared to DeepAA.

Figure 2. Overview of our proposed SLACK method. We learn
a data augmentation policy parameterized by ϕ using bilevel opti-
mization. The inner loop finds the optimal network parameter θ∗

on images from Dtrain. The outer loop trains on a disjoint set of im-
ages Dval using this network and finds the optimal transformation
parameters ϕ. The method is enhanced with i) a cold-start strategy
that structures the learning into rounds which share ϕ but restart
the network from the pretrained one, and ii) a KL regularization.

3. Method

Our method, SLACK, defines an augmentation policy,
which is a probabilistic model for generating data augmen-
tations. The goal is to learn the parameters of this aug-
mentation policy so as to improve the performance of the
trained classifier on a held-out dataset. We first describe the
augmentation policy (Sec. 3.1) and then formalize the prob-
lem of learning data augmentations with bilevel optimiza-
tion (Sec. 3.2). We then describe our approach for solving
such a bilevel optimization problem, which aims at stabiliz-
ing the optimization (Sec. 3.3).

3.1. Stochastic data augmentations policy

An augmentation function τ transforms an image x into
another augmented image τ(x) of the same dimensions.
We consider composite augmentations obtained by com-
bining simpler augmentations selected from a finite set
S = {s1, . . . , sN} of N candidate elementary transforma-
tions, such as rotations, translations, shearing, etc. Each
elementary transformation depends on a magnitude param-
eter m that controls the strength of the transformations, for
instance, the angle by which an image is rotated. Magni-
tudes are normalized to be in the unit interval [0, 1].

Augmentation policy. We define the augmentation policy
as a probabilistic model pϕ that generates composite aug-
mentations given some parameter ϕ to be learned. The
model generates an augmentation in three steps: (1) it sam-
ples K elementary transformations t1, . . . , tK from S ac-
cording to a categorical distribution pπ of parameter π, (2)

24308

it samples values for the magnitudes m1, . . . ,mK for each
of the selected elementary transformations tk according to
a smoothed uniform distribution pµ of parameter µ and (3)
it composes the K elementary transformations to obtain the
composite augmentation, with each tk applied using its cor-
responding magnitude mk. Therefore, the augmentation
policy pϕ(τ) takes the form

pϕ(τ) =

K∏
i=1

pπ(ti)pµ(mi|ti), (1)

where the parameters ϕ = (π, µ) are learned jointly. Next,
we describe the sampling of the transformations and of their
magnitudes.
Sampling transformations. We sample elementary trans-
formations tk with replacement from a categorical distribu-
tion Catπk

of dimension N parameterized by a logit vector
πk:=(πk,n)1≤n≤N . The probability pπ(t1, . . . , tK) of sam-
pling the K transformations is given by:

pπ(t1, . . . , tK) = ΠK
k=1Catπk

(tk), (2)

where we collect all logits to form a parameter matrix π of
size K ×N . These parameters are learned.
Sampling magnitudes. The magnitudes of each elemen-
tary transformation si in S are sampled from a smoothed
uniform distribution between [0, µi] whose upper-bound µi

is learned. More precisely, the distribution’s density is de-
fined as

pµi
(mi) =

1

µ i

∫ µi

0

N (mi, σ)(u)du,

where N (mi, σ) is the Gaussian distribution of mean mi

and deviation σ. The density pµi
(mi) approximates the uni-

form distribution 1
µ i
1[0,µi] as the deviation σ approaches 0.

In practice, we set σ = 0.1 as we found it to achieve a good
trade-off between smoothing and approximation.
Why a uniform distribution? We ran some ablations on
previous methods (see supplementary) which suggest that a
uniform sampling works on par with more elaborate sam-
pling strategies, and that the magnitude range has more im-
pact on the results.

3.2. Bilevel formulation for policy search

We consider a prediction task, such as predicting the
class y of some natural image x using a model fθ(x) with
parameter θ. We are interested in finding the best policy
parameter ϕ so that the prediction model fθ, when trained
using such policy on a training set D of input/output pairs
(x, y), generalizes well on the test set Dtest. The problem
naturally decomposes in two phases. During the search
phase, the optimal augmentation policy pϕ is learned on D.

During the evaluation phase, the model is re-trained on D
using pϕ and is then evaluated on Dtest. The evaluation
phase is performed using standard optimization methods.
However, the search phase requires solving a complex op-
timization problem that we describe next.

Search phase as a bilevel problem. The search phase nat-
urally writes as a bilevel problem involving two interdepen-
dent losses: a lower-level loss Ltrain(θ, ϕ) for learning an
optimal model parameter θ⋆(ϕ) obtained using the augmen-
tation policy pϕ and an upper-level loss F(ϕ) for learning
the policy parameter ϕ by evaluating the optimal model with
parameter θ⋆(ϕ). Each of these objectives is evaluated on
two separate splits of the available data D: a training split
Dtrain for the lower-level loss and a validation split Dval for
the upper-level loss. Below, we describe both losses.

Lower-level loss. We first introduce the training loss
ℓtrain(θ, τ) when only a fixed augmentation τ is used:

ℓtrain(θ, τ) := E(x,y)∼Dtrain [ℓ(y, fθ(τ(x)))] ,

where (x, y) is an (image,label) pair drawn from Dtrain and ℓ
is a pointwise prediction loss (e.g. cross-entropy). We then
define the training loss Ltrain(θ, ϕ) for an augmentation pol-
icy pϕ by taking the expectation of ℓtrain(θ, τ) over augmen-
tations τ sampled according to the policy pϕ:

Ltrain(θ, ϕ) := Eτ∼pϕ
[ℓtrain(θ, τ)] .

Hence, for a given policy pϕ, the goal is to learn the optimal
model parameter θ⋆(ϕ) by minimizing Ltrain(θ, ϕ) over θ.

Upper-level loss. We first denote by Lval(θ) the validation
loss for a given model of parameter θ:

Lval(θ) := E(x,y)∼Dval [ℓ(y, fθ(x))] .

The validation loss Lval(θ) is computed over the validation
set Dval without applying any augmentation and thus pro-
vides a proxy for the performance on the test dataset. We
then define the upper-level loss to be the validation loss of
an optimal model θ⋆(ϕ) learned using a policy pϕ:

F(ϕ) := Lval(θ
⋆(ϕ)). (3)

While optimizing the lower-level loss is relatively stan-
dard, minimizing the upper-level loss F is more challeng-
ing due to the complex dependence of the optimal model
parameter θ⋆(ϕ) on the policy. Next, we describe our pro-
posed algorithm for solving the bilevel problem.

3.3. SLACK algorithm

We propose Algorithm 1 for learning the optimal policy
during the search phase. SLACK first pre-trains the pre-
diction model using the objective Ltrain(θ, ϕuniform) for an

24309

initial policy parametrized by ϕuniform which samples uni-
formly among all elementary transformations. It then per-
forms nrounds rounds to update the parameters θ and ϕ jointly
using a bilevel optimization algorithm. This approach is
reminiscent of the one of AutoAugment (AA) [3] that fully
re-trains the network for each policy update. Yet, it is sev-
eral orders of magnitude faster than AA, as it benefits from
pre-training and from our bilevel optimization.

SLACK relies on two strategies to ensure the stability of
the parameter updates during each round: a cold-start strat-
egy for the prediction model and an anchoring strategy for
the policy. The cold-start initializes the prediction model
at the beginning of each round using a pre-trained model
θ0. Anchoring is achieved by encouraging the current pol-
icy to remain close to some anchor policy pϕ̃. We set ϕ̃
to the current policy parameter ϕ at the beginning of each
round. During the first nretrain steps of each round, the algo-
rithm only updates the model parameter using a stochastic
estimate ĝθ of ∇θLtrain(θ, ϕ) while maintaining the policy
fixed. Then for the last ntotal − nretrain steps, the algorithm
alternates between model updates and policy updates. The
policy updates aim to minimize the sum of the upper-level
objective F and an anchoring d(pϕ, pϕ̃) := KL(pπ, pπ̃) en-
couraging the policy pϕ to remain close to the anchor policy
pϕ̃. These updates are obtained using a stochastic estimate
Ĝϕ along with the exact gradient of the KL regularization
which admits a closed-form expression. Next we explain
how we estimate the gradients ĝθ and Ĝϕ and discuss the
effect of cold-start and KL-regularization.

Algorithm 1 SLACK
1: Initialize policy parameter ϕ← ϕuniform.
2: Pre-training: θ0 ← optimize (Ltrain(θ, ϕ)).
3: for i ∈ {1, ..., nrounds} do
4: Cold-start: θ ← θ0.
5: Update anchor policy: ϕ̃← ϕ.
6: for j ∈ {1, ..., ntotal} do
7: Compute stochastic gradient ĝθ ≈ ∇θLtrain(θ, ϕ)
8: Update θ: θ ← θ − ηĝθ .
9: if j > nretrain then

10: Compute stochastic gradient Ĝϕ ≈ ∇ϕF(ϕ)
11: Update ϕ: ϕ← ϕ− α(Ĝϕ + λ∇ϕd(pϕ, pϕ̃)).
12: end if
13: end for
14: end for

Gradient estimation. Algorithm 1 requires estimating the
gradient of F(ϕ), which is challenging given the complex
dependence of the upper-level loss on the policy pϕ through
the optimal model parameter θ⋆(ϕ) learned using such a
policy. In line with previous works [9, 14, 18, 27], we ap-
proximate the optimal model parameter θ∗(ϕ) with a sim-
pler function θ̂(ϕ) that is easier to compute:

θ̂(ϕ) : = θ − η∇θLtrain(θ, ϕ). (4)

Eq. (4) corresponds to one gradient step to optimize the
lower-level loss starting from the current parameter θ and
ϕ and using step-size η > 0. By keeping track of the de-
pendence in ϕ and exploiting the fact that the augmentation
policy pϕ has a score ∇ϕ log pϕ(τ) that can be computed
explicitly using Eq. (1), we can use the REINFORCE/Score
method [6] to derive a closed-form expression for ∇ϕθ̂(ϕ)
which will serve for approximating the gradient of F :

∇ϕθ̂(ϕ) = −ηEτ∼pϕ

[
∇θℓtrain(θ, τ)∇ϕ log pϕ(τ)

⊤] .
Then, we approximate the upper-level loss F(ϕ) with a sim-
pler function F̂(ϕ):=Lval(θ̂(ϕ)) and the gradient ∇ϕF(ϕ)

with ∇ϕF̂(ϕ) which is obtained using the chain rule:

∇ϕF(ϕ) ≈ ∇ϕF̂(ϕ) = ∇θLval(θ̂(ϕ))
⊤∇ϕθ̂(ϕ). (5)

The above expression requires only first-order derivatives
and matrix-vector products, which is amenable to efficient
implementation using automatic differentiation softwares.
Stochastic gradient estimates. In practice, we replace all
expectations by estimates on a batch of data and sampled
augmentations. More precisely, to compute the approxi-
mation ĝθ to ∇θLtrain(θ, ϕ), we sample Baug augmentations
from pϕ and then apply each of them to a batch of training
data Btrain from Dtrain. Using the same batch of data and
augmentation, we approximate θ̂(ϕ) and ∇ϕθ̂(ϕ) appear-
ing in Eq. (5). Finally, we use a batch Bval of data from
Dval to estimate ∇θLval(θ̂(ϕ)) and compute Ĝϕ, which is a
stochastic estimate of ∇ϕF̂(ϕ) in Eq. (5).
Cold-start. The cold-start strategy allows to re-train the
model at each round with the current augmentation policy
starting from the pre-trained model. This approach is closer
to the original bilevel formulation which implies finding an
optimal prediction model for each policy. Initializing with
a pre-trained model yields computational gain as fewer it-
erations are needed to optimize the model. We could in-
stead use a warm-start strategy which initializes the model
at each round with the learned model at the previous round.
Yet we experimentally observe that such approach progres-
sively leads to overfitting and degrades the quality of the
learned policies (see supplementary).
Anchoring using KL regularization. We experimentally
found that adding an anchoring d(pϕ, pϕ̃) := KL(pπ, pπ̃)
with strength parameter λ when updating the policy pre-
vents the algorithm from collapsing towards trivial policies.
The anchoring affects only the categorical distribution pπ .
For the magnitudes pµ, we did not use anchoring as it is
ill-defined for a uniform distribution. Instead, we simply
used smaller step-sizes. Our approach takes inspiration
from Proximal Policy Optimization [23] used in the context
of reinforcement learning which is known to improve
policy search.

24310

4. Experiments
In this section, we first briefly describe our experimental

setup (Sec 4.1). Then we evaluate our approach on several
standard benchmarks composed of natural images (Sec 4.2)
as well as on a benchmark with other domains (Sec 4.3).
We finally report some ablation studies (Sec 4.4).

4.1. Experimental setup

Benchmarks. We first evaluate our model on three stan-
dard benchmarks, CIFAR10 [13], CIFAR100 [13] and
ImageNet-100 [25], all composed of natural images. To
study how well our method generalizes beyond natural im-
ages, we also evaluate on the DomainNet dataset [21],
which contains 345 classes for 6 different domains. To en-
sure our protocol uses a similar number of training images
for each domain, we use a reduced set of 50,000 training im-
ages for the two largest domains (real, quickdraw) and leave
the remaining images for testing. For the other domains, we
isolate 20% of the data for testing.
Architectures. CIFAR10/100 are evaluated with two ar-
chitectures that are standard for automatic data augmenta-
tion: WideResNet-40x2 and WideResNet-28x10 [29]. Un-
like previous works whose search phase is only conduced
with the smaller WideResNet-40x2, we search and evalu-
ate with the same architecture, as we found it to be better
(see Sec. 4.4). ImageNet-100 and DomainNet are evalu-
ated with a ResNet-18 [11] architecture.
Transformation space. Our data augmentation search
space is composed of the standard pool of 15 transforma-
tions: Identity, ShearX, ShearY, TranslateX, TranslateY, Ro-
tate, AutoContrast, Equalize, Invert, Solarize, Posterize,
Contrast, Brightness, Sharpness, Color. We add to this
pool the transformations that previous methods usually ap-
ply by default: Cutout and RandomCrop for CIFAR, Ran-
domResizeCrop for ImageNet, Grayscale for DomainNet.
Following standard practice, when RandomResizeCrop is
sampled, it is always applied first. We learn the range of
its scale parameter. We do not add ColorJitter that is also
applied by default in prior work for ImageNet, as it is al-
ready a mix of Brightness, Contrast and Color. However
we add Hue, which is one component of ColorJitter and
never applied by default. Following prior work, the magni-
tudes are mapped to [0,1]. After mapping, µ is initialized
at 0.75 to favour exploration (see details in supplementary).
We also uniformly sample magnitudes for Cutout and Ran-
domCrop, whereas their value is hand-picked in prior work.
Since the datasets are horizontally symmetric, we follow
common practice and apply flip by default.
Policy search. We apply a train/val split of 0.5/0.5, mean-
ing that half of the data is used to train the model parameters
while the other half is used to learn the augmentation pol-
icy. Pre-training is done in the same setting as the evaluation

(see next paragraph), except that we train only with the train
data in the train/val split of the search phase. We use SGD
with momentum for the optimization of the validation and
training losses. For the latter, we use the same weight de-
cay as for the final policy evaluation. We sample 8 different
augmentations for computing the expectation that is needed
for the stochastic gradient estimate, as detailed in Sec. 3.3.
Policy evaluation. We evaluate our models following the
framework of TrivialAugment [19]. The corresponding hy-
perparameters can be found in the supplementary. We eval-
uate each policy with 4 independent runs, meaning that our
results are averaged over a total of 4 × 4 = 16 evalua-
tions. Our Uniform policy (corresponding to SLACK’s ini-
tialization) and our reported results on TrivialAugment are
evaluated with 8 independent runs. We also report a confi-
dence interval which contains the true mean with probabil-
ity p = 95%, under the assumption of normally distributed
accuracies.

4.2. Comparison with the state of the art

We compare our method with a Uniform augmenta-
tion policy as well as many previous approaches for data
augmentation, including AutoAugment (AA) [2], Fast Au-
toAugment (FastAA) [15], Differentiable Automatic Data
Augmentation (DADA) [14], RandAugment (RA) [3],
Teach Augment [24], UniformAugment [20], TrivialAug-
ment (TA) [19], and Deep AutoAugment (DeepAA) [31].

For each method, we indicate the total number of com-
posed transformations, and the number of hard-coded trans-
formations among those (Tables 1 and 2). For SLACK, we
evaluate the policies obtained from 4 independent search
runs (each with 4 different train/val splits) to assess the ro-
bustness of our approach. We follow the same process when
reproducing DeepAA on CIFAR10/100. Note that all pre-
vious methods use a single run for search, before evaluating
the policy with one or multiple runs. We report 95% confi-
dence intervals for those evaluating with multiple runs.

The supplementary provides qualitative results showing
the evolution of the probability distributions over the trans-
formations and the final estimated policies for all datasets.
CIFAR. In Table 1, we observe that, despite not hard-
coding Cutout and RandomCrop in our policy, our method
is competitive on both CIFAR10 and CIFAR100.

We found that, in general, Cutout and Rotate are selected
with a high probability, while the Invert transformation is
systematically discarded (see supplementary). This is con-
sistent with the choices made in practice by prior work of
adding/removing these transformations manually.

We observe a mismatch between DeepAA’s reported re-
sults [31], and those we obtain when evaluating their ap-
proach on multiple search runs, using the author’s code and
following their recommendations. This is likely due to the
stochasticity of the search procedure.

24311

Augmentations CIFAR10 CIFAR100

Total Hard-coded WRN-40-2 WRN-28-10 WRN-40-2 WRN-28-10

AA [2] 4 2 96.3 97.4 79.3 82.9
FastAA [15] 4 2 96.4 97.3 79.4 82.7
DADA [14] 4 2 96.4 97.3 79.1 82.5
RA [3] 4 2 - 97.3 - 83.3
TeachA [24] 4 2 - 97.5 - 83.2
UniformAugment [17] 4 2 96.25 97.33 79.01 82.82
TA (Wide) [19] 3 2 96.32 ± .05 97.46 ± .06 79.86 ± .19 84.33 ± .17

Uniform policy 3 0 96.12 ± .08 97.26 ± .07 78.79 ± .25 82.82 ± .24
DeepAA [31] **6∗∗ *0∗ - 97.56 ± .14 - 84.02 ± .18
DeepAA (reproduced)† **6∗∗ *0∗ 96.25 ± .11 97.27 ± .11 79.26 ± .35 83.38 ± .33
SLACK (Ours) 3 0 96.29 ± .08 97.46 ± .06 79.87 ± .11 84.08 ± .16

Table 1. Test accuracies on CIFAR10 and CIFAR100. For SLACK and DeepAA (reproduced) we conduct 4 independent searches, and
evaluate each policy with 4 evaluation runs, meaning that we report averages over 16 evaluations. TA and DeepAA are also evaluated with
multiple evaluation runs. Results for the remaining methods are reported from the corresponding papers and based on a single run.

*: DeepAA uses hard-coded transformations for pre-training. **: DeepAA learns random flipping unlike other baselines. †We evaluate the policies found
from 4 independent search runs as we do for SLACK, using the code from the authors and following their recommendations.

Augmentations ImageNet-100

Total Hard-coded ResNet18

TA (RA) [19]† 5 4 85.87 ± .30
TA (Wide) [19]† 5 4 86.39 ± .18

Uniform policy 3 0 85.78 ± .32
SLACK 3 0 86.06 ± .11

Table 2. Test accuracies on ImageNet-100.

ImageNet-100. Results for ImageNet-100 are reported in
Table 2. We compare SLACK to our Uniform policy and
to TrivialAugment (RA) and (Wide) variants, the latter us-
ing larger magnitude ranges for its random transformation.
SLACK’s results lie in between both variants and improve
over our Uniform policy.

Interestingly, for ImageNet-100, we found that Ran-
domResizeCrop is not favoured during the search phase
(see supplementary), suggesting that it is not critical for
ImageNet-100. Instead the performance gap between TA
(Wide) and TA (RA) suggest that harder transformations are
key to a better performance for this dataset.

4.3. Beyond natural images

For the DomainNet dataset, we compare SLACK to a
Uniform policy, to the augmentations used by DomainBed
[8] for domain generalization, and to the TrivialAugment
(RA) and (Wide) methods with their ImageNet and CIFAR
default settings. Results can be found in Table 3.

DomainBed uses the same default transformations as TA
ImageNet together with Grayscale, but with smaller magni-
tudes and unlike TA, does not add a random transformation.
Yet it strongly overfits and performs much lower than TA.

This suggests that augmentations well suited for domain
generalization do not perform well on the individual tasks.
TA (Wide) ImageNet consistently outperforms all other TA
flavors. This further justifies the need to learn the magnitude
range and to eliminate any manual range selection process.

SLACK is a close second, yet it learns the policy end-
to-end. The learned policies are illustrated as pie charts in
Fig. 3. The slices represent the probability π over the dif-
ferent transformations while their radius represent the cor-
responding magnitudes. They differ from a domain to an-
other, suggesting that the gain compared to the initialization
(i.e. Uniform policy) results from SLACK’s ability to learn
and adapt to each domain.

4.4. Ablation study

In this section, we evaluate our contributions and main
design choices: the network architecture used for search,
the KL regularization, and the benefits of learning π and µ.
More ablations can be found in the supplementary. Note
that hyperparameters are adjusted to each baseline included
in the comparison, to make them as competitive as possible.
Network architecture for search. In prior works, the
search phase (when there is one) is conducted on the
smaller WideResNet-40x2 architecture for CIFAR10 and
CIFAR100, and the learned policy is evaluated for both
WideResNet-40x2 and WideResNet-28x10. Table 4 shows
that for SLACK, searching directly with WideResNet-
28x10 gives the best results for that architecture.
KL regularization. We compare SLACK with a flavor that
does not apply KL-regularization. For the latter, we reduce
the outer learning rate so that the augmentation policies with
and without regularization evolve at similar speeds. Results
in Table 5 show that our regularization is beneficial.

24312

Augmentations Real-50k Quickdraw-50k Inforgraph Sketch Painting Clipart Average

Total Hard-coded

DomainBed† 5 5 62.54 ± .15 66.54 ± .91 26.76 ± .36 59.54 ± .37 58.31 ± .25 66.23 ± .10 57.23 ± .18
TA (RA) ImageNet† 5 4 70.85 ± .13 67.85 ± .07 35.24 ± .19 65.63 ± .11 64.75 ± .18 70.29 ± .18 62.43 ± .05
TA (Wide) ImageNet† 5 4 71.56 ± .07 68.60 ± .05 35.44 ± .33 66.21 ± .16 65.15 ± .20 71.19 ± .19 63.03 ± .07
TA (RA) CIFAR† 3 2 70.28 ± .08 68.35 ± .07 33.85 ± .21 64.13 ± .12 64.73 ± .17 70.33 ± .21 61.94 ± .05
TA (Wide) CIFAR† 3 2 71.12 ± .10 69.29 ± .05 34.21 ± .29 65.52 ± .25 64.81 ± .14 71.01 ± .21 62.66 ± .07

Uniform policy 3 0 70.37 ± .08 68.27 ± .06 34.11 ± .21 65.22 ± .17 63.97 ± .24 72.26 ± .14 62.37 ± .06
SLACK (ours) 3 0 71.00 ± .13 68.14 ± .11 34.78 ± .18 65.41 ± .16 64.83 ± .12 72.65 ± .20 62.80 ± .06

Table 3. Test accuracies on DomainNet.

(a) Painting (b) Sketch (c) Clipart

Figure 3. Policies found on DomainNet for the best search split. Gray circle: initial magnitude upper-bounds. Radius of each pie: learned
upper-bounds. Size of each pie: probability of each transformation, averaged over the three composite distributions. Transformations
which are parameter-free, AutoContrast, Equalize, Grayscale, and Invert, are displayed with maximal magnitude upper-bound.

Search architecture CIFAR10 CIFAR100

WRN-40-2 97.43 ± .04 83.94 ± .20
WRN-28-10 (ours) 97.46 ± .06 84.08 ± .16

Table 4. CIFAR10/100 accuracy evaluated with WRN-28-10: im-
pact of using a smaller architecture for the search phase.

CIFAR10 CIFAR100

SLACK variant WRN-40-2 WRN-28-10 WRN-40-2 WRN-28-10

without KL 96.27 ± .05 97.06 ± .11 79.61 ± .13 83.79 ± .19
with KL (ours) 96.29 ± .08 97.46 ± .06 79.87 ± .11 84.08 ± .16

Table 5. CIFAR10/100 accuracy with/without KL regularization.

Joint learning of π and µ. Lastly, we study how beneficial
jointly learning our augmentation parameters is compared
to the initial Uniform policy and to a setting where only π
or µ is learned. Results can be found in Table 6.

5. Conclusion

In this paper, we address the task of automatic data aug-
mentation. Considering the more challenging bilevel op-
timization problem that arises when the search space is not

CIFAR10 CIFAR100

SLACK variant WRN-40-2 WRN-28-10 WRN-40-2 WRN-28-10

Uniform policy 96.22 ± .10 97.38 ± .05 79.07 ± .24 83.26 ± .17
µ only 96.20 ± .08 97.42 ± .05 79.22 ± .17 83.57 ± .18
π only 96.22 ± .09 97.35 ± .04 79.36 ± .11 83.45 ± .15
π and µ (ours) 96.29 ± .08 97.46 ± .06 79.87 ± .11 84.08 ± .16

Table 6. CIFAR10/100 accuracy when only learning part of the
policy parameters

reduced with default transformations, our proposed SLACK
method tackles the resulting stability issues thanks to a
multi-stage approach based on cold-start, coupled with a
KL-regularization. Combined, they allow to reduce the
variance of the gradient estimate and to better control the
optimization process. We have experimentally observed
that our method performs on par with recent approaches
leveraging prior knowledge. It has also proved versa-
tile enough to select domain-specific transformations when
confronted to non-natural images.

Acknowledgments. This work was supported by ANR 3IA
MIAI@Grenoble Alpes (ANR-19-P3IA-0003) and per-
formed using HPC resources from GENCI–IDRIS (Grant
2022-AD011013343).

24313

References
[1] Michael Arbel and Julien Mairal. Non-convex bilevel

games with critical point selection maps. preprint
arXiv:2207.04888, 2022. 1

[2] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-
van, and Quoc V Le. Autoaugment: Learning augmentation
policies from data. arXiv preprint arXiv:1805.09501, 2018.
3, 6, 7

[3] Ekin Dogus Cubuk, Barret Zoph, Jon Shlens, and Quoc Le.
RandAugment: Practical automated data augmentation with
a reduced search space. In Proc. NeurIPS, 2020. 3, 5, 6, 7

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. ImageNet: A large-scale hierarchical image
database. In Proc. CVPR, 2009. 1

[5] Terrance DeVries and Graham W Taylor. Improved regular-
ization of convolutional neural networks with cutout. arXiv
preprint arXiv:1708.04552, 2017. 1

[6] Michael C Fu. Gradient estimation. Handbooks in opera-
tions research and management science, 13:575–616, 2006.
5

[7] Will Grathwohl, Dami Choi, Yuhuai Wu, Geoffrey Roeder,
and David Duvenaud. Backpropagation through the void:
Optimizing control variates for black-box gradient estima-
tion. In Proc. ICLR, 2018. 1, 3

[8] Ishaan Gulrajani and David Lopez-Paz. In search of lost do-
main generalization. In Proc. ICLR, 2021. 7

[9] Ryuichiro Hataya, Jan Zdenek, Kazuki Yoshizoe, and Hideki
Nakayama. Faster AutoAugment: Learning augmentation
strategies using backpropagation. In Proc. ECCV, 2020. 3, 5

[10] Ryuichiro Hataya, Jan Zdenek, Kazuki Yoshizoe, and Hideki
Nakayama. Meta approach to data augmentation optimiza-
tion. In Proc. WACV, 2022. 1, 3

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proc.
CVPR, 2016. 6

[12] Daniel Ho, Eric Liang, Xi Chen, Ion Stoica, and Pieter
Abbeel. Population based augmentation: Efficient learn-
ing of augmentation policy schedules. In Proc. ICML, pages
2731–2741, 2019. 1, 3

[13] Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images. 2009. 1, 6

[14] Yonggang Li, Guosheng Hu, Yongtao Wang, Timothy M.
Hospedales, Neil Martin Robertson, and Yongxin Yang.
DADA: differentiable automatic data augmentation. In Proc.
ECCV, 2020. 1, 3, 5, 6, 7

[15] Sungbin Lim, Ildoo Kim, Taesup Kim, Chiheon Kim, and
Sungwoong Kim. Fast AutoAugment. In Proc. NeurIPS,
2019. 1, 3, 6, 7

[16] C. Lin, M. Guo, C. Li, X. Yuan, W. Wu, J. Yan, D. Lin,
and W. Ouyang. Online hyper-parameter learning for auto-
augmentation strategy. In Proc. ICCV, 2019. 1

[17] Tom Ching LingChen, Ava Khonsari, Amirreza Lashkari,
Mina Rafi Nazari, Jaspreet Singh Sambee, and Mario A
Nascimento. Uniformaugment: A search-free prob-
abilistic data augmentation approach. arXiv preprint
arXiv:2003.14348, 2020. 7

[18] Aoming Liu, Zehao Huang, Zhiwu Huang, and Naiyan
Wang. Direct differentiable augmentation search. In Proc.
ICCV, 2021. 3, 5

[19] Samuel G. Müller and Frank Hutter. TrivialAugment:
tuning-free yet state-of-the-art data augmentation. In Proc.
ICCV, 2021. 1, 2, 3, 6, 7

[20] Mattis Paulin, Jérôme Revaud, Zaid Harchaoui, Florent Per-
ronnin, and Cordelia Schmid. Transformation pursuit for im-
age classification. In Proc. CVPR, 2014. 3, 6

[21] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate
Saenko, and Bo Wang. Moment matching for multi-source
domain adaptation. In Proc. ICCV, pages 1406–1415, 2019.
2, 6

[22] R Tyrrell Rockafellar. Monotone operators and the proximal
point algorithm. SIAM journal on control and optimization,
14(5):877–898, 1976. 2

[23] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization algo-
rithms. arXiv preprint arXiv:1707.06347, 2017. 2, 5

[24] Teppei Suzuki. Teachaugment: Data augmentation optimiza-
tion using teacher knowledge. In Proc. CVPR, 2022. 6, 7

[25] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Con-
trastive multiview coding. arXiv preprint arXiv:1906.05849,
2019. 6

[26] Riccardo Volpi and Vittorio Murino. Addressing model vul-
nerability to distributional shifts over image transformation
sets. In Proc. ICCV, pages 7980–7989, 2019. 3

[27] Xiaoxing Wang, Xiangxiang Chu, Junchi Yan, and Xiaokang
Yang. DAAS: Differentiable architecture and augmentation
policy search. arXiv preprint arXiv:2109.15273, 2021. 1, 3,
5

[28] Ronald J Williams. Simple statistical gradient-following al-
gorithms for connectionist reinforcement learning. Machine
learning, 8(3):229–256, 1992. 1, 3

[29] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-
works. In Edwin R. Hancock Richard C. Wilson and William
A. P. Smith, editors, Proc. BMVC, pages 87.1–87.12. BMVA
Press, September 2016. 6

[30] Xinyu Zhang, Qiang Wang, Jian Zhang, and Zhao Zhong.
Adversarial AutoAugment. In Proc. ICLR, 2020. 3

[31] Yu Zheng, Zhi Zhang, Shen Yan, and Mi Zhang. Deep Au-
toAugmentation. In Proc. ICLR, 2022. 1, 3, 6, 7

24314

