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Abstract

Burst image processing is becoming increasingly popu-
lar in recent years. However, it is a challenging task since
individual burst images undergo multiple degradations and
often have mutual misalignments resulting in ghosting and
zipper artifacts. Existing burst restoration methods usu-
ally do not consider the mutual correlation and non-local
contextual information among burst frames, which tends to
limit these approaches in challenging cases. Another key
challenge lies in the robust up-sampling of burst frames.
The existing up-sampling methods cannot effectively uti-
lize the advantages of single-stage and progressive up-
sampling strategies with conventional and/or recent up-
samplers at the same time. To address these challenges,
we propose a novel Gated Multi-Resolution Transfer Net-
work (GMTNet) to reconstruct a spatially precise high-
quality image from a burst of low-quality raw images. GMT-
Net consists of three modules optimized for burst process-
ing tasks: Multi-scale Burst Feature Alignment (MBFA)
for feature denoising and alignment, Transposed-Attention
Feature Merging (TAFM) for multi-frame feature aggrega-
tion, and Resolution Transfer Feature Up-sampler (RTFU)
to up-scale merged features and construct a high-quality
output image. Detailed experimental analysis on five
datasets validate our approach and sets a state-of-the-art
for burst super-resolution, burst denoising, and low-light
burst enhancement. Our codes and models are available at
https://github.com/nanmehta/GMTNet.

1. Introduction

With the soaring popularity of smartphones in day-to-
day life, the demand for capturing high-quality images is
rapidly increasing. However, the camera in smartphone has
several limitations due to the constraints placed on it in or-
der to be integrated into smartphone’s thin profile. The most
prominent hardware limitations are the small camera sensor
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Figure 1. Proposed GMTNet processes RAW burst LR frames and
gives a high-quality image through three key stages: (1) Multi-
scale Burst Feature Alignment (MBFA), (2) Transposed-Attention
Feature Merging (TAFM), and (3) Resolution Transfer Feature
Up-sampler (RTFU).

size and the associated lens optics that reduce their spatial
resolution and dynamic range [14], impeding them in re-
constructing DSLR-alike images. To deal with these inher-
ent physical limitations of mobile photography, one emerg-
ing solution is to leverage multi-frame (burst) processing
instead of single-frame processing. Burst processing tech-
niques primarily focus on extracting high-frequency details
by merging non-redundant data from various shifted images
to produce a high-quality image.

Three critical factors involved in burst processing are
feature alignment, fusion, and subsequent reconstruction of
the obtained frames. Generally, any burst processing ap-
proach is limited by the accuracy of alignment process on
account of the camera and scene motion of dynamically
moving objects. Therefore, it is crucial to design a mod-
ule for facilitating accurate alignment, as the subsequent
fusion and reconstruction modules must be robust to mis-
alignment for generating an artifact-free image. We fur-
ther note that the alignment and fusion modules in exist-
ing burst processing approaches [3, 17] do not consider the
non-local dependencies and mutual correlation among the
frames which hinders the flexible inter-frame information
exchange. Moreover, the existing burst up-sampling ap-
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proaches [2, 17] do not take into account the merits of re-
peatedly transferring the information across several resolu-
tions. To address these issues, we present a novel burst pro-
cessing framework named Gated Multi-Resolution Transfer
network (GMTNet) as illustrated in Figure 1.

In contrast to the previous works [2, 3] which adopt
bulky pre-trained modules for alignment, we propose an
implicit Multi-scale Burst Feature Alignment (MBFA) to
reduce the inter-frame misalignment. Overall, MBFA mod-
ule implicitly learns feature alignment at multiple scales
through the proposed Attention-Guided Deformable Align-
ment (AGDA) module and obtains an enriched feature rep-
resentation via Aligned Feature Enrichment (AFE) mod-
ule. The proposed AFE module is composed of a back-
projection mechanism and capable of extracting long-range
pixel interactions that ease the feature alignment in complex
motions, where simply aligning the frames does not suffice.
Additionally, unlike the recent state-of-the-art (SoTA) algo-
rithm, BIPNet [17] that utilizes a computationally intensive
pseudo burst mechanism on the aligned burst for inter-frame
communication, we propose a simple Transposed-Attention
based Feature Merging (TAFM) module that leverages local
and non-local correlations to allow an extensive interaction
with the reference frame. Finally, our Resolution Transfer
Feature Up-sampler (RTFU) combines the complementary
features of both single-stage and progressive up-sampling
strategies through deployed conventional and recent feature
up-samplers. Such a design enables strong feature embed-
ding of LR and HR images that creates a solid foundation
for up-sampling in burst SR tasks. In this work, we vali-
date our GMTNet for popular burst processing tasks such as
super-resolution, denoising and low-light image enhance-
ment. Overall, the following are our key contributions.

1. A Multi-scale Burst Feature Alignment (MBFA) is
proposed which uses both local and non-local features
for alignment at multiple scales, resolving the spatial
misalignment within burst images (§3.1).

2. A Transposed-Attention Feature Merging (TAFM) is
proposed to aggregate the features of the aligned and
reference frames (§3.2).

3. A Resolution Transfer Feature Up-sampler (RTFU) is
proposed to upscale the merged features. The proposed
RTFU integrates the complementary features extracted
by single-stage and progressive up-sampling strategies
using the conventional and recent up-samplers (§3.3).

Our three-stage design achieves SoTA results on both syn-
thetic as well as real raw datasets for burst super-resolution,
denoising and low-light enhancement.

2. Related Work

Multi-Frame Super-Resolution. Compared to the
single-image super-resolution (SISR), multi-frame super-

resolution (MFSR) encounters new challenges while
estimating the offsets among different images caused
by camera movement and moving objects. Tsai and
Huang [42] were the first to put forward a computationally
cheap, frequency domain-based solution for the MFSR
problem. Due to significant visual artifacts in frequency
domain processing, spatial domain algorithms gained
popularity [18, 20]. Following it, Irani and Peleg [23]
and Peleg et al. [37] proposed an iterative back-projection
based approach, and [1] utilized maximum a posteriori
(MAP) model to obtain better super-resolved results. But
all the above-mentioned approaches were based upon the
assumption that motion between input frames, as well as
the image formation model can be well estimated. Subse-
quent works addressed this issue with the joint estimation
of the unknown parameters [19,22].

Recently, a few data-driven approaches have been pro-
posed for different applications, such as satellite imaging
[15] and medical images [24]. Bhat et al. [2] addressed the
problem of MFSR by proposing an explicit feature align-
ment and attention-based fusion mechanism. However, ex-
plicit use of motion estimation and image warping tech-
niques can pose difficulty in handling scenes with fast ob-
ject motions. Dudhane et al. [17, 34] proposed a gener-
alised approach for processing noisy raw bursts through
their implicit feature alignment and inter-frame communi-
cation strategy. Despite its better accuracy, [17] fails to con-
sider the relevant non-local contextual information at mul-
tiple scales while aligning and fusing the features.

Multi-frame Denoising. Existing methods either utilize
neural networks that are purely feed-forward [4, 46], re-
current networks [9] or a hybrid of both [10] for multi-
frame denoising. Tico et al. [41] leveraged a block-based
paradigm, and blocks within and across the burst images are
used for performing denoising. [12,32] extended the defacto
method of single image denoising approaches, BM3D [13]
to videos. Liu et al. [30] demonstrated superior denois-
ing performance by using a novel homography flow align-
ment technique via consistent pixel compositing operator.
Godard et al. [21] proposed a novel multi-frame denoising
model by using burst capture strategy and recurrent deep
convolutional neural network. Mildenhall ez al. [36] intro-
duced Kernel Prediction Network (KPN) to generate per-
pixel kernels, utilizing information from multiple images
to merge input frames. Bhat et al. [2] proposed a deep
reparametrization of the maximum a posteriori formulation
for multi-frame denoising. Dudhane et al. [17] proposed
a pseudo-burst feature fusion approach for burst frame de-
noising.

Low-Light Enhancement. Low-light photography in
smartphones is limited on account of the small sensor, lens
and limited aperture of camera. In [8], authors introduced
a dataset of raw short and long-exposure low-light images,
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Figure 2. Comprehensive representation of each stage of our proposed GMTNet: (a) The proposed Multi-Scale Burst Feature Alignment
(MBFA) module aligns burst features at multiple scales using the proposed (b) Attention-Guided Deformable Alignment (AGDA). The
proposed AGDA reduces noise content through our (c) Multi-Kernel Gated Attention (MKGA) module. While, (d) Aligned Feature
Enrichment (AFE) boosts high-frequency content through back-projection mechanism and extracts robust features through transformer
backbone. (e) Transposed Attention Feature Merging (TAFM) module aggregates the local-non-local pixel interactions within the aligned
and reference frames. Lastly, (f) Resolution Transfer Feature Up-sampler (RTFU) up-scales the merged features through single-stage and
progressive up-sampling setting using both the conventional and recent up-samplers.

and proposed a learning based pipeline for mapping the de-
graded low-lit input frames to well-lit SRGB images. Zamir
et al. [48] proposed a data-driven method for mapping un-
derexposed RAW images to a well-exposed sSRGB image.
Jung et al. [25] leveraged a novel cycle adversarial network
for generating frames in low lighting conditions. Liu et al.
[29] used synthetic events from multiple frames for guiding
the enhancement and restoration of low-light frames. Ma-
harjan et al. [33] and Zhao et al. [51], respectively leveraged
aresidual learning-based and recurrent convolution network
based framework to process burst photos acquired under ex-
tremely low-light conditions. Besides super-resolution and
denoising, BIPNet [17] is also adept at performing multi-
frame low-light image enhancement.

3. Methodology

We present the overall pipeline of our burst processing
approach in Figure 1. Given a raw burst image, the goal of
our GMTNet is to reconstruct a clean, high-quality image
by exploiting the shifted complementary information from
the noisy LR image burst. As shown in Figure 1, the input
RAW LR burst features are aligned to the reference frame
through our proposed Multi-scale Burst Feature Alignment
(MBFA) module. Further, aligned burst features are ag-
gregated using the Transposed-Attention Feature Merging
(TAFM) module. Lastly, our Resolution Transfer Feature

Up-sampler (RTFU) up-scales the merged features to recon-
struct a high-quality image.

3.1. Multi-scale Burst Feature Alignment

Generating an artifact-free, high-quality image through
burst processing is highly reliant upon the alignment of
the mismatched burst frames. However, proper align-
ment is quite challenging, specifically in low-light and low-
resolution images, where noise excessively contaminates
the input burst frames. Previous burst restoration and video
SR methods [2, 3,5, 17,38, 44] often seek to alleviate these
issues by following alignment on locally extracted features.
However, they do not explicitly consider the long-range de-
pendencies which are crucial for restoration tasks. Conse-
quently, the generated feature maps have limited receptive
field making it difficult to align the burst features in case of
complex motions. We develop the Multi-scale Burst Fea-
ture Alignment (MBFA) module to address the mentioned
challenges, streamlining burst feature alignment across var-
ious scales and facilitating long-range pixel interactions for
improved alignment. As seen in Figure 2(a), MBFA works
in two phases: first, it aligns burst features at multiple scales
with the Attention-Guided Deformable Alignment (AGDA)
module; second, it refines aligned features via the Aligned
Feature Enrichment (AFE) module.
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3.1.1 Attention-Guided Deformable Alignment

As discussed in [7], noise disturbs the prediction of dense
correspondences among multiple frames which is the key
concern of several alignment methods. However, we find
that a well-designed module can easily tackle noisy raw
data. Therefore, in order to reduce the noise content in the
initial burst features and eventually ease the alignment pro-
cess, we propose an Attention-Guided Deformable Align-
ment (AGDA) module that operates at multiple scales to
align the burst features as shown in Figure 2(b). The pro-
posed AGDA module is inspired from the deformable align-
ment proposed in TDAN [40] and EDVR [44]. But, their
alignment approaches [40, 44] directly apply deformable
convolution on the input features, making them prone to
miss the detailed information in case of noisy RAW burst
features. Additionally, they also lack at extracting long-
range pixel interactions which are useful in complex mo-
tions. Our AGDA block addresses these issues by per-
forming implicit feature denoising using MKGA prior to
burst feature alignment, instead of directly applying de-
formable convolution to incoming features. Further, the
denoised burst features are aligned through the modulated
deformable convolution (DCN) as shown in Figure 2(b).

Multi-Kernel Gated Attention. The proposed MKGA
block offers dynamic adjustment of its receptive field to
learn multi-scale local context through our Multi-Scale
Gated Convolution (MSGC) sub-module and non-local
context with the Transposed attention (TA) sub-module as
demonstrated in Figure 2(c). This adaptability of transi-
tioning between small (local) and large receptive fields is
useful for dealing with various types of image degradation.
Given an input tensor Y € RE*H*W the overall operation
of MSGC, outputting Y is formulated as:

Y = Wi+ (G1(Y)) + Wi+ (G5(Y)) + Wi+ (G5(Y)) (1)

Here, W, denotes a convolution filter with size 1x1, and
* is a convolution operation. G (Y) represents the out-
put of the Gated Convolution block (See Figure 2 (c)), that
is mapped out as the element-wise product of two parallel
paths for depth-wise convolution layers with filter size k and
formulated as G (Y) = AW/ ") © WP, Here, WP
denotes a depth-wise convolution layer, A and ® represents
the GELU non-linearity, and element-wise multiplication.

Transposed Attention. The extracted multi-kernel features
from the MSGC module are passed through the transposed
attention (TA) sub-module (see Figure 2(c)) for capturing
their long-range pixel interactions. From a layer normalized
tensor Y, our TA sub-module first generates query (Q), key
(K), and value (V) projections by applying 1x1 convolu-
tions followed by 3x3 depth-wise convolutions for encod-
ing the non-local and channel-wise spatial context. There-
after, we reshape (Q,K,V) into Q, Kand V projections

such that the subsequent dot-product interactions between
query and key generate a transposed-attention map of size
RE*C [47], instead of the huge regular attention map of
size RHWXHW [43]. And, the overall TA process, out-
putting Y is defined as:

Y = LN(Y) + Wi+ (TAQR,V)); )

TAQ,K, V)=V SK®Q)
Here, Y is the feature map obtained from the MSGC mod-
ule, LN denotes the layer normalization; T'A and .S denotes
the operation of the TA sub-module and Softmax, respec-
tively, Q € REWXC K ¢ ROXHW and V e REWXC
matrices are obtained after reshaping the tensors from the
original size, RE*#*W and ® denotes matrix multiplica-
tion. Altogether, the employed MKGA module at each scale
allows each pyramidal level to focus on fine details, gener-
ating contextualized features that reduce noise and thus ease
the subsequent alignment mechanism.

Modulated Deformable Convolution. After extracting the
features from the MKGA module, we implicitly align the
current frame features, fb with the reference frame fea-
tures (we considered the first frame as reference), f® via
modulated deformable convolution [40, 52] (learnable off-
sets for deformable convolution layer are obtained through
a 3x3 offset convolution layer) as shown in Figure 2(b).
To ensure better learning, the predicted offsets and aligned
burst features are shared from the lower-scale to upper-scale
in a bottom-up fashion to ensure semantically stronger and
cleaner aligned features.

3.1.2 Aligned Feature Enrichment

To fix the remaining minor alignment and noise issues, we
embed a novel Aligned Feature Enrichment (AFE) module
on the obtained aligned features. The proposed AFE mod-
ule differs from conventional high-frequency enhancement
methods as it extracts local & non-local features through
a transformer backbone, in addition to a back-projection
mechanism. This results in a more effective approach for
high-frequency enhancement. During the back-projection
process, we simply compute the high-frequency residue
between the aligned burst features and reference frame
as shown in Figure 2(d). Thereafter, the local-non-local
pixel interactions are enabled by processing the aligned
edge boosted burst features through the existing transformer
backbone [47]. In a nutshell, besides capturing multi-scale
local-global representation among the bursts, the AFE mod-
ule also bridges the gap between the relevant and irrelevant
features of the aligned frames.

3.2. Transposed-Attention Feature Merging

In burst processing, temporal relation among the multi-
ple frames plays an indispensable role in feature fusion on
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account of blurry frames from camera perturbations. Con-
sidering the fact, that incoming multiple frames have quite
a few similar patterns at the feature level, it is infeasible to
directly concatenate or add them as it will naively introduce
a large amount of redundancy into the network. Existing
DBSR [2] proposed an attention-based fusion approach but
it is limited in exploiting the complementary (global and
local) relations that can hinder the information exchange
among multiple frames. Further, the recently proposed BIP-
Net [17] tries to merge the relevant information by concate-
nating channel-wise features from all burst feature maps.
Though it is effective in extracting complementary infor-
mation, it is computationally extensive.

Unlike the aforementioned fusion techniques, we pro-
pose a Transposed-Attention Feature Merging (TAFM) to
efficiently encode inter-frame and intra-frame correlations
before merging the frames. As shown in Figure 2(e), TAFM
takes queries (Q) and a set of key-value (K,V) pairs as input
and outputs the linear combination of values that are deter-
mined by correlations between the queries and correspond-
ing keys [49]. The proposed TAFM module has been de-
signed with two parallel blocks (see Figure 2(e)), where the
lower block (outputting p;) performs the query-key inter-
actions across channels of the aligned neighboring frames
to encode the channel-wise local context. While the upper
block (outputting po) enhances the feature representations
of the reference and current frames by bridging their global
correlations. This design allows TAFM to effectively re-
duce feature redundancy and extract complementary infor-
mation from multiple frames. After encoding the feature
correlations globally and locally for a given aligned frame,
f? with b number of burst frames, the overall merged fea-
tures of TAFM, F,, € RIXCXHEXW i¢ obtained as follows:

Fpy = Wi % (p1(Cp2) 3)

where, W3 is a convolution layer with filter size 3 x 3, and
refers to the concatenation.

3.3. Resolution Transfer Feature Up-sampler

The popular up-sampling techniques deployed in SoTA
burst SR methods DBSR [2], DRSR [3] perform direct one-
stage up-sampling without leveraging the benefits of infor-
mation exchange between the HR features and their corre-
sponding LR counterparts. Considering the fact that HR
features contain abundant global information and LR fea-
tures are rich in edge information [35,50], we design a Res-
olution Transfer Feature Up-sampler (RTFU) module that
is the first upsampler to extract unique features of differ-
ent resolution spaces. The proposed RTFU module stems
from the observation that the transfer of LR and HR features
through a multi-resolution framework can be propitious
in adaptively recovering the textural information from the
fused frames as shown in the ablation study. In RTFU, we

target at exploiting the dual benefits of both direct [16] and
progressive up-sampling [27] strategies using the conven-
tional [6] and recent learnable up-sampling layers [39] to
adequately get into the HR space. As shown in Figure 2(f),
RTFU achieves its desired HR feature space via a three-
stage design: two sets of four parallel progressive multi-
resolution streams (Stagel and Stage3) and a Resolution-
Transfer Merging (RTM) module (Stage?2).

We first apply progressive up-sampling strategy with
pixel-shuffle [39] (extreme left of Figure 2(f)) parallelly
in Stagel for generating (x1, x2, x4, and x8) multi-
resolution SR feature responses, which are then forwarded
to the RTM module (Stage2). RTM module consists of four
input representations: U (output of Stagel),i= 1,2, 4, and
8 with i being the input resolution index, and the associated
output representations are given by UZ, o = 1, 2, 4, and
8 with o being the output resolution index. Each output
representation (U?) is the concatenation of the transformed
representations of the corresponding four inputs (as shown
in the middle of Figure 2(f)). Thus, the overall operation of
Stage2 (RTM module) can be formulated as follows:

4 1Vi=o
Ug = [[f(Uv/f)]]i:LzzL,s; f=

Here, 0 € {1,2,4,8}, and the mathematical definition of
the symbol used in Eq. 4 is given as [[Aj]]jzl o m =

AY(C)A2....(C)A", where (C) denotes the concatenation
operation among the inputs, and f represents the corre-
sponding transformation operation (upsample or downsam-
ple) applied to the input feature U,. and is dependent upon
the input resolution index (i), and the output resolution in-
dex (o). For instance, as shown above, if 0 > i, then the
corresponding input representation U? is up-sampled (1) by
a factor of o/i. In Stage2 (RTM), we deploy bilinear in-
terpolation and strided convolution for feature up-sampling
and down-sampling, respectively. Thereafter, the resulting
features from each branch of Stage3 are again up-sampled
progressively using bicubic interpolation to generate an up-
sampled feature map of the size R *C*3Hx8W Einally, we
add the individual branch output of Stage3 to generate the fi-
nal high-quality image. Thus, for each pixel location, RTFU
can leverage the underlying content information from input
frames at multiple-scales and utilize it to get better perfor-
mance than the mainstream up-sampling operations, pixel-
shuffle or interpolations.

4. Experimental Analysis

We validate the proposed GMTNet on real and synthetic
datasets for (a) Burst Super-resolution, (b) Burst denoising,
and (c) Burst low-light image enhancement tasks.
Implementation Details. We train separate models for all
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Table 1. Burst super-resolution results for x4 factor.

Methods SyntheticBurst [2] BurstSR [2]
GFlops Time (s) PSNRT SSIMt | PSNRT SSIM?T
SingleImage 20.41 0.04 36.86 0919 |46.60 0979
WMKPN [11] - - 36.56 0912 [41.87 0958
HighResNet [15] | 400 0.05 3745 0924 |46.64 0980
DBSR [21] 118 0.43 4076 0.959 |48.05 0.984
MFIR [3] 110 042 4156 0964 |4833  0.985
BIPNet [17] 300 0.13 4193 0960 |48.49 0.985
Ours ‘ 157 020 4236 0.961 ‘ 48.95  0.986
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Figure 3. Visual results on SyntheticBurst [2] for x4 burst SR.
Figure 4. Visual results on SyntheticBurst [2] for x4 burst SR.

the considered tasks in an end-to-end manner. For better
parameter efficiency, we shared each GMTNet module for
all burst frames. Our GMTNet has 12.7M parameters with
157 GFLOPs for the burst of size 14x4x48x48 with a run-
ning time of 24 fps. To train GMTNet with 4 V100 GPUs,
it takes 29 hours for real SR, 97 hours for synthetic SR,
72 hours for grayscale/color denoising, and 38 hrs for burst
enhancement. All the models are trained with Adam op-
timizer with L; loss function. We employ cosine anneal-
ing strategy [31] to decrease the learning rate from 10~*
to 1075 during training. For real-world SR, we fine-tune
our GMTNet (with pre-trained weights on SyntheticBurst
dataset) using aligned L; loss [2]. We provide the task-
specific experimental details in the corresponding sections.
Additional experimental details and visual results are pro-
vided in the supplementary material.

4.1. Burst Super-Resolution

‘We evaluate our proposed GMTNet on synthetic [2] and
real-world datasets [2] for scale factor x4. Following the
settings in [2], we utilized SyntheticBurst dataset (46,839
and 300 RAW burst sequences for training and validation
respectively, where each burst sequence consists of 14 im-
ages), and BurstSR dataset consisting of 200 RAW burst
sequences (5,405 and 882 patches of size 80x80 for train-
ing and validation, respectively).

SR results on SyntheticBurst dataset for x4 and x8. The
proposed GMTNet is trained for 300 epochs on the train-
ing split of SyntheticBurst dataset for both x4, and X8 up-
sampling tasks and evaluated on the validation set of Syn-
theticBurst dataset [2]. We compared our proposed GMT-
Net with several SoTA approaches for x4 as shown in Table

Ground Truth

~ B i N
BIPNet [17] Ours
Figure 5. Visual results on SyntheticBurst [2] for X8 burst SR.

Base frame

h*%%%%%
NSNS

HR Image Base frame DBSR [2] MFIR [3] BIPNet[17] Ours GT- Image
Figure 6. Results on real BurstSR dataset [2] for x4 burst SR.

1. Particularly, our GMTNet obtains a PSNR gain of about
0.43 dB over the previously best-performing BIPNet [17]
and 0.80 dB over the second-best approach [3]. To further
prove the potency of our proposed GMTNet on large scale
factors, we conduct an experiment for x 8 burst SR. The LR-
HR pairs are synthetically generated using the same proce-
dure described for SyntheticBurst dataset [2]. Visual results
shown for a few challenging images in Figure 4 (x4) and
Figure 5 (x8) clearly prove that results obtained by GMT-
Net are sharper and it efficiently reconstructs the structural
content and fine textures, without compromising details. In
Table 1, we also compare the computational complexity of
several state-of-the-art burst SR methods.

SR results on BurstSR dataset. Since, the LR-HR pairs
for BurstSR dataset are captured using different cameras,
they suffer from minor misalignment. Thus we follow the
previous work [2] and use aligned L; loss for fine-tuning
the GMTNet for 25 epochs and evaluate our model by us-
ing aligned PSNR/SSIM. Table 1 shows that our proposed
GMTNet obtain conducive results, outperforming SoTA
BIPNet [17] by a substantial gain of 0.46 dB. Visual com-
parisons in Figure 6 depict that unlike other compared meth-
ods, the proposed GMTNet is more effective for generating
minute details in the reconstructed images, with better color
and structure preservation.

4.2. Burst Denoising Results

This section presents the results of burst denoising on
color (test split: 100 bursts) [45] as well as gray-scale (test
split: 73 bursts) [36] datasets. Both these datasets have four
variants with different noise gains (1, 2, 4, 8), correspond-
ing to noise parameters (log(o,),log(cs)) — (-2.2,-2.6),
(-1.8,-2.2), (-1.4,-1.8), and (-1.1, -1.5), respectively. We
train grayscale and color burst denoising models for 200
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HR Image BPN [45] MFIR [3] BIPNet[17] Ours GT-Image
Figure 7. Visual results on color datasets [45] (first two rows) and
gray-scale [36] (last two rows) for burst denoising.

epochs on 20k synthetic noisy samples (generated as in [3]).

Table 2. Gray-scale burst denoising [36] results with PSNR.
Methods  Gain ox 1 Gain o< 2 Gain o« 4 Gain o< 8 Average

KPN [36] 36.47 33.93 31.19 2797 3219
BPN [45] 38.18 3542 32.54 2945 3390
BIPNet [17] 38.53 35.94 33.08 29.89 3436
MFIR [2] 39.37 36.51 33.38 29.69  34.74

Ours 39.07 36.46 33.52 3046  34.87

Denoising results. Table 2 shows the results on the gray-
scale burst denoising dataset against SOTA methods. Our
GMTNet outperforms the recent BIPNet' [17] by about
0.57 dB for the highest noise gain (Gain  8). Similarly, for
color denoising, our approach outperforms existing MFIR
[2] on all four noise levels (except the lowest noise gain)
with an average margin of 0.25 dB as shown in Table 3.
Qualitative comparison in Figure 7 clearly proves the effi-
cacy of our approach in recovering the required subtle con-
textual details, thus generating cleaner denoised outputs.

4.3. Low-Light Enhancement Results

Following other existing works [17,26], we test the per-
formance of our GMTNet on the SONY-subset from the
SID dataset [8]. It contains 161 input RAW burst sequences
for training, 36 for validation, and 93 for testing. We train
the proposed GMTNet with L; loss for 200 epochs on
5000 cropped patches of size 256x256 from the training
set of SONY-subset. Table 4 gives the image quality scores
for several competing approaches. The proposed GMTNet
provides 0.26 dB improvement over the existing best BIP-
Net [17]. Visual comparisons in Figure 8 show that the en-
hanced images are relatively cleaner, sharper and preserves

!Existing BIPNet results are collected from their official GitHub repos-
itory.

Table 3. Color burst denoising [45] results with PSNR.
Methods  Gain o< 1 Gain & 2 Gain o< 4 Gain o 8 Average

KPN [36] 38.86 35.97 32.79 30.01  34.40
BPN [45] 40.16 37.08 33.81 31.19  35.56
BIPNet [17] 40.58 38.13 35.30 32.87 36.72
MFIR [2] 41.90 38.85 35.48 3229  37.13

Ours 41.74 3891 3574  33.09 37.38

RAW input

Figure 8. Visual results on SONY-subset of SID dataset [8] for
burst low-light image enhancement.

LLED [26] BIPNet [] 71 Ours GT-i lmage

Table 4. Burst low-light enhancement on Sony-subset [8].

Methods PSNRT SSIM1 LPIPS|
Chen et al. [8] 29.38 0.89 0.48
Maharjan et al. [33] 29.57 0.89 0.48
Zamir et al. [48] 29.13 0.88 0.46
Zhao et al. [51] 29.49 0.89 0.45
Karadeniz et al. [26] 29.80 0.89 0.30
BIPNet [17] 32.87 0.93 0.30
Ours 33.13 0.94 0.31

Table 5. Ablation study for GMTNet contributions. PSNR is re-
ported on SyntheticBurst dataset [2] for x4 burst SR task.

Task | Modules

| Baseline v v v v v v v v
Align | W/O MKGA v
ment | with MKGA v v v v v v
(§3.1) | AFE v v v v v
Fusion| With p1 v
(§3.2) | with pa v

with p1+p2 v v

Upsample (§3.3) v

| PSNR 36.38 38.02 39.12 39.40 39.84 40.23 40.74 41.82

more structural content than other compared approaches.

5. Ablation Study

Here we analyze the influence of every key compo-
nent and design choice in our formulation. All models are
trained for 100 epochs on SyntheticBurst dataset [2] for x4
burst SR task. As reported in Table 5, the baseline model
achieves a PSNR of 36.38 dB. For the baseline model we
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Table 6. Impact of the proposed modules in terms of PSNR/SSIM
on SyntheticBurst SR dataset for x4 burst SR task.

Task Methods PSNRT SSIMt

GMTNet + PCD [44] 4099  0.953
GMTNet + Explicit [2] 39.26  0.944

(@) Alignment o\ /TN L EBFA [17] 4110 0.958
GMTNet + MBFA  41.82  0.960
GMTNet + TSA [44]  39.97  0.947
. GMTNet+DBSR [21] 4032  0.950
(b) Burst Fusion -\ i\ 4 PBEF[17] 4160  0.954
GMTNet + TAFM  41.82  0.960
GMTNet + Bil 4022 0.940
GMTNet + PS [21] 4041  0.943
(c) Upsampler

GMTNet + AGU [17] 4130  0.951
GMTNet + RTFU 41.82  0.960

deploy addition operation for fusion and pixel-shuffle for
up-sampling. After adding the proposed modules to the
baseline network, the results improve persistently and no-
tably. For instance, we attain a performance gain of 3.02
dB when we incorporate our alignment module into the
baseline model. The insertion of the proposed fusion and
up-sampling modules in our network further improves the
PSNR of the overall network by about 1.34 dB and 1.08
dB, respectively. Overall, GMTNet obtains a compelling
gain of 5.44 dB over the baseline model.

Effectiveness of MBFA module. As reported in Table 5,
the inclusion of MKGA and AFE modules into our align-
ment (MBFA) module provides a performance boost of
around 1.10 dB and 0.28 dB, respectively which supports
the effectiveness of the proposed modules in capturing mo-
tion cues. Further, we compare the GMTNet results in Ta-
ble 6 (a) by replacing MBFA with other popular explicit
and implicit alignment approaches (Keeping the rest of the
modules same). We observe that the MBFA module ob-
tains a performance gain of about 0.83 dB over PCD mod-
ule proposed in EDVR [44]. To further highlight the ability
of MBFA module in aligning burst features, we visualize
the features (of few frames) before and after applying it as
shown in Figure 9. It clearly reveals our MBFA works well
without any dedicated supervision.

How to design TAFM module? A trivial design of our
TAFM module is to use a single stream for extracting the
information and then concatenating the features. However,
from Table 5, it is clear that utilizing both the p; and p2
outputs for subsequent merging results in a performance
boost of around 0.90 dB. It clearly signifies that two-stream
TAFM performs better than any single-stream.

Impact of TAFM module. The results in Table 6 for burst
fusion tasks further show that replacing our TAFM module
with other popular fusion modules have a detrimental influ-
ence on the overall performance of our model, with PSNR
drop of around 0.22 dB when utilizing the recently proposed

Before
Alignment

After E‘__,i E—'i

-'

Alignment
(MBFA)

Frames >  Ref

Before h g
RTM :
Module e [
After
RTM - Output of
Module
uUgd Ut

Figure 9. Feature map visualizations before and after applying
proposed MBFA (Figure 2(b)) and RTM (middle of Figure 2(f))
modules into our GMTNet.

PBFF [17] module in our network.

Effectiveness of the proposed RTFU. To validate the ef-
fectiveness of our RTFU, we replace it with the conven-
tional and recent, bilinear interpolation (Bil) and pixel-
shuffle (PS), AGU respectively. The accuracy scores in Ta-
ble 6, clearly demonstrate its ability to reconstruct a high-
quality image.

How important is the proposed RTM module in RTFU?
To prove the imperativeness of the RTM module, in Figure 9
we visualize the feature maps before and after embedding it
in RTFU. It clearly proves that our model benefits from the
efficient use of both LR and HR information to complete
the restoration of sharp regions.

6. Conclusion

We present a generalised network for burst processing to
reconstruct a single high-quality image from a given RAW
burst of low-quality noisy images. In the proposed ap-
proach, our Multi-scale Burst Feature Alignment (MBFA)
module aligns the noisy burst features at multiple scales
using the proposed Attention-Guided Deformable Align-
ment (AGDA). The inclusion of Aligned Feature Enrich-
ment (AFE) module improves the aligned features by fixing
any minor misalignment issue, thus yielding well-refined,
denoised and aligned features. To further improve model
robustness, Transposed Attention Feature Merging (TAFM)
module manifests efficient fusion performance by analyz-
ing the global and local correlations among the incoming
frames. Finally, the proposed Resolution Transfer Feature
Up-sampler (RTFU) up-scales the merged features by con-
solidating information from both LR and HR feature spaces
to reconstruct a high-quality image. Consistent achieve-
ment of SoTA results for burst super-resolution, denoising
and low-light enhancement on synthetic and real datasets
corroborates the robustness and potency of our approach.
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