
Deep Polarization Reconstruction with PDAVIS Events

Haiyang Mei1,2 Zuowen Wang2 Xin Yang1 Xiaopeng Wei1 Tobi Delbruck2

1Dalian University of Technology, Dalian, China
2Institute of Neuroinformatics, University of Zürich and ETH Zürich, Zürich, Switzerland
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Figure 1. The polarization dynamic and active pixel vision sensor (PDAVIS) [15] is integrated with a nanowire polarizer array. It con-
currently outputs conventional polarization intensity frames and asynchronous polarization brightness change events with submillisecond
latency over a million-fold illumination range. Taking polarization events as input, the existing state of the art (SOA) method Polarization
FireNet [15,41] can reconstruct the intensity video with high dynamic range (HDR) and less motion blur, but fails to correctly reconstruct
the angle and degree of linear polarization. Our Events to Polarization (E2P) achieves sharp output and HDR with a more accurate polar-
ization reconstruction.

Abstract

The polarization event camera PDAVIS is a novel bio-
inspired neuromorphic vision sensor that reports both con-
ventional polarization frames and asynchronous, continu-
ously per-pixel polarization brightness changes (polariza-
tion events) with fast temporal resolution and large dy-
namic range. A deep neural network method (Polariza-
tion FireNet) was previously developed to reconstruct the
polarization angle and degree from polarization events for
bridging the gap between the polarization event camera
and mainstream computer vision. However, Polarization
FireNet applies a network pre-trained for normal event-
based frame reconstruction independently on each of four
channels of polarization events from four linear polariza-
tion angles, which ignores the correlations between chan-
nels and inevitably introduces content inconsistency be-
tween the four reconstructed frames, resulting in unsatisfac-
tory polarization reconstruction performance. In this work,
we strive to train an effective, yet efficient, DNN model that

directly outputs polarization from the input raw polariza-
tion events. To this end, we constructed the first large-
scale event-to-polarization dataset, which we subsequently
employed to train our events-to-polarization network E2P.
E2P extracts rich polarization patterns from input polariza-
tion events and enhances features through cross-modality
context integration. We demonstrate that E2P outperforms
Polarization FireNet by a significant margin with no addi-
tional computing cost. Experimental results also show that
E2P produces more accurate measurement of polarization
than the PDAVIS frames in challenging fast and high dy-
namic range scenes. Code and data are publicly available
at: https://github.com/SensorsINI/e2p.

1. Introduction

Visual information is encoded in light by intensity, color,
and polarization [12]. Polarization is a property of trans-
verse light waves that specifies the geometric orientation of
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the oscillations (which can be described by the Angle of
Linear Polarization (AoLP) and the Degree of Linear Polar-
ization (DoLP)), providing strong vision cues and enabling
solutions to challenging problems in medical [27], under-
water [34], and remote sensing [53] applications. Existing
polarization digital cameras capture synchronous polariza-
tion frames with a linear photo response [14], while biologi-
cal eyes tend to perceive asynchronous and sparse data with
a compressed non-linear response [12].

Inspired by the mantis shrimp visual system [29], the
novel neuromorphic vision sensor called Polarization Dy-
namic and Active pixel VIsion Sensor (PDAVIS) illustrated
in Figure 1 was developed to concurrently record a high-
frequency stream of asynchronous polarization brightness
change events under four polarization angles (i.e., 0◦, 45◦,
90◦, and 135◦) over a wide range of illumination. PDAVIS
also outputs low-frequency synchronous frames like con-
ventional polarization cameras [15].

Even though the stream of polarization events has ad-
vantages of low latency and HDR, it is not friendly to hu-
man observation and traditional computer vision due to the
sparse, irregular, and unstructured properties. To better ex-
ploit the advantages of PDAVIS, an intuitive solution is to
reconstruct polarization from polarization events, which can
bridge off-the-shelf frame-based algorithms and PDAVIS.
Gruev et al. [15] proposed the Polarization FireNet, which
first runs the FireNet [41] pre-trained for normal event-
based intensity frame reconstruction on each of four types
of polarization events under four different polarization an-
gles, and then computes the polarization from four recon-
structed intensity frames via mathematical formulas. Since
this method treats four polarization angle channels indepen-
dently, the correlation between channels is ignored and in-
consistency between the four reconstructed frames hinders
accurate measurement of polarization.

In this work, we make the first attempt to train an
accurate yet efficient DNN model tailored for event-to-
polarization reconstruction. We approach this twofold.
First, we construct the first large-scale event-to-polarization
synthetic-real mixed dataset, dubbed Events to Polariza-
tion Dataset (E2PD), which contains 5 billion polarization
events and corresponding 133 thousand polarization video
frames. The diversity and practicality of E2PD are ensured
by including diverse real-world road scenes under differ-
ent weather conditions (rainy and sunny) in different cities.
Second, we design an E2P network that consists of three
branches to reconstruct intensity, AoLP, and DoLP, respec-
tively, from the raw polarization events directly. E2P is built
on two key modules: (i) a Rich Polarization Pattern Per-
ception (RPPP) module that effectively harvests features
from raw polarization events and (ii) a Cross-Modality At-
tention Enhancement (CMAE) module that explores cross-
modality contextual cues for feature enhancement.

We perform extensive validation experiments to demon-
strate the efficacy of our method and show that the network
trained on our E2PD is more accurate than all previously
reported PDAVIS methods, and produces more accurate po-
larization compared with polarization computed from the
PDAVIS frames in challenging scenes (e.g., Figure 1). In
summary, our contributions are:

1. the first attempt to solve the event-to-polarization
problem using an end-to-end trained deep neural net-
work with polarization events as input, intensity, AoLP
and DoLP as outputs;

2. a new and unique large-scale event-to-polarization
dataset containing both synthetic and real data; and

3. a novel network that perceives rich polarization pat-
terns from raw polarization events and enhances fea-
tures via a cross-modality attention mechanism.

2. Background and Related Work
Polarization describes the orientation of the transverse

electric field in light. Within a non-zero finite time of ob-
servation, this orientation can be randomly distributed (un-
polarized), biased toward a single direction (linearly polar-
ized), or in between the two extremes (partially linearly po-
larized). Objects in the real world can produce polarized
signals that are related to the nature of materials through-
out the process of light reflection, scattering, and transmis-
sion [53]. Polarization can reveal intrinsic physical prop-
erties of the object [6] and thus can benefit a wide range
of applications in computer vision tasks such as estimat-
ing shape and/or surface normals [1–3, 10, 18, 42], reflec-
tion separation [22, 23, 50], detection [6, 7], and segmen-
tation [19, 24, 30, 52]. It is important to accurately esti-
mate DoLP because AoLP is only meaningful when DoLP
is large.

Existing polarization-array CMOS sensors simultane-
ously record four linear polarization states of light: I0◦ ,
I45◦ , I90◦ , and I135◦ , where Iϕ describes the intensity im-
age filtered by a linear polarizer at the angle ϕ, which are
then used to compute AoLP and DoLP, defined as:

S0 = I0◦ + I90◦ = I45◦ + I135◦ ,

S1 = I0◦ − I90◦ , S2 = I45◦ − I135◦ ,

AoLP =
1

2
arctan

(
S2

S1

)
, DoLP =

√
S2
1 + S2

2

S0
, (1)

where S0, S1, and S2 are Stokes elements: S0 stands for
total light intensity and S1/S2 describes the ratio between
the 0◦/45◦ linear polarization and its perpendicular coun-
terpart. In addition to Iϕ, the neuromorphic PDAVIS [15]
records polarization channel brightness change events Eϕ

with fast temporal resolution and large dynamic range. Our
goal is to generate high-quality (i.e., less motion blur and
higher dynamic range) polarization video from Eϕ.
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Figure 2. The polarization events data synthesis process.

Event-Based Video Reconstruction converts input
events streams to video composed of sequential intensity
frames, which bridges the existing frame-based algorithms
and event cameras. Early attempts to approach this prob-
lem are based on hand-crafted features (e.g., optimization
[4], regularization [31], and temporal filtering [39, 40]) or
SLAM [11,20,35]. Recently, Barua et al. [5] introduced the
first learning approach to this task. Then, sparse dictionary
learning [48], generative adversarial network (GAN) [44],
and fusion between events and frames [47] are also used
for event-based video reconstruction. Rebecq et al. [36, 37]
presented a new events-to-video reconstruction framework
called E2VID which is a fully convolutional recurrent UNet
architecture inspired by [38, 55] and is trained on a large
amount of synthetic event data. Scheerlinck et al. developed
a fast and lightweight version of E2VID, named FireNet
[41]. Weng et al. [49] took advantage of the powerful Trans-
former [43] to improve image reconstruction accuracy, and
Zhu et al. [57] designed a spiking neural network (SNN) [8]
for event-based video reconstruction. [15] showed that the
complementary filter method of [39] could fuse PDAVIS
frames and events to produce polarization information when
many pixels were averaged, but the accuracy was limited by
the non-idealities of the real camera output.

Polarization FireNet [15] is the SOA network used as
the baseline for our comparisons. It first reconstructs the
individual Iϕ channels from Eϕ and then calculates polar-
ization using (1). However, we experimentally demonstrate
that this method cannot handle complex scenes and using
a more powerful event-based video reconstruction method
brings significant polarization reconstruction accuracy im-
provement. We show that training an end-to-end network
that directly outputs polarization from polarization events
yields more satisfactory results.

3. Event-to-Polarization Dataset

To train the polarization reconstruction network, we con-
struct the first large-scale dataset, named E2PD, which con-
tains 200 polarization video clips and the corresponding 5
billion polarization events.

Synthetic / Real Videos Frames (K) Events (M)

Train 92 / 56 91 / 9 3019 / 680

Test 29 / 23 29 / 4 1087 / 308

Total 121 / 79 120 / 13 4107 / 988

Table 1. Number statistics of our event-to-polarization dataset.

A straightforward way to get polarization events and cor-
responding ground-truth polarization frames is to use the
polarization event camera PDAVIS [15]. However, the po-
larization frames acquired by PDAVIS [15] cannot provide
good ground truth in HDR and high-speed scenes (e.g., Fig-
ure 1). Therefore, we further include synthetic data gener-
ated from the v2e Dynamic Vision Sensor (DVS) simula-
tor [16] and train the network on the synthetic-real mixed
data, and subsequently show that the network trained on our
dataset can even perform better than real PDAVIS frames in
challenging scenes (Section 5.2).

Data Synthesis: the existing largest normal event-to-
video dataset [37] is generated by mapping MS-COCO im-
ages [26] to a 3D plane and simulating the events triggered
by random camera motion within this simple 3D scene.
However, we cannot follow this paradigm to obtain reliable
polarization events from the raw polarization frames, be-
cause the polarization states would change with the move-
ment of the camera. To solve this, we develop a method
dedicated to the synthesis of polarization events. As shown
in Figure 2, we use a high-quality polarizer-array camera
(LUCID PHX050S) that records four linear-polarization di-
rections (0◦, 45◦, 90◦, and 135◦) to capture raw polariza-
tion videos with a frame rate of 25 Hz and each video lasts
5 seconds. We then generate synthetic polarization events
with the v2e tool [16], which accurately models DVS non-
idealities. v2e [16] is designed to simulate events from in-
tensity (but not polarization) videos. We first split the raw
polarization frame sequence into four channels according to
the four linear polarization directions. Each pixel in the re-
sulted single channel polarization frame corresponds to one
subpixel of 2× 2 macropixels (bottom left of Figure 1). We
perform frame interpolation [17] for each channel indepen-
dently. Then the interpolated frames are rearranged to the
raw polarization pattern and the resulting frames are fed into

22151



(b) E2P

E

I

A

D

ε

(d) Cross-Modality Attention Enhancement

𝐹𝐼
𝑖𝑛  

𝐹𝐴
𝑖𝑛  

𝐹𝐷
𝑖𝑛  

𝐹𝐼
𝑜𝑢𝑡  

𝐹𝐴
𝑜𝑢𝑡  

𝐹𝐷
𝑜𝑢𝑡  

V

C
M

A
E

C
M

A
E

RPPP CG RB CG RB

RPPP CG RB CG RB

RPPP CG RB CG RB

(a) Overview

E2P E2P

x

y

t

Events Events

εt εt+1

St-1 St

It  At  Dt It+1  At+1  Dt+1

St+1

(c) Rich Polarization Pattern Perception

E Stride=2

𝐹𝑋  S

C
o

n
v

S
trid

e
d

 C
o
n

v

M
a
x
 P

o
o

lin
g

C
o

n
v

U
p
sa

m
p
lin

g

C
o

n
v

V Voxelization CG ConvGRU RB Residual Block

Concatenation Split S Sigmoid Element-wise Multiplication/Addition/

C
o
n
v

C
o

n
v

C
o
n
v

C
o
n
v

T T

Figure 3. The overview of our polarization reconstruction method (a), the architecture of E2P network (b), and its two main building
components: (c) the RPPP module and (d) the CMAE module.

v2e [16] to generate polarization events. Applying (1) to the
interpolated polarization frames, we get the corresponding
ground-truth polarization (i.e., intensity, AoLP, and DoLP).

Dataset Property: (i) polarization contributes informa-
tive cues for various computer vision tasks, especially for
road scenes (e.g., car detection [7] and segmentation [52]).
Therefore, we include diverse road scenes under different
weather conditions (rainy and sunny) in different cities in
our dataset, by mounting the camera on the top of a driving
car; (ii) for the frame interpolation, we set the scale factor
to 8, resulting in a high-speed (200 Hz) polarization video;
(iii) in v2e [16] polarization events synthesis, the ON/OFF
brightness change event thresholds for individual pixels are
sampled from a realistic normal distribution of 0.11± 0.02
natural log units, which is more realistic compared with
an ideal constant threshold and could help prevent the net-
work from learning to naively integrate events; and (iv) our
E2PD is a large-scale dataset which contains 133k polariza-
tion frames and 5 billion polarization events. The detailed
train/test set split for synthetic/real data is listed in Table 1.

4. Event-to-Polarization Reconstruction
In reality, the brightness change threshold triggering

events is neither constant nor uniform [16, 25, 37], which
varies depending on factors such as the event rate [9], the
sign of brightness change [13], and the temperature [32].
Thus, the polarization events cannot be directly integrated
to recover accurate polarization. Instead, we implement the
reconstruction function using our recurrent convolutional
neural E2P network.

4.1. Overview

As illustrated in Figure 3 (a), given a stream of incoming
polarization events, we use a fixed time duration T = 5ms
to partition it into non-overlapping spatio-temporal win-
dows εt = {ei}, where ei is the i-th event in the current
window with a format of (t, x, y, p), reporting the times-
tamp, spatial coordinates, and polarity (-1 or +1), respec-
tively. E2P takes the polarization events εt as input and the
previous hidden state St−1, and outputs the intensity frame
It, AoLP At and DoLP Dt, as well as an updated state St.

Figure 3 (b) shows the architecture of E2P, which first
performs events voxelization (Section 4.2) to convert in-
put polarization events ε into voxel tensor E, enabling the
following feature extraction of convolutional recurrent net-
work, and then uses three branches to predict intensity I ,
AoLP A, and DoLP D, respectively. Each branch consists
of an RPPP module (Section 4.3) to extract abundant fea-
tures from the polarization event tensor E, a Convolutional
Gated Recurrent Unit Network (CG) to integrate tempo-
ral information, a Residual Block (RB) that contains two
3 × 3 convolution layers with skip connection to harvest
spatial features, a CMAE module (Section 4.4) to enhance
features by exploring cross-modality contextual cues, and a
final 3 × 3 convolution layer for prediction. And the con-
secutive operations of CG, RB and CMAE are performed
twice in each branch for better feature extraction.

4.2. Event Voxelization

We follow prior works [37,41,46,56] to convert input po-
larization events ε into voxel tensor E ∈ RB×H×W , where
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B is the number of temporal bins and H and W are the
height and width of ε. Each event (ti, xi, yi, pi) contributes
its polarity to its two closest temporal bins according to:

E(b, h, w) =
∑
i

pi max(0, 1− |b− bi|), (2)

bi =
(ti − tstart)

(tend − tstart)
(B − 1), (3)

where b ∈ {0, 1, ..., B − 1} is the index of the temporal
bin; pi ∈ {−1, 1} is the polarity and bi ∈ [0, B − 1] is
the normalized timestamp of the i-th event; and tstart/tend
denotes the start/end time of ε. The number of bins B is set
to 5 and each has a duration of 1 ms, which integrates from
the two neighboring bins with interpolation. Therefore, at
each time step the network is fed 5 ms of input events.

4.3. Rich Polarization Pattern Perception

Polarization events differ from normal events in that
they report the brightness changes of polarization light fil-
tered by polarizer array as shown in the bottom left of
Figure 1. Thus, the polarization pattern should be taken
into account when extracting features from raw polarization
events, which inspires our RPPP module.

As depicted in Figure 3 (c), RPPP takes as input the raw
polarization event tensor E and outputs the extracted fea-
tures FX ∈ RC×H

2 ×W
2 , where X ∈ {I, A,D} and C is

the channel number. Five convolution layers are applied to
E to match five different polarization patterns in the fea-
ture extraction process. The stride of these convolutions is
set to 2 to match the stride of the polarizer array, which
enables learning a set of translation-invariant features. The
extracted features are then concatenated and fused by a 1×1
convolution. Formally, the RPPP module can be denoted as:

FX = ψr
31(⟨ψr

32(
↖
E), ψr

32(
↗
E), ψr

32(
↙
E), ψr

32(
↘
E), ψr

22(E)⟩),
(4)

where ψr
ks is a k×k convolution layer with a stride of s fol-

lowed by a ReLU activation function; ⟨ ⟩ denotes the con-
catenation operation over the channel dimension; and ↖,
↗, ↙, and ↘ indicate padding the tensor with one zero
in top-left, top-right, bottom-left, and bottom-right bound-
aries, respectively, which enables the four ψr

32 to extract
features under four different polarization patterns.

4.4. Cross-Modality Attention Enhancement

Channel-/spatial-wise attention mechanisms [21, 28, 51]
are widely used in image reconstruction works to force the
deep features to be more focused on the important chan-
nels/regions, because they can effectively select useful fea-
tures. Our CMAE module enhances features via concurrent
channel and spatial attention for better polarization recon-
struction. The key point of the CMAE module is the obser-
vation that the intensity frame, AoLP, and DoLP depicting

the same scene can have similar features (e.g., shape and
edges) and complementary information (e.g., in Figure 3
(b), the black car on the bottom right of the scene shares
similar intensity with its surroundings and presents distinc-
tive intensity to the bottom-left white car, while the oppo-
site is true in the AoLP and DoLP images), which reveals
the potential that the features in the three modalities could
help each other for better feature enhancement.

Given the input features from three modalities
F in
I , F in

A , F in
D ∈ RC×H

2 ×W
2 , the CMAE module, il-

lustrated in Figure 3 (d), outputs both channel-wise and
spatial-wise attention enhanced features F out

I , F out
A , and

F out
D , by multiplying the input features with a same-shape

attention matrix which is obtained via cross-modality con-
text exploration. We adopt the enhanced spatial attention
(ESA) block [28] in our CMAE to explore cross-modality
contextual cues in a lightweight and efficient manner.
Mathematically, CMAE is defined as:

Fc = ⟨F in
I , F in

A , F in
D ⟩, F ′

c = ψr
11(Fc),

W = σ(ψ11(F
′
c + U(ψr

31(P44(ψ
r
42(F

′
c)))))),

F out
I , F out

A , F out
D = ⟩W ∗ Fc⟨, (5)

where W ∈ R3C×H
2 ×W

2 is an element-wise attention ma-
trix; σ is the Sigmoid function; U is a bilinear upsampling;
Pmn is a max pooling with a kernel size of m and stride of
n; and ⟩ ⟨ denotes the split over the channel dimension.

4.5. Loss Function

We follow previous event-to-video methods (e.g., [37,
41]) to use the LPIPS distance function [54] as the re-
construction loss for the intensity, i.e., Li = ℓlpips. For
the reconstructed AoLP and DoLP images, we combine
the LPIPS loss [54] with MSE and SSIM loss [45], i.e.,
La = Ld = αℓlpips + βℓmse + γℓssim, to force the E2P to
output the absolute polarization values. We empirically set
the balancing parameters α, β, and γ to 1, 50, and 1, respec-
tively. Finally, the overall loss function is:

Loverall = wiLi +La +Ld, (6)

where a weighting parameter wi = 3 is used to adjust the
magnitude of the intensity loss Li.

5. Experiments
5.1. Training Setup

We implement E2P in PyTorch [33] and train it for 80
epochs with a batch size of 10 using the Adam optimizer.
We set the initial learning rate to 0.001 and decay it by
η = 0.3 at the 50th and 70th epochs. We augment the
training data using random cropping with a crop size of
112 × 112 while keeping the upper left pixel of the patch
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Figure 4. Quantitative comparison of E2P against the SOA event-to-polarization method [15] (Table 2 a) on E2PD synthetic testing set.

with the polarization angle of 90◦. The initial training
takes 15 hours on a Tesla V100 GPU. We use three met-
rics for the validation and ablation of our method: mean
squared error (MSE), structural similarity index measure
(SSIM) [45], and perceptual similarity (LPIPS) [54]. For
SSIM, higher is better, while for MSE and LPIPS, lower is
better. We compare the effectiveness of E2P to the SOA
event-to-polarization method Polarization FireNet [15] on
both synthetic and real polarization events in the compar-
isons shown in Figures 4, 5, and 6 and ablation study in
Table 2. We compared both original and retrained FireNets.

5.2. Comparison to Prior Work

Qualitative Comparison. Figure 5 qualitatively demon-
strates the advantages of our method: (i) our E2P is able
to reconstruct intensity frames with a HDR (e.g., the bot-
tom left example) and less motion blur (e.g., the top right
example); (ii) the AoLP images from our method have less
noise for the background regions; and (iii) our E2P succeeds
in correct DoLP measurement of the scenes, especially for
highly polarized objects/regions such as the car windshield
and wet roads (pointed by a yellow circle) which pose great
challenges for Polarization FireNet [15].

Quantitative Comparison. From Figure 4 we can see
that our E2P (Table 2 j) produces more accurate polariza-
tion than the state-of-the-art event-to-polarization method
Polarization FireNet [15] (Table 2 a) by a significant mar-
gin for all three modalities in terms of all three evaluation
metrics on the E2PD synthetic testing set.

Validation on Real PDAVIS Data. We also tested E2P
on real polarization events recorded by PDAVIS [15] to val-
idate its generalizability. Two scenes are shown in Figure
6, which are more challenging than the ones shown in Fig-
ure 5 due to factors including high dynamic range. Because
of the high dynamic range of the events, both Polarization
FireNet [15] and our E2P can recover the intensity details
in overexposed regions (e.g., the car and buildings in the
left example) and underexposed parts (e.g., the person in the
right scene). Our E2P produces more accurate measurement
of polarization than Polarization FireNet [15], which tends
to reconstruct noisy AoLP and inaccurate DoLP. And E2P
does much more accurate measurement of polarization than
the PDAVIS frames in difficult lighting conditions (e.g., in
the right example, the DoLP of the person in darkness from
the PDAVIS frame is zero due to the limited dynamic range

of the polarization frame, while our method can reconstruct
the reasonable DoLP from the polarization events). This
shows the great potential of our E2P to benefit downstream
practical applications such as car/person detection in chal-
lenging scenes.

5.3. Comparisons with Stock and Retrained
FireNets

Table 2 a, b, c, and d detail the results of a series of
experiments to explore whether E2P provides more accu-
rate polarization compared with simpler architectures. First,
we replaced the original FireNet [41] used in the Polariza-
tion FireNet [15] (a) with a more powerful event-to-video
network E2VID [37] (b, Polarization E2VID). The com-
parison results in Table 2 a and b show that under the
paradigm of handling four types of polarization events in-
dependently, the use of a more powerful event-to-video net-
work brings only a minor accuracy improvement. Second,
we retrained the FireNet architecture to use three FireNet
branches to independently predict Stokes elements (i.e., S0,
S1 and S2) (c, FireNet-S) or polarization (i.e., intensity,
AoLP and DoLP) (d, FireNet-P). These both produce bet-
ter results than both a and b, indicating that directly esti-
mating Stokes elements or polarization is a better way to
reconstruct polarization. These results led us to our devel-
opment of E2P (j) which estimates polarization from the
polarization events using the RPPP features and CMAE in-
tegration blocks; it clearly is more accurate than any FireNet
variant by a significant margin.

5.4. Ablation Study

How important are the elements of E2P?
Effectiveness of Rich Polarization Pattern Percep-

tion. We first define and train a base model (Base, Table
2 e) that is based on E2P (j) but with CMAE removed
and RPPP replaced with a 2 × 2 convolution layer with a
stride of 2. Base has the same architecture as FireNet-P but
with twice the number of feature channels (i.e., 32 versus
16). By comparing e and dwe can conclude that more fea-
ture channels can help improve accuracy. Adding our RPPP
module to Base improves reconstruction accuracy (i.e., g is
better than e). How important is the structure of RPPP?
RPPP has a receptive field of 4 × 4 and so we replaced the
RPPP in ‘Base + RPPP’ by a vanilla 4×4 convolution layer
with a stride of 2 (K4) and show the results inf. The perfor-
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Figure 5. Qualitative comparison of our E2P against SOA event-to-polarization method [15] on the E2PD synthetic testing data.

mance of ‘Base + K4’ is worse than that of ‘Base + RPPP’,
showing that RPPP can better perceive polarization patterns
from polarization events for polarization reconstruction.

Effectiveness of Cross-Modality Attention Enhance-
ment. How important is CMAE for integrating across
modalities of polarization? Including CMAE to Base can
benefit polarization reconstruction (h is better than e). This
conclusion holds when adding CMAE on ‘Base + RPPP’,
i.e., E2P j is better than g. Furthermore, CMAE is effec-
tive; replacing CMAE by three independent attention en-
hancement (IAE) blocks where each has the same archi-
tecture as CMAE but takes single modality features as in-
put (i.e., ‘Base + RPPP + IAE’, i) performs better than
‘Base + RPPP’ (g) but worse than E2P (j) which has cross-
modality attention enhancement, showing that feature en-
hancement is helpful for polarization reconstruction, and
features from three modalities can help each other for better
feature enhancement.

5.5. Computational Cost

Our E2P is an end-to-end process that directly outputs
intensity, AoLP and DoLP, unlike the Polarization FireNet
[15] which first runs FireNet [41] for each of the four types
of polarization events and then calculates polarization using

(1). All three methods were measured on the same PC with
an NVIDIA GeForce RTX 3080 GPU. Table 3 shows that
E2P is cheaper in FLOPs and quicker than both Polarization
FireNet [15, 41] and Polarization E2VID [37].

5.6. Discussion

E2P has the same limitation as other pure DVS recon-
struction methods. When regions of the input lack incom-
ing events for a long time (e.g., the static background from
our stationary car) E2P’s memory gradually forgets its pre-
vious input. Figure 7 shows such a case. Adaptive integra-
tion of frames and events, as in the hand-crafted comple-
mentary filter method of [15] may address this problem and
would be a promising future work. As the first attempt to
train a network for more robust event-to-polarization recon-
struction, we focus on demonstrating the effectiveness of
this idea. Exploring more architectures (e.g., the powerful
Transformer [43,46,49] or the biologically inspired spiking
neural networks [8, 57]) for more accurate/efficient polar-
ization reconstruction is also an interesting research topic.

6. Conclusion
We present E2P, a fully convolutional recurrent neu-

ral network tailored for event-to-polarization reconstruc-
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Figure 6. Qualitative comparison of our E2P against SOA event-to-polarization method [15] on the E2PD real testing data.

Networks Intensity AoLP DoLP

MSE ↓ SSIM ↑ LPIPS ↓ MSE ↓ SSIM ↑ LPIPS ↓ MSE ↓ SSIM ↑ LPIPS ↓
a Polarization FireNet [15, 41] 0.0779 0.7271 0.4544 0.0751 0.4194 0.6418 0.0146 0.5485 0.5333
b Polarization E2VID [37] 0.0971 0.7086 0.4640 0.0546 0.5728 0.5932 0.0160 0.5883 0.5303
c Retrained FireNet-S 0.0277 0.7839 0.3939 0.0254 0.6005 0.5582 0.0157 0.6791 0.5180
d Retrained FireNet-P 0.0254 0.8303 0.3848 0.0074 0.8318 0.5011 0.0128 0.7699 0.4998

e Base 0.0171 0.8558 0.3565 0.0065 0.8446 0.4908 0.0088 0.8145 0.4674
f Base + K4 0.0170 0.8418 0.3717 0.0074 0.8253 0.5003 0.0077 0.7905 0.4749
g Base + RPPP 0.0134 0.8901 0.3099 0.0064 0.8464 0.4708 0.0062 0.8389 0.4413

h Base + CMAE 0.0128 0.8788 0.3579 0.0066 0.8435 0.4533 0.0044 0.8500 0.4229
i Base + RPPP + IAE 0.0127 0.8932 0.3301 0.0057 0.8507 0.4466 0.0049 0.8464 0.4215

j Base + RPPP + CMAE (E2P) 0.0112 0.9109 0.2862 0.0058 0.8513 0.4143 0.0044 0.8624 0.3908

Table 2. Quantitative ablation results on the E2PD synthetic testing set. Each column codes accuracy from worse (red) to better (green).

Methods FLOPs (G) Params (K) Time (ms)

Polarization FireNet [15, 41] 46.4 38 5.3

Polarization E2VID [37] 558.4 10712 10.5

E2P (Ours) 36.4 517 5.1

Table 3. Computational efficiency comparison of different event-
to-polarization methods for the input polarization events with a
spatial size of 640 × 480. For Polarization FireNet [15] and Po-
larization E2VID [37], the FLOPs and the inference time are four
times as much as FireNet [41] and E2VID [37], respectively, since
inference is needed for each of the four types of polarization events
each with a spatial size of 320× 240.

tion. Our solution is the first deep learning method to di-
rectly reconstruct the polarization angle and degree from the
PDAVIS [15] polarization events. E2P builds on two key
components: a rich polarization pattern perception mod-
ule that effectively extracts features from raw polarization
events and a cross-modality attention enhancement block
that explores cross-modality contextual cues for feature en-
hancement. We also introduce the first large-scale event-to-
polarization dataset to train E2P and stimulate further re-
search in this area. We show that our E2P trained on our
synthetic-real mixed dataset significantly outperforms the
existing event-to-polarization method on the synthetic data
and even performs better than the PDAVIS [15] frames us-
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Figure 7. E2P’s effectiveness is reduced for the static regions that
lack continuous input events.

ing real polarization events in challenging scenes.
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