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Figure 1. RealFusion generates a full 360◦ reconstruction of any object given a single image of it (left column). It does so by leveraging
an existing diffusion-based 2D image generator. From the given image, it synthesizes a prompt that causes the diffusion model to “dream
up” other views of the object. It then extracts a neural radiance field from the original image and the diffusion model-based prior, thereby
reconstructing the object in full. Both appearance and geometry are reconstructed faithfully and extrapolated in a plausible manner.

Abstract

We consider the problem of reconstructing a full 360◦

photographic model of an object from a single image of it.
We do so by fitting a neural radiance field to the image,
but find this problem to be severely ill-posed. We thus take
an off-the-self conditional image generator based on diffu-
sion and engineer a prompt that encourages it to “dream
up” novel views of the object. Using the recent DreamFu-
sion method, we fuse the given input view, the conditional
prior, and other regularizers into a final, consistent recon-
struction. We demonstrate state-of-the-art reconstruction
results on benchmark images when compared to prior meth-
ods for monocular 3D reconstruction of objects. Qualita-
tively, our reconstructions provide a faithful match of the
input view and a plausible extrapolation of its appearance
and 3D shape, including to the side of the object not visible

in the image.

1. Introduction

We consider the problem of obtaining a 360◦ photo-
graphic reconstruction of any object given a single image
of it. The challenge is that a single image does not con-
tain sufficient information for 3D reconstruction. Without
access to multiple views, an image only provides weak ev-
idence about the 3D shape of the object, and only for one
side of it. Even so, there is proof that this task can be solved:
any skilled 3D artist can take a picture of almost any object
and, given sufficient time and effort, create a plausible 3D
model of it. The artist can do so by tapping into their vast
knowledge of the natural world and the objects it contains,
making up for the information missing from the image.

Hence, monocular 3D reconstruction requires combining
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visual geometry with a powerful statistical model of the 3D
world. Diffusion-based 2D image generators like DALL-E
2 [30], Imagen [35], and Stable Diffusion [33] are able to
generate high-quality images from ambiguous inputs such
as text, showing that powerful priors for 2D images can be
learned. However, extending them to 3D is not easy be-
cause, while one can access billions of 2D images for train-
ing [36], the same cannot be said for 3D data.

A simpler approach is to extract or distill 3D informa-
tion from an existing 2D generator. A 2D image genera-
tor can in fact be used to sample or validate multiple views
of a given object, which can then be used to perform 3D
reconstruction. This idea was already demonstrated with
GAN-based generators for simple data like faces and syn-
thetic objects [2, 6, 8, 24, 25, 47]. Better 2D generators have
since resulted in better results, culminating in methods such
as DreamFusion [27], which can produce high-quality 3D
models from an existing 2D generator and text.

In this paper, we port distillation approaches from text-
based generation to monocular 3D reconstruction. This is
not a trivial change because conditioning generation on an
image provides a much more fine-grained specification of
the object than text. This in turn requires the 2D diffusion
model to hallucinate new views of a specific object instead
of some object of a given type. The latter is difficult because
the coverage of generator models is limited [1], meaning
that not every version of an object is captured well by the
model. We find empirically that this is a key problem.

We address this issue by introducing RealFusion, a new
method for 3D reconstruction from a single image. We ex-
press the object’s 3D geometry and appearance by means of
a neural radiance field. Then, we fit the radiance field to the
given input image by minimizing the usual rendering loss.
At the same time, we sample random other views of the
object, and constrain them with the diffusion prior, using a
technique similar to DreamFusion.

We find that, due to the coverage issue, this idea does
not work well out of the box, but can be improved via ad-
equately conditioning the 2D diffusion model. The idea
is to configure the prior to “dream up” or sample images
that may plausibly constitute other views of the given ob-
ject. We do so by automatically engineering the diffusion
prompt from random augmentations of the given image. In
this manner, the diffusion model provides sufficiently strong
constraints to allow meaningful 3D reconstruction.

In addition to setting the prompt correctly, we also add
some regularizers: shading the underlying geometry and
randomly dropping out texture (also similar to DreamFu-
sion), smoothing the normals of the surface, and fitting the
model in a coarse-to-fine fashion, capturing first the overall
structure of the object and only then the fine-grained details.
We also focus on efficiency and base our model on Instant-
NGP [23]. In this manner, we achieve reconstructions in the

span of hours instead of days if we were to adopt traditional
MLP-based NeRF models.

We assess our approach by using random images cap-
tured in the wild as well as existing benchmark datasets.
Note that we do not train a fully-fledged 2D-to-3D model
and we are not limited to specific object categories; rather,
we perform reconstruction on an image-by-image basis us-
ing a pretrained 2D generator as a prior. Nonetheless, we
can surpass quantitatively and qualitatively previous single-
image reconstructors, including Shelf-Supervised Mesh
Prediction [50], which uses supervision tailored specifically
for 3D reconstruction.

Qualitatively, we obtain plausible 3D reconstructions
that are a good match for the provided input image (Fig. 1).
Our reconstructions are not perfect, as the diffusion prior
clearly does its best to explain the available image evidence
but cannot always match all the details. Even so, we be-
lieve that our results convincingly demonstrate the viability
of this approach and trace a path for future improvements.

To summarize, we make the following contributions:
(1) We propose RealFusion, a method that can extract from
a single image of an object a 360◦ photographic 3D recon-
struction without assumptions on the type of object imaged
or 3D supervision of any kind; (2) We do so by leveraging
an existing 2D diffusion image generator via a new single-
image variant of textual inversion; (3) We also introduce
new regularizers and provide an efficient implementation
using InstantNGP; (4) We demonstrate state-of-the-art re-
construction results on a number of in-the-wild images and
images from existing datasets when compared to alternative
approaches.

2. Related work

Radiance fields. The problem of reconstructing photom-
etry and geometry together has been dramatically revital-
ized by the introduction of neural radiance fields (RFs).
NeRF [20] in particular noticed that a coordinate MLP pro-
vides a compact and yet expressive representation of 3D
fields, and can be used to model RFs with great effective-
ness. Many variants of NeRF-like models have since ap-
peared. For instance, some [18, 41, 43] use sign distance
functions (SDFs) to recover cleaner geometry. These ap-
proaches assume that dozens if not hundreds of views of
each scene are available for reconstruction. Here, we use
radiance fields for single-image reconstruction by using a
diffusion model to “dream up” the missing views.

Few-view reconstruction. Many authors have attempted
to improve the statistical efficiency of NeRF-like models by
learning or incorporating various kinds of priors. Most of
these approaches train deep networks specifically for the
goal of inferring NeRFs from a small number of views;
examples include IBRNet [44], NeRF-WCE [9], Pixel-
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Figure 2. Method diagram. Our method optimizes a neural ra-
diance field using two objectives simultaneously: a reconstruction
objective and a prior objective. The reconstruction objective en-
sures that the radiance field resembles the input image from a spe-
cific, fixed view. The prior objective uses a large pre-trained dif-
fusion model to ensure that the radiance field looks like the given
object from randomly sampled novel viewpoints. The key to mak-
ing this process work well is to condition the diffusion model on
a prompt with a custom token ⟨e⟩, which is generated prior to re-
construction using single-image textual inversion.

NeRF [51], NeRFormer [31], and ViewFormer [16]. These
models still generally require more than one input view at
test time and multi-view data for training. Closer to our
work, NeRF-on-a-Diet [13] reduces the number of images
needed for NeRF optimization by generating random views
and measuring their “semantic compatibility” via CLIP em-
beddings [28], but it also still requires several input views.

Single-view reconstruction. Some authors have at-
tempted to recover full 3D representations from single im-
ages, but this generally requires multi-view data for train-
ing, as well as learning models that are specific to a spe-
cific object category. 3D-R2N2 [4], Pix2Vox [48], and
LegoFormer [49] learn to reconstruct volumetric represen-
tation of simple objects, mainly from synthetic data like
ShapeNet [3]. More recently, CodeNeRF [14] predicts a
full radiance field and AutoRF [22] learns a similar autoen-
coder specifically for cars. Shelf-Supervised Mesh Predic-
tion [50] and SS3D [42] learn to reconstruct a broad set of
object categories by refining a mesh extracted from a coarse
predicted volume. The former learns independent models
for each cateogry, whereas the latter unites them into a uni-
fied model via distillation.

Extracting 3D models from 2D generators. Several au-
thors have proposed to extract 3D models from 2D image
generators, originally using GANs [2, 6, 8, 24, 25, 47]. Also
related to our work, CLIP-Mesh [15] and Dream Fields [12]
use a pre-trained image-text model [28] to condition 3D
generation on textual prompts and do not require 3D su-
pervision. Recently, DreamFusion [27] builds on this idea
using a diffusion model as a prior. These models, however,
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Figure 3. Examples demonstrating the level of detail of infor-
mation captured by the optimized embedding ⟨e⟩. Rows 1-
2 show input images and masks. The images are used to opti-
mize ⟨e⟩ via our single-image textual inversion process. Rows 3-5
show examples of 2D images generated using ⟨e⟩ in new prompts,
which we hope demonstrate the type of information encoded in
⟨e⟩. Rows 6-7 show RealFusion’s output, optimized using the
prompt “An image of a ⟨e⟩”.

are used as either pure generators or generators conditioned
on vague cues such as class identity or textual descriptions.
Here, we build on the DreamFusion approach, extending the
idea to single-view reconstruction.

Recently, the authors of [46] have proposed to directly
generate multiple 2D views of an object, which can then be
reconstructed in 3D using a NeRF-like model. This is also
reminiscent of our approach, but their model requires multi-
view data for training, is only tested on synthetic data, and
requires to explicitly sample multiple views for reconstruc-
tion (in our case they remain implicit).
Diffusion models. Diffusion denoising probabilistic
models are a class of generative models based on iteratively
reversing a Markovian noising process. Early works
formulated the problem as learning a variational lower
bound [10], or framed it as optimizing a score-based gener-
ative model [37, 38] or as the discretization of a continuous
stochastic process [39]. Recent improvements include the
use of faster and deterministic sampling [10, 19, 45], class-
conditional models [5, 38], text-conditional models [26],
and modeling in latent space [34].

3. Method
We review the background and notation in Sec. 3.1, and

then discuss our RealFusion method in Sec. 3.2.
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3.1. Radiance fields, diffusion and distillation

Radiance fields. A radiance field (RF) is a pair of func-
tions (σ(x), c(x)) mapping a 3D point x ∈ R3 to an opac-
ity value σ(x) ∈ R+ and a color value c(x) ∈ R3. The RF
is called neural when these two functions are implemented
by a neural network.

The RF represents the shape and appearance of an ob-
ject. In order to generate an image of it, one renders the
RF using the emission-absorption model [21]. This can be
modeled as a function I = R(σ, c, π) ∈ R3×H×W that ex-
tracts a color image I from the radiance field (σ, c) given
a viewpoint π ∈ SE(3). The rendering function R(σ, c, π)
is differentiable, which allows training the model by means
of a standard optimizer. Specifically, the RF is fitted to a
dataset D = {(I, π)} of images I with known camera pa-
rameters by minimizing the L2 image reconstruction error

Lrec(σ, c;D) =
1

|D|
∑

(I,π)∈D

∥I −R(σ, c, π)∥2. (1)

In order to obtain good-quality results, one typically re-
quires a dataset of dozens or hundreds of views.

Here, we consider the case in which we are given ex-
actly one input image I0 corresponding to some (unknown)
camera π0. In this case, we can also assume any standard
viewpoint π0 for that single camera. Optimizing Eq. (1)
with a single training image leads to severe over-fitting: it
is straightforward to find a pair (σ, c) that has zero loss and
yet does not capture any sensible 3D model of the object.
Below we will leverage a pre-trained 2D image prior to (im-
plicitly) dream up novel views of the object and provide the
missing information for 3D reconstruction.
Diffusion models. A diffusion model draws a sample
from a probability distribution p(I) by inverting a process
that gradually adds noise to the image I . The diffusion pro-
cess is associated with a noising schedule {αt ∈ (0, 1)}Tt=1,
which defines how much noise is added at each time step.
The noisy version of sample I at time t can then be written
It = αtI + σtϵ, where ϵ ∼ N (0, I), is a sample from a
Gaussian distribution and σ2

t = 1 − α2
t . One then learns a

denoising neural network ϵ̂ = Φ(It; t) that takes as input the
noisy image It and the noise level t and predicts the noise
component ϵ. Iterated applications of the network generate
I = I0 from IT ∼ N (0, I).

The diffusion model is trained on large collections D′ =
{I} of images by minimizing the loss

Ldiff(Φ;D′) = 1
|D′|

∑
I∈D′

||Φ(αtI + σtϵ; t)− ϵ||2. (2)

This model can be easily extended to draw samples from
a distribution p(x|e) conditioned on a prompt e. Condition-
ing on the prompt is obtained by adding e as an additional

input of the network Φ, and the strength of conditioning can
be controlled via classifier-free guidance [5, 11].
DreamFusion and Score Distillation Sampling (SDS).
Given a 2D diffusion model p(I|e) and a prompt e, Dream-
Fusion extracts from it a 3D rendition of the corresponding
concept, represented by a RF (σ, c). It does so by randomly
sampling a camera parameter π, rendering a corresponding
view I , assessing the likelihood of the view based on the
model p(I|e), and updating the RF to increase the likeli-
hood of the generated view based on the model.

In practice, DreamFusion uses the denoising network as
a frozen critic and takes a gradient step

∇(σ,c)LSDS(σ, c;π, e, t) =

Et,ϵ

[
w(t)(Φ(αtI + σtϵ; t, e)− ϵ) · ∂I

∂(σ, c)

]
, (3)

where I = R(σ, c, π) is the image rendered from a
randomly-sampled viewpoint π and w(t) is a timestep-
dependent weighting function. This process is called Score
Distillation Sampling (SDS).

One final aspect of DreamFusion is essential for under-
standing our contribution in the following section: Dream-
Fusion finds that it is necessary to use classifier-free guid-
ance [5] with a very high guidance weight of 100, much
larger than one would use for image sampling, in order to
obtain good 3D shapes. As a result, the generations tend
to have limited diversity; they produce only the most likely
objects for a given prompt, which is incompatible with our
goal of reconstructing any given object.

3.2. RealFusion

Our goal is to reconstruct a 3D model of the object con-
tained in a single image I0, utilizing the prior captured in the
diffusion model Φ to make up for the missing information.
We do this by optimizing a radiance field using two simul-
taneous objectives: (1) a reconstruction objective (Eq. (1))
from a fixed viewpoint, and (2) a SDS-based prior objective
(Eq. (3)) on novel views randomly sampled at each itera-
tion. Figure 2 provides a diagram of the method.
Single-image textual inversion as a substitute for al-
ternative views. The most important component of our
method is the use of single-image textual inversion as a sub-
stitute for alternative views. Ideally, we would like to con-
dition our reconstruction process on multi-view images of
the object in I0, i.e., on samples from p(I|I0).

Since these images are not available, our idea is to engi-
neer a text prompt e(I0) specifically for image I0 as a proxy
for this multi-view information, i.e., as an approximation
of p(I|I0). We do so by generating random augmentations
h(I0), h ∈ H of the input image, which serve as pseudo-
alternative-views. We use these augmentations as a mini-
dataset D′ = {h(I0)}h∈H and optimize the diffusion loss
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Figure 4. Qualitative results. RealFusion reconstructions from a single input view. Each pair of columns shows the textured object and
the underlying 3D shape, as a shaded surface. Different pairs of columns show different viewpoints.

Ldiff(Φ(·; e(I0))) of Eq. (2) with respect to the prompt e(I0),
while freezing all other text embeddings and model param-
eters.

In practice, our prompt is derived automatically from the
template “an image of a ⟨e⟩”, where “⟨e⟩” (= e(I0)) is a
new optimizable token introduced to the vocabulary of the
text encoder of our diffusion model (see the supplementary
material for details). A caption or description of I0 is not
needed. Our optimization procedure mirrors and general-
izes the recently-proposed textual-inversion method of [7].
Differently from [7], we work in the single-image setting
and utilize image augmentations for training rather than
multiple views.

To help convey the intuition behind ⟨e⟩, consider an at-
tempt at reconstructing an image of a fish using the generic
text prompt “An image of a fish” with losses (2) and (3). In
our experience, this often produces a reconstruction which
looks like the input fish from the input viewpoint, but looks
like some different, more-generic fish from the backside.
By contrast, using the prompt “An image of a ⟨e⟩”, the re-
construction resembles the input fish from all angles. An
example of exactly this case is shown in Fig. 7, and Fig. 3

demonstrates the amount of detail captured in the embed-
ding ⟨e⟩.

Coarse-to-fine training. We use the diffusion prior de-
scribed above to optimize an RF in a coarse-to-fine man-
ner. Before describing our coarse-to-fine training method-
ology, we first briefly introduce the underlying RF model,
i.e., InstantNGP [23]. InstantNGP is a grid-based model
which stores features at the vertices of a set of feature grids
{Gi}Li=1 at multiple resolutions. The resolution is chosen to
be a geometric progression between the coarsest and finest
resolutions, and feature grids are trained simultaneously.

We choose InstantNGP over a conventional MLP due to
its computational efficiency. However, InstantNGP tends to
produce small irregularities on the surface of the object. We
find that training in a coarse-to-fine manner helps to allevi-
ate these issues: for the first half of training we only opti-
mize the lower-resolution feature grids {Gi}L/2

i=1 , and then
in the second half of training we optimize all feature grids
{Gi}Li=1. Using this strategy, we obtain the benefits of both
efficient training and high-quality results.
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Figure 5. Qualitative comparison with prior work. We show
the results of our method and the category-level method of [50] on
real-world images from the CO3D dataset [31]. Each pair of rows
show two novel views produced by [50] and our method. For [50],
we use category-specific models for each CO3D category (in this
case, motorcycles, cups, and backpacks). Despite not requiring
any category-specific information, our method is able to recon-
struct objects at a higher level of detail than [50].

Figure 6. Diversity of 3D reconstructions from a single image.
Above, we see our method’s ability to generate a diverse set of ob-
ject reconstructions given the same input image. In particular, the
method produces different textures on the backsides of the gener-
ated objects, despite all objects matching the input image from the
reference view.

Normal vector regularization. We introduce a regular-
ization term to encourage our geometry to have smoothly
varying normal vectors. Notably, we perform this regular-
ization in 2D rather than in 3D because we found that it
reduces the variance of the regularizer and improves results.

At each iteration, in addition to computing RGB and
opacity values, we also compute normals for each point
along the ray and aggregate these via the ray marching equa-
tion to obtain normals1 N ∈ R3×H×W . Our loss is:

Lnormals = ∥N − stopgrad(blur(N, k))∥2 (4)

1Normals may be computed either by taking the gradient of the density
field or by using finite differences. We found that using finite differences
works well in practice.

F-score CLIP-similarity

[50] Ours [50] Ours

Backpack 7.58 12.22 0.72 0.74
Chair 8.26 10.23 0.65 0.76
Motorcycle 8.66 8.72 0.69 0.70
Orange 6.27 10.16 0.71 0.74
Skateboard 7.74 5.89 0.74 0.74
Teddybear 12.89 10.08 0.73 0.82
Vase 6.30 9.72 0.69 0.71

Mean 8.24 9.58 0.70 0.74

Table 1. Quantitative comparison. We compare our method with
Shelf-Supervised [50] on seven object categories. The F-score and
CLIP-similarity metrics are designed to measure the quality of re-
construction shape and appearance, respectively. For both metrics,
higher is better. Metrics are averaged over three images per cate-
gory. Our method outperforms [50] in aggregate, despite the fact
that [50] uses a different category-specific model for each category.

where stopgrad is a stop-gradient operation and blur(·, k) is
a Gaussian blur with kernel size k (we use k = 9).
Mask loss. In addition to the input image, our model also
utilizes a mask of the object that one wishes to reconstruct.
In practice, we use an off-the-shelf image matting model to
obtain this mask for all images. The loss is simply the L2

norm of the difference between the rendered opacities from
the fixed reference viewpoint M̂ = R(σ, π0) ∈ RH×W and
the object mask M : Lmask = ∥M̂ −M∥2

Our final objective then consists of four terms:

∇σ,cL = ∇LSDS + λnormals · ∇Lnormals

+ λimage · ∇Limage + λmask · ∇Lmask (5)

where the first two terms are regularizers and the remaining
ones are data terms.

4. Experiments
4.1. Implementation details

Regarding hyperparameters, we use nearly the same
set of hyper-parameters for all experiments—there is no
per-scene hyper-parameter adjustment.2. For our diffusion
model prior, we employ the open-source Stable Diffusion
model [34] trained on the LAION [36] dataset. At each
optimization step, we first render from the reconstruction
camera and compute our reconstruction losses Limage and
Lmask. We then render from a randomly sampled camera to
obtain a novel view and use this view for LSDS and Lnormals.
We use λimage = 5.0, λmask = 0.5, and λnormals = 0.5.

2There is one small exception to this rule, which is that for a small
number of images where the camera angle was clearly at an angle higher
than 15◦ above the horizontal plane, we used a camera angle of 30 or 40◦.
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Figure 7. A visualization of the effect of single-image textual inversion on reconstruction quality. In each pair of rows, the top row
shows the result of utilizing a standard text prompt for our diffusion-model-based loss (e.g., “An image of a statue of a cat”). The bottom
row shows the result of utilizing a text prompt optimized for the input image in a fully-automatic manner; this textual inversion process
dramatically improves object reconstruction.

Figure 8. Effect of coarse-to-fine training. The top row of each
pair is generated by optimizing all levels of a multi-resolution 3D
feature grid from the first optimization step, whereas he bottom
row is optimized in a coarse-to-fine manner.

Regarding camera sampling, lighting, and shading, we
keep nearly all parameters the same as [27]. We describe
our setup in detail in the supplementary material.

4.2. Quantitative results

There are only few methods that attempt to recon-
struct arbitrary objects in 3D. The most recent and best-
performing of these is Shelf-Supervised Mesh Predic-
tion [50], which we compare to here. They provide 50 pre-
trained category-level models for 50 different categories in
OpenImages [17]. Since we aim to compute metrics us-
ing 3D or multi-view ground truth, we evaluate on seven
categories from the CO3D dataset [32] with corresponding
OpenImages categories. For each of these seven categories,
we select three images at random and run both RealFusion

Figure 9. Effect of normal smoothness on reconstruction qual-
ity. Each pair of rows show the reconstruction without and with
the normal smoothness regularization term (4). The regularizer
improves the visual appearance of surfaces and reduces the num-
ber of irregularities on the surface of reconstructed objects. In
most cases, we also find that it helps to improve the overall real-
ism of the reconstructed shape.

and Shelf-Supervised to obtain reconstructions.
We first test the quality of the recovered 3D shape in

Fig. 5. [50] directly predicts a mesh, while we extract
a mesh from our predicted radiance field using marching
cubes. CO3D comes with sparse point-cloud reconstruc-
tions of objects obtained using multi-view geometry. For
evaluation, we sample points from the reconstructed meshes
and align them optimally with the ground truth point cloud
by first estimating a scaling factor and then using Iterated
Closest Point (ICP). Finally, we compute the F-score [40]
with a threshold of 0.05 to measure the distance between
the predicted and ground truth point clouds. Results are
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Figure 10. Comparing Stable Diffusion and CLIP priors.
Results from two different priors: Stable Diffusion [34] and
CLIP [29]. Stable Diffusion yields much higher-quality recon-
structions, capturing more plausible object shapes.

Figure 11. Failure cases. In the first two examples, the model
simply fails to properly reconstruct the object geometry, and pro-
duces a semi-transparent scene which lacks a well-defined geom-
etry. The third case is different in that the geometry is highly re-
alistic, but the texture paints two Pikachu faces, one on each side
of the object; this problem is sometimes called the Janus problem,
after the two-faced Roman god.

shown in Tab. 1.
In order to evaluate the quality of the reproduced ap-

pearance, we also compare novel-view renderings from our
and their method. Ideally, these renderings should produce
views that are visually close to the real views. In order to
test this hypothesis, we check whether the generated views
are close or not to the other views given in CO3D. We report
(Tab. 1) the CLIP embedding similarity of the generated im-
ages with respect to the closest CO3D view available (i.e.,
the view with maximum similarity).

4.3. Qualitative results

Fig. 4 shows additional qualitative results from multi-
ple viewpoints. Fig. 6 explores the ability of RealFusion
to sample the space of possible solutions by repeating the
reconstruction several times, starting from the same input
image. There is little variance in the reconstructions of the
front side of the object, but significant variance for its back-
side.

Fig. 11 shows two typical failure modes of RealFusion:
in some cases, the model fails to converge, and in others, it
copies the front view to the back of the object, even if this
is not semantically correct.

4.4. Analysis and Ablations

One of the key components of RealFusion is our use of
single-image textual inversion, which allows the model to
correctly imagine novel views of a specific object. Fig. 7
shows that this component plays indeed a critical role in the
quality and consistency of the reconstructions. Without tex-
tual inversion, the model often reconstructs the backside of
the object in the form of a generic instance from the object
category. For example, the backside of the cat statue in the
top row of Fig. 7 is essentially a different statue of a more
generic-looking cat, whereas the model trained with textual
inversion resembles the true object from all angles.

Other components of the model are also significant.
Fig. 8 shows that coarse-to-fine optimization reduces the
presence of low-level artifacts and results in smoother, visu-
ally pleasing surfaces. Fig. 9 shows that the normal smooth-
ness regularizer of Eq. (4) further results in smoother, more
realistic meshes. Fig. 10 shows that using Stable Diffusion
works significantly better than relying on an alternative such
as CLIP.

5. Conclusions

We have introduced RealFusion, a new approach to ob-
tain full 360◦ photographic reconstructions of any object
given a single image of it. To achieve this, we leverage
an off-the-shelf diffusion model trained using only pairs
of 2D images and text (but no 3D supervision) and opti-
mize a token embedding to represent the object depicted in
the image. We use this conditional prior to learn an effi-
cient, multi-scale radiance field representation of the recon-
structed object, incorporating an additional regularizer to
smooth out the reconstructed surface. The resulting method
can generate plausible 3D reconstructions of objects cap-
tured in the wild which are faithful to the input image. Fu-
ture improvements could be obtained by specializing the
diffusion model for the task of new-view synthesis.

Ethics. We use the CO3D dataset in a manner compati-
ble with their terms; it does not contain personal informa-
tion. For further details on ethics, data protection, and copy-
right please see https://www.robots.ox.ac.uk/
˜vedaldi/research/union/ethics.html.
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