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Figure 1. We show three groups of surface reconstruction from multi-view images. The front and back faces are rendered in blue and
yellow respectively. Our method (left) is able to reconstruct high-fidelity and intricate surfaces of arbitrary topologies, including those
non-watertight structures, e.g. the thin single-layer shoulder strap of the top (middle). In comparison, the state-of-the-art NeuS [48] method
(right) can only generate watertight surfaces, resulting in thick, double-layer geometries.

Abstract
Recent progress in neural implicit functions has set new

state-of-the-art in reconstructing high-fidelity 3D shapes
from a collection of images. However, these approaches are
limited to closed surfaces as they require the surface to be
represented by a signed distance field. In this paper, we pro-
pose NeAT, a new neural rendering framework that can learn
implicit surfaces with arbitrary topologies from multi-view
images. In particular, NeAT represents the 3D surface as a
level set of a signed distance function (SDF) with a validity
branch for estimating the surface existence probability at the
query positions. We also develop a novel neural volume ren-
dering method, which uses SDF and validity to calculate the
volume opacity and avoids rendering points with low valid-
ity. NeAT supports easy field-to-mesh conversion using the
classic Marching Cubes algorithm. Extensive experiments
on DTU [20], MGN [4], and Deep Fashion 3D [19] datasets
indicate that our approach is able to faithfully reconstruct
both watertight and non-watertight surfaces. In particular,
NeAT significantly outperforms the state-of-the-art methods

in the task of open surface reconstruction both quantitatively
and qualitatively.

1. Introduction
3D reconstruction from multi-view images is a funda-

mental problem in computer vision and computer graphics.
Recent advances in neural implicit functions [26, 36, 48, 55]
have brought impressive progress in achieving high-fidelity
reconstruction of complex geometry even with sparse views.
They use differentiable rendering to render the inferred im-
plicit surface into images which are compared with the input
images for network supervision. This provides a promis-
ing alternative of learning 3D shapes directly from 2D im-
ages without 3D data. However, existing neural render-
ing methods represent surfaces as signed distance function
(SDF) [27, 55] or occupancy field [36, 38], limiting their
output to closed surfaces. This leads to a barrier in recon-
structing a large variety of real-world objects with open
boundaries, such as 3D garments, walls of a scanned 3D
scene, etc. The recently proposed NDF [10], 3PSDF [6]
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and GIFS [56] introduce new implicit representations sup-
porting 3D geometry with arbitrary topologies, including
both closed and open surfaces. However, none of these rep-
resentations are compatible with existing neural rendering
frameworks. Leveraging neural implicit rendering to recon-
struct non-watertight shapes, i.e., shapes with open surfaces,
from multi-view images remains a virgin land.

We fill this gap by presenting NeAT, a Neural render-
ing framework that reconstructs surfaces with Arbitrary
Topologies using multi-view supervision. Unlike previous
neural rendering frameworks only using color and SDF pre-
dictions, we propose a validity branch to estimate the surface
existence probability at the query positions, thus avoiding
rendering 3D points with low validity as shown in Figure
2. In contrast to 3PSDF [6] and GIFS [56], our validity
estimation is a differentiable process. It is compatible with
the volume rendering framework while maintaining its flexi-
bility in representing arbitrary 3D topologies. To correctly
render both closed and open surfaces, we introduce a sign
adjustment scheme to render both sides of surfaces, while
maintaining unbiased weights and occlusion-aware proper-
ties as previous volume renderers. In addition, to reconstruct
intricate geometry, a specially tailored regularization mecha-
nism is proposed to promote the formation of open surfaces.
By minimizing the difference between the rendered and the
ground-truth pixels, we can faithfully reconstruct both the
validity and SDF field from the input images. At reconstruc-
tion time, the predicted validity value along with the SDF
value can be readily converted to 3D mesh with the clas-
sic field-to-mesh conversion techniques, e.g., the Marching
Cubes Algorithm [30].

We evaluate NeAT in the task of multi-view reconstruc-
tion on a large variety of challenging shapes, including both
closed and open surfaces. NeAT can consistently outperform
the current state-of-the-art methods both qualitatively and
quantitatively. We also show that NeAT can provide efficient
supervision for learning complex shape priors that can be
used for reconstructing non-watertight surface only from a
single image. Our contributions can be summarized as:

• A neat neural rendering scheme of implicit surface,
coded NeAT, that introduces a novel validity branch,
and, for the first time, can faithfully reconstruct surfaces
with arbitrary topologies from multi-view images.

• A specially tailored learning paradigm for NeAT with
effective regularization for open surfaces.

• NeAT sets the new state-of-the-art on multi-view re-
construction on open surfaces across a wide range of
benchmarks.

2. Related Work
3D Geometric Representation A 3D surface can be rep-
resented explicitly with voxels [5, 11, 23, 32, 44], point

clouds [1, 12, 24, 31, 53], and meshes [16, 47, 50], or can be
represented implicitly with neural implicit functions, which
have gained popularity for their continuity and the arbitrary-
resolution property. Watertight surfaces could be represented
by occupancy functions [9, 33, 41], signed distance func-
tions [34, 39, 52], or other signed implicits [2, 13]. These
approaches are limited to closed surfaces as they require the
space to be represented as “inside” and “outside.” To lift the
limitation, unsigned distance function (UDF) [10, 45, 46] is
proposed to represent a much broader class of shapes contain-
ing open surfaces. However, the signless property of UDF
prevents itself from applying the classic field-to-mesh conver-
sion techniques [30]. Instead, these UDF approaches support
exporting open surfaces by applying the Ball-Pivoting algo-
rithm [3], meshUDF [17], and Neural Dual Contouring [8],
which are prone to disconnected surface patches with incon-
sistent normals and coherence artifacts. GIFS [56] represents
non-watertight shapes by encoding whether two points are
separated by any surface instead of dividing a 3D space
into predefined inside/outside regions. Three-pole signed
distance function (3PSDF) [6] introduces the null sign in
addition to the conventional in and out labels. The null sign
stops the formation of closed isosurfaces, thus enabling the
representation of both watertight- and open-surfaces. How-
ever, 3PSDF [6] and GIFS [56] model the reconstruction of
open surfaces as a classification problem, thus preventing
these implicit representations from being differentiable. As
a result, these methods do not support differentiable down-
stream tasks like differentiable rendering. Inspired by the
null sign of 3PSDF, we propose to represent an open surface
as a signed distance function with a validity branch to esti-
mate the surface existence probability at the query positions,
which bypasses its limitation of non-differentiability while
keeping its capability of modeling arbitrary shapes.

Implicit Surfaces Reconstruction from Multi-view Im-
ages It is well-known that a 3D database is more chal-
lenging to acquire than a 2D database. As such, learning
shapes from 2D supervision is important and necessary. Mul-
tiple differentiable rendering (DR) techniques have been pro-
posed to circumvent the difficulty of explicit correspondence
matching in 3D reconstruction. Two popular types of DR are
differentiable rasterization [7, 14, 22, 25] and differentiable
ray casting. A popular branch of differentiable ray cast-
ing is surface rendering [21, 26, 27, 37, 55], which assumes
that the ray’s color only relies on the color of the intersec-
tion point. Surface rendering methods represent the geome-
try as an implicit function and learn the surface representa-
tion from 2D images via differentiable rendering techniques.
NeRF [35] and follow-up volume rendering methods assume
that the ray’s color relies on all the sampled points along
the ray. UNISURF [38] improves the reconstruction quality
by shrinking the sample region of volume rendering during
optimization. NeuS [48], VolSDF [54] and HF-NeuS [49]
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Figure 2. (a) is the signed distance function (SDF); (b) is the validity
probability function V; (c) is the watertight surface extracted from
(a) SDF; (d) is the open surface extracted from (a) SDF and (b)
validity probability. In our mesh extraction process, we set the SDF
of the 3D query points with low validity (here V < 0.5) to NAN
and extract the open surface with the Marching Cubes algorithm.

develop volume density functions for watertight surfaces
applied to SDFs, which combine the advantages of surface
rendering-based and volume rendering-based methods. How-
ever, as the above methods all rely on the representation of
the signed distance function or occupancy field, they can
only reconstruct watertight shapes. NeuralUDF [29] and
NeUDF [28], two concurrent works, propose to represent
arbitrary surfaces as a UDF and develop unbiased density
functions that correlate the property of UDF with the vol-
ume rendering scheme. However, converting UDF to a mesh
typically suffer from artifacts, inconsistent normals, and
large computational costs. Compared with the UDF-based
approaches, our method represents the scene by a signed dis-
tance function with a validity branch, and thus is compatible
with easy field-to-mesh conversion methods, such as the clas-
sic Marching Cubes algorithm, ensuring high-fidelity and
normal-consistent meshing results from the implicit field.

3. Volumetric Rendering with NeAT

Our representation is able to reconstruct 3D surfaces with
arbitrary topologies without 3D ground-truth data for train-
ing. As shown in Figure 2, by taking the SDF (Figure 2
(a)) and validity probability (Figure 2 (b)) into consideration
together, we acquire additional information that the bottom
line in Figure 2 (a) is invalid. We discard parts of the recon-
structed surface according to the validity score and extract
an open surface as shown in Figure 2 (d) with the Marching
Cubes algorithm [30].

3.1. Formulation

Given N images Igt(k)
N
k=1 with a resolution of (W, H)

together with corresponding camera intrinsics, extrinsics,
and object masks Mgt(k)

N
k=1, our goal is to reconstruct the

surface of the object. The framework of our method is shown
in Figure 3. Given a sampled pixel o on an input image, we
project it to the 3D space and get the sampled 3D points on
the ray emitting from the pixel as {p (t) = o+ tv | t ≥ 0},
where o is the center of the camera and v is the unit direction
vector of the ray. Then, we predict the signed distance value
f(p(t)), validity probability V(p(t)), and the RGB value
c(p(t)) of the points by our fully connected neural networks
called NeAT-Net. Specifically, NeAT-Net includes:

• SDF-Net: a mapping function f(·) : R3 → R to
represent the signed distance field.

• Validity-Net: a mapping function V(·) : R3 → R to
represent the validity probability;

• Color-Net: a mapping function c(·) : R3 → R3 to
predict the per-point color of the 3D space.

The outputs of the three networks are delivered to our
novel NeAT renderer to render images and masks from the
implicit representations. Our renderer supports both open
and closed surfaces, and therefore it provides the capability
of reconstructing arbitrary shapes.

The predicted mask Mpred could be inferred from the
rendering weights w(p(t)) for each sampling point, and the
predicted image Ipred could be calculated from the RGB
c(p(t)) and the rendering weights w(p(t)):

Mpred(o,v) =

∫ +∞

0

w(p(t))dt,

Ipred(o,v) =

∫ +∞

0

w(p(t))c(p(t)))dt.

(1)

The predicted masks and images are used for loss calculation
during training, which will be illustrated in Section 3.3. After
training is completed, we go through the testing module as
shown in Figure 3; we set the SDFs to NAN for 3D points
with V(p) less than 0.5, and feed them to Marching Cubes
algorithm to produce the final mesh.

3.2. Construction of NeAT Renderer

According to Equation 1, one key issue in the rendering
process is to find an appropriate weight function w(p(t)).
We split this task into two steps: 1) building a probability
density function to estimate volume density from SDF; 2)
estimating the weight function w(p(t)) from the volume
density and the validity probability.

Construction of Probability Density Function. Due to
aiming at building arbitrary surfaces, we first introduce the
difference between rendering watertight and open surfaces.
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Figure 3. The framework of our approach. We project a sampled pixel on the input image Igt to 3D to get the sampled 3D points p(t) on a ray.
Next, the SDF-Net, Validity-Net, and Color-Net take p(t) as the input to predict the signed distance f(p(t)), validity probability V(p(t)),
and the RGB c(p(t)), respectively. Then our NeAT renderer generates the color Ipred and the mask Mpred for NeAT-Net optimization. In
the mesh exportation (testing) stage, we update the SDF by assigning the low-validity points with a nan value, thus preventing the decision
boundary from forming at those regions. Finally, we export arbitrary surfaces from the updated SDF with the Marching Cubes Algorithm.
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Figure 4. The SDF rendering scheme only renders the surfaces
when the ray enters the surface from outside to inside. For an
open surface whose surface normal aligns with the back camera’s
viewing direction, the back camera receives an empty rendering.
Our NeAT rendering scheme renders both sides of the surfaces.

The first difference is the rendering of back-faces. The state-
of-the-art watertight surface reconstruction approaches [37,
48, 55] only render the front faces of the surface and ignores
the back faces. Such a scheme would fail for open surfaces:
as shown in Figure 4 (L), the back camera receives an empty
rendering of the open surface. While, we render each surface
point with ray intersections, as shown in Figure 4 (R).

The second difference is the definition of “inside” and
“outside”, which do not exist for non-watertight surfaces.
Therefore, we leverage the local surface normal to determine
the sign of the distance as in 3PSDF [6]. For a local region
around a surface, we use positive normal direction as pseudo
“outside” with positive-signed distance, and vice versa.

We expect that the rendering behaves the same when the

ray crosses a surface from either direction. The state-of-the-
art volume rendering work, NeuS [48], uses logistic density
distribution ϕs(f(p)), also known as the derivative of the
sigmoid mapping function Φs (f(p)), as the probability den-
sity function. However, it is not applicable in our scenario –
for surfaces with opposite normal directions, Φs (f(p)) will
lead to different density values as Φs (f(p)) ̸= Φs (−f(p)).

We therefore modify the SDF value by flipping its sign in
the regions where the SDF value increases along the camera
ray. The probability density function is defined as

σ(p) = ϕs(−Sign(v · n)f(p)), (2)

where v is the unit direction vector of the ray and n is the
gradient of the signed distance function. Such definition
assures the same rendering behaviors when ray enters the
surface from either direction.

Construction of Opaque Density Function. According
to NeuS [48], the weight function w(p(t)) should have two
properties: unbiased and occlusion-aware. Similarly, we de-
fine unbiased rendering weight w(p(t)) with Equation 3 and
define an occlusion-aware weight function based on the
opaque density ρ(t) with Equation 4.

w(p(t)) =
ϕs(−Sign(v · n)f(p(t)))∫ +∞

−∞ ϕs(−Sign(v · n)f(p(t)))

w(p(t)) = exp(−
∫ t

0

ρ(u)du)ρ(t)

(3)

(4)

Solving Equation 3 and Equation 4, we get

ρ(t) =
−dΦs

dt (−Sign(v · n)f(p(t)))
Φs(−Sign(v · n)f(p(t))))

(5)

Please checkout the supplemental for the derivation.
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Figure 5. Illustration of the rendering with validity probability.

Discretization. We adopt the classic discretization scheme
in differentiable volumetric rendering [35,48] for the opacity
and weight function. For a set of sampled points along the
ray {pi = o+tiv|i = 1, ..., n, ti < ti+1}, the rendered pixel
color is

Ipred(o,v) =

n∑
i=1

Πi−1
j=1(1− αj)αici (6)

where ci is the estimated color for the i-th sampling point;
αi is the discrete opacity value in SDF rendering

αi =
Φs(−Sign(v · n)f(p(ti)))− Φs(−Sign(v · n)f(p(ti+1)))

Φs(−Sign(v · n)f(p(ti)))
(7)

Now we have built an unbiased and occlusion-aware vol-
ume weight function that supports rendering the front and
back faces with the SDF representation.

Rendering with Validity Probability. To render both
closed and open surfaces, we multiply the validity prob-
ability of the 3D query points to their opacity value in the
rendering process. The discrete opacity value βi of the i-th
sampled point is

βi = αi · V(p(ti)) (8)

We show a 2D illustration of rendering two objects with
open boundaries in Figure 5. Ray 2 only has two intersec-
tions with the objects due to the existences of open gaps
(marked as dotted lines). Ray 1 and Ray 2 share the same
SDF f(p(ti)) and discrete opacity value αi. However, ac-
cording to the validity branch V(p(ti)), Ray 1 has four valid
regions while Ray 2 only has two. By considering the valid-
ity probabilities, the discrete opacity value βi of the gaps in
Ray 2 are set to zero, avoiding generating false surfaces in
reconstruction.

Therefore, the final rendered pixel color of a surface is

Ipred(o,v) =

n∑
i=1

Πi−1
j=1(1− βj)βici (9)

3.3. Training

We supervise the training of NeAT-Net with five losses.
The first three are RGB Loss, Mask Loss, and Eikonal Loss,
the same as used in previous neural rendering works [48,55].
They are defined as

Lrgb =
∑
i,j

||Ipred(i, j)− Igt(i, j)|| ·Mgt(i, j) (10)

Lmask =
∑
i,j

BCE(Mpred(i, j),Mgt(i, j)) (11)

Leikonal =
1

N

∑
p

(|∂f(p)
∂p

| − 1)2 (12)

where BCE is the binary cross entropy.

Rendering Probability Loss In the physical world, the
existence of surfaces is binary (exist/not exist). As a result,
the validity probability of a 3D sampling point is either 0
(with no surface) or 1 (with surface). We therefore add the
binary cross entropy of V(p) as an extra regularization:

Lbce =
1

N

∑
p

BCE(V(p),V(p)). (13)

Rendering Probability Regularization For real-world
objects with open structures, the surfaces are sparsely dis-
tributed in the 3D space. To prevent NeAT-Net from pre-
dicting redundant surfaces, we introduce a sparsity loss to
promote the formation of open surfaces:

Lsparse =
1

N

∑
p

V(p). (14)

We optimize the following loss function

L = Lrgb + λmask · Lmask + λeikonal · Leikonal

+ λbce · Lbce + λsparse · Lsparse.
(15)

4. Experiments
4.1. Experiment Setup

Tasks and Datasets. We validate NeAT using three
types of experiments. We first conduct multi-view recon-
struction for real-world watertight objects to ensure that
NeAT achieves comparable reconstruction quality on wa-
tertight surfaces. We conduct this experiment on 10 scenes
from the DTU Dataset [20]. Each scene contains 49 or 64
RGB images and masks with a resolution of 1600 × 1200.
Second, we reconstruct open surfaces from multi-view im-
ages. We run this experiment on eight categories from the
Deep Fashion 3D Dataset [19] and five categories from the
Multi-Garment Net Dataset [4], which contain clothes with a
wide variety of materials, appearance, and geometry, includ-
ing challenging cases for reconstruction algorithms, such
as camisoles. Finally, we construct an autoencoder, which
takes a single image as the input and provides validation on
the challenging task of single-view reconstruction on open
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(a) Ref Images (b) Ours (c) NeuS (d) IDR (e) HFS (f) COLMAP

Figure 6. Comparisons on watertight surface reconstruction.

surfaces. We conduct this experiment on the dress category
from the Deep Fashion 3D Dataset [19]. We randomly select
116 objects as the training set and 25 objects as the test set.
All experiments are compared with the SOTA methods for
better verification. To avoid thin closed reconstructions dur-
ing the training process, we employ a smaller learning rate
for the SDF-Net and a larger learning rate for the Validity-
Net. Please refer to the implementation of NeAT-Net in the
supplementary.
Implementation details. For the reconstruction exper-
iments on open surfaces, we render the ground truth
point clouds from Deep Fashion 3D Dataset [19] with Py-
torch3D [40] at a resolution of 2562. To get diverse super-
vision data, we uniformly sample 648 and 64 viewpoints
on the unit sphere for Deep Fashion 3D Dataset and Multi-
Garment Net Dataset (MGN), respectively. For the single
view reconstruction experiment, we uniformly sample 64
viewpoints on the unit sphere as the camera positions. We
use an ResNet-18 [18] encoder to predict a latent code z
describing the surface’s geometry and color. We then use the
concatenation of {z,p} as the input to NeAT-Net (decoder)
to evaluate the SDF, validity, and color at the query positions.
We optimize the autoencoder by comparing the 2D render-
ing and the ground truth image. In the evaluation stage, we
accept a single image as the input and directly export the
evaluated SDF and validity as 3D mesh.

Evaluations. For multiview reconstruction on watertight
surfaces, we measure the Chamfer Distance (CD) with DTU
MVS 2014 evaluation toolkit [20]. For the reconstruction

experiments on open surfaces, we measure the CD with the
PCU Library [51]. For all the experiments, we evaluate the
result meshes at resolution 5123.

4.2. Multiview Reconstruction on Closed Surfaces
We compare our approach with the state-of-the-art vol-

ume and surface rendering based methods - HFS [49],
NeuS [48] and IDR [55], and a classic mesh reconstruc-
tion and novel view synthesis method – NeRF [35]. We
report the quantitative results in Table 1.

We also show visual comparison with a widely-used MVS
method: COLMAP [42, 43]. We show qualitative results in
Fig. 6. The results reconstructed with the proposed method
show comparable quality compared with the state-of-the-art.

CD↓ Ours NeuS IDR NeRF HFS

scan 55 0.47 0.38 0.48 0.66 0.37
scan 69 0.84 0.60 0.77 1.50 0.66
scan 83 1.28 1.43 1.33 1.20 1.27
scan 97 1.09 0.96 1.16 1.96 1.00

scan 105 0.75 0.78 0.76 1.27 0.86
scan 106 0.76 0.52 0.67 0.66 0.57
scan 110 0.80 1.44 0.90 2.61 1.24
scan 114 0.38 0.36 0.42 1.04 0.41
scan 118 0.56 0.46 0.51 1.13 0.52
scan 122 0.55 0.49 0.53 0.99 0.49
average 0.749 0.742 0.753 1.302 0.741

Table 1. Quantitative evals on real-world object reconstruction.
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(a) GT (b) Ours (c) NeuS (d) IDR (e) HFS
Figure 7. Comparisons on open surface reconstruction. Row 1 – 4 are evaluated on Deep Fashion 3D Dataset [19] and Row 5 is evaluated on
Multi-Garment Net Dataset [4]. NeAT is able to reconstruct high-fidelity open surfaces while NeuS [48], IDR [55] and HFS [49] fail to
recover the correct topologies.

CD (×10−3) ↓ Ours NeuS IDR HFS

D3D

long slv upper 4.483 6.864 11.494 9.695
short slv upper 4.517 6.048 9.043 7.800

no slv upper 3.418 4.856 17.710 8.576
long slv dress 4.843 6.135 9.203 8.235
short slv dress 4.276 7.951 8.506 7.705

no slv dress 3.706 5.406 6.785 7.565
pants 5.391 11.847 10.880 16.205
dress 3.889 5.673 6.983 11.644

average 4.315 6.847 10.075 9.678

MGN

LongCoat 7.601 8.038 12.058 10.398
TShirtNoCoat 8.481 9.910 15.709 13.128
ShirtNoCoat 5.281 8.084 9.509 11.299
ShortPants 15.324 15.480 16.329 18.332

Pants 9.191 12.188 19.931 19.414
average 9.176 10.740 14.707 14.514

Table 2. Quantitative evaluation on Deep Fashion 3D
Dataset (D3D) [19] with chamfer distance averaged over five ex-
amples per category, and Multi-Garment Net Dataset (MGN) [4]
with chamfer distance averaged on two examples per category.

4.3. Multiview Reconstruction on Open Surfaces
We conduct this experiment on eight categories from

Deep Fashion 3D [19] and five categories from the MGN

dataset [4]. We compare our approach with two state-of-
the-art volume rendering based methods – NeuS [48] and
HFS [49], and a surface rendering based method – IDR [55].

We report the Chamfer Distance averaged on five exam-
ples for each category from Deep Fashion 3D Dataset [19]
and report the Chamfer Distance averaged on two exam-
ples for each category from Multi-Garment Net Dataset in
Table 2. NeAT generally provides lower numerical errors
compared with the state-of-the-arts. We show qualitative
results in Fig. 7. NeAT also provides lower numerical er-
rors in F-score. Please refer to the supplemental for the
comparisons.

In most cases, NeuS [48] and IDR [55] are able to recon-
struct the geometry with thick, watertight surfaces. While,
for the pants in Figure 7, NeuS fails to recover the shape
of the waist. NeAT is able to reconstruct high-fidelity open
surfaces with consistent normals, including the thin straps of
the camisoles and dresses.

4.4. Single View Reconstruction on Open Surfaces
We construct an autoencoder, which accepts a single im-

age as the input, and exports the 3D mesh as the output. For
this experiment, we compare our approach against the state-
of-the-art single-view reconstruction method: DVR [37] and
the volume rendering based method: NeuS [48].
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Figure 8. With given single-view images, ours predicts accurate
3D geometry of arbitrary shapes with the autoencoder. NeAT
achieves CD = 0.0771 averaged on the 25 objects from the test set,
which outperforms NeuS [48] (CD = 0.0778) and DVR [37] (CD =
0.0789).

The qualitative results is shown in Fig 8. Our method is
able to infer accurate 3D shape representations from single-
view images when only using 2D multi-view images and
object masks as supervision. Qualitatively, in contrast to the
DVR [37] and NeuS [48] autoencoder, our method is able
to reconstruct open surfaces. Quantitatively, our method
achieves CD = 0.0771, which outperforms NeuS (CD =
0.0778) and DVR (CD = 0.0789) averaged on all the 25
objects from the test set.

4.5. Ablation Studies

(a) GT (b) Ours
CD = 0.00362

(c) ℒ!"# = 0
CD = 0.00842

(d) ℒ$%&'$# = 0
CD = 0.00462

Figure 9. Ablation study on the regularizations about validity.

Regularizations on validity. We conduct an ablation study
on the regularizations about validity, i.e. Lbce and Lsparse.
As shown in Figure 9 (c), by setting Lbce = 0, the renderer
tends to generate rendering probability between 0 and 1,
thus resulting in noisy faces in the output mesh; as shown in
Figure 9 (d), by setting Lsparse = 0, the renderer will keep
the redundant surfaces, instead of learning a validity space
as sparse as possible.

Reconstruct with different number of views. We addi-
tionally show results on reconstruction with different number
of views. As shown in Figure 10, our method is able to re-
construct open surfaces even with sparse viewpoints. The
reconstruction quality improves with the increase of views,
quantitively and qualitatively.

(a) GT (b) 64 views
CD = 0.00568

(c) 32 views
CD = 0.00632

(d) 16 views
CD = 0.00763

(e) 8 views
CD = 0.01326

Figure 10. Ablation study on multi-view reconstruction with differ-
ent number of views.

5. Discussions and Conclusions

…

Input Images Ours GT

Figure 11. A failure case: our method fails to reconstruct the thin
stretchers of the umbrella.

Limitations and Future works. Figure 7 Row 1 illustrates
that the void space around the collar is obscured by limited
input views and occlusions, causing it to be mistakenly con-
nected with the jacket’s main body by all reconstruction
methods. In addition, the output normal orientation of NeAT
is influenced by the initialization of SDF-Net. However,
by using geometric initialization [15], we can easily set the
surface to have an initial outward normal distribution, al-
lowing us to obtain out-facing 3D reconstructions. Finally,
our method has difficulty in reconstructing very thin closed
surfaces, such as the umbrella stretchers in Figure 11.

A future avenue would be introducing more advanced
adaptive sampling and weighting mechanisms to reconstruct
highly intricate structures. Another direction for future work
is extending NeAT to handle in-the-wild images without
camera parameters, which can enable our method to leverage
more image sources for 3D unsupervised learning.

Conclusions. We have proposed NeAT, a novel approach
to reconstruct high-fidelity arbitrary surfaces with consistent
normals from multi-view images. By representing the sur-
face as a combination of the SDF and the validity probability,
we develop a new volume rendering method for learning
the implicit representation. Our method outperforms the
state-of-the-art neural surface reconstruction methods on re-
constructing open surfaces and achieves comparative results
on reconstructing watertight surfaces.
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