
Latent-NeRF for Shape-Guided Generation of 3D Shapes and Textures

Gal Metzer* Elad Richardson* Or Patashnik Raja Giryes Daniel Cohen-Or

Tel Aviv University

Latent-NeRF Sketch-Shape Latent-Paint

“A stack of
pancakes covered
in maple syrup”

“A highly detailed
sandcastle”

“A German
Shepherd”

“A fish with
leopard spots”

Figure 1. Our three text-guided models: a purely text-guided Latent-NeRF, Latent-NeRF with Sketch-Shape guidance for more exact
control over the generated shape, and Latent-Paint for texture generation for explicit shapes. The top row represents the models’ inputs.

Abstract

Text-guided image generation has progressed rapidly in
recent years, inspiring major breakthroughs in text-guided
shape generation. Recently, it has been shown that using
score distillation, one can successfully text-guide a NeRF
model to generate a 3D object. We adapt the score distilla-
tion to the publicly available, and computationally efficient,
Latent Diffusion Models, which apply the entire diffusion
process in a compact latent space of a pretrained autoen-
coder. As NeRFs operate in image space, a naı̈ve solution
for guiding them with latent score distillation would require
encoding to the latent space at each guidance step. Instead,
we propose to bring the NeRF to the latent space, result-
ing in a Latent-NeRF. Analyzing our Latent-NeRF, we show
that while Text-to-3D models can generate impressive re-
sults, they are inherently unconstrained and may lack the
ability to guide or enforce a specific 3D structure. To as-
sist and direct the 3D generation, we propose to guide our
Latent-NeRF using a Sketch-Shape: an abstract geometry
that defines the coarse structure of the desired object. Then,
we present means to integrate such a constraint directly into
a Latent-NeRF. This unique combination of text and shape
guidance allows for increased control over the generation
process. We also show that latent score distillation can be
successfully applied directly on 3D meshes. This allows
for generating high-quality textures on a given geometry.
Our experiments validate the power of our different forms
of guidance and the efficiency of using latent rendering.

1. Introduction
Text-guided image generation has seen tremendous suc-

cess in recent years, primarily due to the breathtaking de-
velopment in Language-Image models [25, 28, 36] and dif-
fusion models [14, 21, 37–40]. These breakthroughs have
also resulted in fast progression for text-guided shape gen-
eration [9,29,53]. Most recently, it has been shown [35] that
one can directly use score distillation from a 2D diffusion
model to guide the generation of a 3D object represented as
a Neural Radiance Field (NeRF) [30].

While Text-to-3D can generate impressive results, it is
inherently unconstrained and may lack the ability to guide
or enforce a 3D structure. In this paper, we show how to in-
troduce shape-guidance to the generation process to guide
it toward a specific shape, thus allowing increased control
over the generation process. Our method builds upon two
models, a NeRF model [30], and a Latent Diffusion Model
(LDM) [39]. Latent Models, which apply the entire diffu-
sion process in a compact latent space, have recently gained
popularity due to their efficiency and publicly available pre-
trained checkpoints. As score distillation was previously
applied only on RGB diffusion models, we first present two
key modifications to the NeRF model that are better paired
with guidance from a latent model. First, instead of repre-
senting our NeRF in the standard RGB space, we propose
a Latent-NeRF which operates directly in the latent space
of the LDM, thus avoiding the burden of encoding a ren-
dered RGB image to a latent space for each and every guid-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

12663



ing step. Secondly, we show that after training, one can
easily transform a Latent-NeRF back into a regular NeRF.
This allows further refinement in RGB space, where we can
also introduce shading constraints or apply further guidance
from RGB diffusion models [40]. This is achieved by intro-
ducing a learnable linear layer that can be optionally added
to a trained Latent-NeRF, where the linear layer is initial-
ized using an approximate mapping between the latent and
RGB values [45].

Our first form of shape-guidance is applied using a
coarse 3D model, which we call a Sketch-Shape. Given a
Sketch-Shape, we apply soft constraint during the NeRF
optimization process to guide its occupancy based on the
given shape. Easily combined with Latent-NeRF optimiza-
tion, the additional constraint can be tuned to meet a desired
level of strictness. Using a Sketch-Shape allows users to
define their base geometry, where Latent-NeRF then refines
the shape and introduces texture based on a guiding prompt.

We further present Latent-Paint, another form of shape-
guidance where the generation process is applied directly
on a given 3D mesh, and we have not only the structure but
also the exact parameterization of the input mesh. This is
achieved by representing a texture map in the latent space
and propagating the guidance gradients directly to the tex-
ture map through the rendered mesh. By doing so, we allow
for the first time to colorize a mesh using guidance from a
pretrained diffusion model and enjoy its expressiveness.

We evaluate our different forms of guidance under a va-
riety of scenarios and show that together with our latent-
based guidance, they offer a compelling solution for con-
strained shape and texture generation.

2. Related Work
3D Shape Generation 3D shape synthesis is a long-
standing problem in computer graphics and computer vi-
sion. In recent years, with the emergence of neural net-
works, the research in 3D modeling has immensely ad-
vanced. The most conventional supervision type is applied
directly with 3D shapes, through different representations
such as implicit functions [10, 20, 33], meshes [19, 50] or
point clouds [27, 49]. As 3D supervision is often difficult
to obtain, other works use images to guide the generative
task [6, 7, 32]. In fact, even when 3D data is available, 2D
renderings are sometimes chosen as the supervising primi-
tive [5, 8, 18]. For example, in GET3D [18], two generators
are trained, one generates a 3D SDF, and the other a texture
field. The output textured mesh is then obtained in a dif-
ferentiable manner by utilizing DMTet [42]. These gener-
ators are adversarially trained with a dataset of 2D images.
In [47] a diffusion model has been used to generate multiple
views of a given input image. Yet, it has been trained in a
supervised manner on a multi-view dataset, unlike our work
which does not require a dataset.

Text-to-3D with 2D Supervision Recently, the success
of text-guided synthesis in numerous domains [1, 2, 17, 34,
44], has motivated a surge of works that use Language-
Image models to guide 3D scenes representations. CLIP-
Forge [41] consists of two separate components, an im-
plicit autoencoder conditioned on shape codes, and a nor-
malizing flow model that is trained to generate shape codes
according to CLIP embeddings. CLIP-Forge exploits the
fact that CLIP has a joint text-image embedding space to
train on image embeddings and infer on text embeddings,
achieving text-to-shape capabilities. Text2Mesh [29] intro-
duced mesh colorization and geometric fine-tuning by op-
timizing an initial mesh through differential rendering and
CLIP [36] guidance. TANGO [9] follows a similar opti-
mization scheme, while improving results by considering
an explicit shading model. CLIP-Mesh [26] optimizes an
initial spherical mesh according to a target text prompt, us-
ing a modified CLIP loss that accounts for the gap and am-
biguity between image/text CLIP embeddings. Similarly to
our method, they also use UV texture mapping to bake col-
ors into the mesh. DreamFields [24] employs CLIP guid-
ance as well, but uses NeRFs to represent the 3D object
instead of an explicit triangular mesh, together with a dedi-
cated sparsity loss. CLIPNeRF [46] pretrains a disentangled
NeRF representation network on rendered object datasets,
which is then used to constraint a NeRF scene optimiza-
tion under CLIP loss, between random renderings of the
NeRF and target image or text CLIP embedding. Dream-
Fusion [35] introduced, for the first time, the use of largely
successful pretrained 2D diffusion models for text-guided
3D object generation. DreamFusion uses a proprietary 2D
diffusion model [40] to supervise the generation of 3D ob-
jects represented by NeRFs. To guide a NeRF scene using
the pretrained diffusion model, the authors derive a Score-
Distillation loss, see Section 3.1 for more details.

Neural Rendering The recent rapid progression of neu-
ral networks has immensely advanced the performance of
differential renderers. Particularly NeRF [4, 30, 31] have
shown astounding performance on novel view generation
and relighting, also extending to other applications like 3D
reconstruction [51]. Thanks to their differentiable nature,
it has been recently shown that one can introduce different
neural objectives during training to guide the 3D modeling.

3. Method
Here we present our shape-guidance solution. We de-

scribe the Latent-NeRF framework, presented in Figure 2,
and then introduce different guidance controls that can
be combined with Latent-NeRF for controlling its gener-
ation. Yet, before showing our solution, we provide a
quick overview of two recently proposed techniques that are
highly relevant to our method.

12664



3.1. Preliminaries
A latent diffusion model (LDM) [39] is a specific

form of a diffusion model that is trained to denoise la-
tent codes of a pretrained autoencoder, instead of the high-
resolution images directly. First, an autoencoder composed
of an encoder E , and a decoder D is trained to reconstruct
natural images x ⇠ X , where X is the image training
dataset, in the following form: x̃ = D(E(x)). The au-
toencoder is trained with a reconstruction loss, perceptual
loss [54] and a patch-based adversarial loss [22]. Then,
given the trained autoencoder, a denoising diffusion prob-
abilistic model (DDPM) [21] is trained to generate a spa-
tial latent z from noise, according to the distribution z =
E(x) s.t. x ⇠ X . In order to generate a novel image, a
latent z̃ is sampled from this learned distribution, using the
trained DDPM, and passed to the decoder to obtain the fi-
nal image D(z̃). Operating in the latent space requires less
compute, and leads to faster training and sampling, which
makes LDM widely popular. In fact, the recent Stable Dif-
fusion model is also an LDM.

Score Distillation is a method that enables using a diffu-
sion model as a critic, i.e., using it as a loss without explic-
itly back-propagating through the diffusion process. It has
been introduced in DreamFusion [35] for guiding 3D gen-
eration using the Imagen model [40]. To perform score dis-
tillation, noise is first added to a given image (e.g., one view
of the NeRF’s output). Then, the diffusion model is used to
predict the added noise from the noised image. Finally, the
difference between the predicted and added noises is used
for calculating per-pixel gradients. For NeRF, the gradients
are back-propagated for updating the 3D NeRF model.

Going into more detail, at each iteration of the score dis-
tillation optimization, a rendered image x is noised to a ran-
domly drawn time step t,

xt =
p
↵̄tx+

p
1� ↵̄t✏, (1)

where ✏ ⇠ N (0, I), and ↵̄t is a time-dependent constant
specified by the diffusion model. Then, the per-pixel score
distillation gradients are taken to be

rxLSDS = w(t)(✏�(xt, t, T )� ✏), (2)

where ✏� is the diffusion model’s denoiser (which approx-
imates the noise to be removed), � are the denoiser’s pa-
rameters, T is an optional guiding text prompt, and w(t)
is a constant multiplier that depends on ↵t. During train-
ing, gradients are propagated from the pixel gradients to
the NeRF parameters and gradually change the 3D object.
Please refer to [35] for the complete details and derivation
of Score Distillation. Note that DreamFusion uses the pro-
prietary Imagen [40] model that is very computationally de-
manding. We rely on the publicly available Stable Diffusion
model and the re-implementation of DreamFusion [43] (it
operates in the RGB space and not the latent as we propose).

Figure 2. An overview of Latent-NeRF trained with a similar score
distillation scheme as proposed by [35]. At each training iteration
we render the scene from a random view point to produce a feature
map z. Then, z is noised with ✏ according to a random diffusion
step t. The noised version of z, i.e., xt, is denoised using Sta-
ble Diffusion [39], with the input text prompt. Finally, the input
noise is subtracted from the predicted noise by Stable Diffusion,
to approximate per-pixel gradients that are back propagated to the
NeRF representation.

3.2. Latent-NeRF

We now turn to describe our Latent-NeRF approach. In
this method, a NeRF model is optimized to render 2D fea-
ture maps in Stable Diffusion’s latent space Z . Latent-
NeRF outputs four pseudo-color channels, (c1, c2, c3, c4),
corresponding to the four latent features that stable diffusion
operates over, and a volume density �. Figure 2 illustrates
this process. Representing the scene using NeRF implicitly
imposes spatial consistency between different views, due to
the spatial radiance field and rendering equation. Still, the
fact that Z can be represented by a NeRF with spatial con-
sistencies is non-trivial. Previous works [1,45] showed that
super-pixels in Z depend mainly on individual patches in
the output image. This can be attributed to the high res-
olution (64 ⇥ 64) and low channel-wise depth (4) of this
latent space, which encourages local dependency over the
autoencoder’s image and latent spaces. Assuming Z is a
near patch level representation of its corresponding RGB
image makes the latents nearly equivariant to spatial trans-
formations of the scene, which justifies the use of NeRFs
for representing the 3D scenes.

Text Guidance The vanilla form of Latent-NeRF is text-
guided, with no other constrains for the scene generation.
In this setting, we employ the following loss:

L = �SDSLSDS + �sparseLsparse,

where LSDS is the Score-Distillation loss depicted in Fig-
ure 2. Note, that the exact value of this loss is not accessi-
ble. Instead, the gradients implied by it are approximated

12665



Figure 3. To perform fine-tuning in RGB, we take a Latent-NeRF
model that was trained in latent space (conventional setting), ap-
ply the matrix adapter to the channel output of the model to get
an RGB preview, and then continue optimizing the MLP’s weights
through supervision in RGB to improve the result.

by a single forward pass through the denoiser. These gra-
dients are directly passed to the autograd solver. The loss
Lsparse = BE(wblend) suggested in [43] prevents floating
“radiance clouds” by penalizing the binary entropy of ill-
defined background masks wblend. Namely, it encourages a
strict blending of the object NeRF and background NeRF.

RGB Refinement Using Latent-NeRF, one may success-
fully learn to represent 3D scenes even when optimizing
solely in latent space. Still, in some cases, it could be ben-
eficial to further refine the model by fine-tuning it in pixel
space, and have the NeRF model operate directly in RGB.
To do so, we must convert the NeRF that was trained in la-
tent space to a NeRF that operates in RGB. This requires
converting the MLP’s output from the four latent channels
to three RGB channels such that the initial rendered RGB
image is close to the decoder output, when applied to the
rendered latent of the original model. Interestingly, it has
been shown [45] that a linear approximation is sufficient to
predict plausible RGB colors given a single four-channel
latent super pixel, via the following transformation

0

@
r̂

ĝ

b̂

1

A =

0

@
0.298 0.187 �0.158 �0.184
0.207 0.286 0.189 �0.271
0.208 0.173 0.264 �0.473

1

A

0

BB@

c1

c2

c3

c4

1

CCA ,

(3)
which was calculated using pairs of RGB images and their
corresponding latent codes over a collection of natural im-
ages. As our NeRF model is already composed of a set of
fully connected layers, we simply add another linear layer
that is initialized using the weights in Equation 3. This con-
verts our Latent-NeRF to operate in pixel space and ensures
that our refinement process starts from a valid result. The
additional layer is then fine-tuned together with the rest of
the model, to create the refined and final output. The overall
fine-tuning procedure is illustrated in Figure 3.

3.3. Sketch-Shape Guidance
Next, we introduce a novel technique for guiding the

Latent-NeRF generation based on a coarse geometry, which
we call a Sketch-Shape.

A Sketch-Shape is an abstract coarse alignment of sim-
ple 3D primitives like spheres, boxes, cylinders, etc., that
together depict an outline of a more complex object. Fig-
ures 9, 10, 11 illustrate such simple shapes. Ideally, we
would like the output density of our MLP to match that of
the Sketch-Shape, such that the output Latent-NeRF result
resembles the input shape. Nevertheless, we would also like
the new NeRF to have the capacity to create new details
and geometries that match the input text prompt and im-
prove the fidelity of the shape. To achieve this lenient con-
straint, we encourage the NeRF’s occupancy to match the
winding-number [3, 23] indicator of the Sketch-Shape, but
with decaying importance near the surface to allow new ge-
ometries. This loss reads as

LSketch�Shape = CE(↵NeRF (p),↵GT (p)) · (1� e
� d2

2�S ).
(4)

This loss implies that the occupancy should be well con-
strained away from the surface, and free to be set by score
distillation near the surface. This loss is applied in addition
to the Latent-NeRF loss, over the entire point set p that is
used by the NeRF’s volumetric rendering. d represents the
distance of p from the surface, and �S is a hyperparameter
that controls how lenient the loss is, i.e., lower �S values
imply a tighter constraint to the input Sketch-Shape. Ap-
plying the loss only on the sampled point-set p, makes it
more efficient as these points are already evaluated as part

Figure 4. An overview of Latent-Paint texture generation, trained
with a similar score distillation loss [35]. The object is repre-
sented as a textured mesh, with a latent texture image that has
four pseudo-color channels. At each iteration, the mesh is ren-
dered with a differential renderer, to create a feature map from a
random viewpoint. Score distillation is applied to the rendered
feature map, and the gradients back-propagate to the latent texture
image through the differential renderer. See Section 3.4.

12666



of the Latent-NeRF rendering process.

3.4. Latent-Paint of Explicit Shapes
We now move to a more strict constraint, where the guid-

ance is based on an exact structure of a given shape, e.g.,
provided in the form of a mesh. We call this approach
Latent-Paint, which leads to the generation of novel tex-
tures for a given shape. Our method generates texture over
a UV texture map, which can either be supplied by the input
mesh, or calculated on-the-fly using XAtlas [52]. To color
a mesh, we first initialize a random latent texture image of
size H ⇥W ⇥ 4, where H and W can be chosen according
to the desired texture granularity. We set them both to be
128 in our experiments.

Figure 4 presents the training process. At each score dis-
tillation iteration, we render the mesh with a differentiable
renderer [15] to obtain a 64 ⇥ 64 ⇥ 4 feature map that is
pseudo-colored by the latent texture image. Then, we ap-
ply the score distillation loss from Equation 2 in the same
way it is applied for Latent-NeRF. Yet, instead of back-
propagating the loss to the NeRF’s MLP parameters, we op-
timize the deep texture image by back-propagating through
the differentiable renderer. To get the final RGB texture im-
age, we simply pass the latent texture image through Sta-
ble Diffusion’s decoder D once, to get a larger high-quality
RGB texture.

4. Evaluation
We now validate the effectiveness of our different forms

of guidance through a variety of experiments.

Implementation Details We use the Stable Diffusion im-
plementation by HuggingFace Diffusers, with the v1-4
checkpoint. For score distillation, we use the code-base pro-
vided by [43], with Instant-NGP [31] as our NeRF model.

“A photo of a giraffe”

“A photo of a vase with sunflowers”

“A photo of a basket with fruits”

Figure 5. Latent-NeRF results from different viewpoints.

D
re

am
Fi

el
ds

D
re

am
Fi

el
ds

re
im

pl
.

C
LI

PM
es

h
D

re
am

Fu
si

on
La

te
nt

-N
eR

F
(O

ur
s)

“a Matte painting of a
castle made of

cheesecake surrounded
by a moat made of ice

cream”

“A vase with pink
flowers”

“A hamburger”

Figure 6. Qualitative comparison with other text-to-3D methods.

Latent-NeRF usually takes less than 15 minutes to converge
on a single V100, while using an RGB-NeRF with Stable
Diffusion [43] takes about 30 minutes, due to the increased
overhead from encoding into the latent space. Note that
DreamFusion [35] takes about 1.5 hours on 4 TPUs. This
clearly shows the computational advantage of Latent-NeRF.

4.1. Text-Guided Generation

Qualitative Results We begin by demonstrating the ef-
fectiveness of the latent rendering approach with Latent-
NeRF. In Figs. 1, 5 and 7, we show several results obtained
by our method. In the supplementary material we provide
additional results of different objects, including video vi-
sualizations. In Figure 5, we show the consistency of our
learned shapes from several viewpoints. Next, we use the
baseline set by DreamFusion [35] to qualitatively compare
our approach (with the proposed RGB refinement) against
other methods. As can be seen in Figure 6, Latent-NeRF
achieves significantly better results than DreamFields [24]
and CLIPMesh [26]. We believe that the better quality of
DreamFusion can be attributed to the high quality of Ima-

12667



La
te

nt
R

G
B

R
efi

ne
m

en
t

La
te

nt
R

G
B

R
efi

ne
m

en
t

Figure 7. RGB refinement combined with (i) Latent-NeRF (ice-
cream and temple), and (ii) Sketch-Shape (lego and car). For each
shape we also show the normals direction.

gen [40], but unfortunately, we cannot validate this as the
model is not publicly available to the community.

RGB Refinement Figure 7 shows the quality improve-
ment achieved by our RGB refinement method. It reveals
that RGB refinement is mostly useful for complex objects or
for regions with detailed textures. Refinement iterations in
the RGB space are about ⇥2 slower than iterations in latent
space, thus, increasing the runtime to more than 30 min-
utes. Thanks to our linear mapping from a Latent-NeRF
to an RGB-NeRF, practitioners may apply the refinement
method only after the 3D shape has already converged with
the more efficient latent training. This allows a fast explo-
ration of 3D shapes, and an optional polishing step with
RGB refinement.

Textual-Inversion As our Latent-NeRF is supervised by
Stable-Diffusion, we can also use Textual Inversion [16] to-
kens as part of the input text prompt. This allows condi-
tioning the object generation on specific objects and styles,
defined only by input images. Results using Textual Inver-
sion are presented in Figure 8.

4.2. Sketch-Shape Guidance
Figure 9 shows different Sketch-Shape results with the

same conditioning mesh. The different text prompts are
able to guide the shape toward refined geometries that bet-
ter match the text prompt. The rough Sketch-Shape in this

a * sculpture

a backpack that looks like *

Figure 8. Results of Latent-NeRF using a token learned from the
images on the left with Textual Inversion [16].

Input

“A
D

ee
r”

“A
G

er
m

an
Sh

ep
er

d”
“A

Pi
g”

Figure 9. Sketch-Shape results using different prompts. This ex-
amples shows how the same Sketch-Shape can influence different
objects according to different text prompts.

figure, was quickly designed in Blender [12] and allows us
to easily define a coarse shape that guides the Latent-NeRF.
Moreover, Figure 17 depicts an ablation over the lenient pa-
rameter �S from Eq. (4). When �S is set to 0.05, the gener-
ated mesh takes the form of the conditioning shape (shown
in Figure 9). As �S grows, more details are added on top
of the base shape, until little to no resemblance is observed
at �S = 1.5. Figure 10 contains additional results of differ-
ent shapes generated with the same conditioning mesh, here
a coarse house shape. The normals visualization (bottom
row) shows that our method can add fine geometric details.

Figure 11 demonstrates that our proposed approach can
successfully work with a variety of different Sketch-Shapes.
Notice that our method handles a variety of different shapes
and also works well with shapes extruded from 2D sketches.

12668



Input

“A house made “A gingerbread “A gothic “A house made
of lego” house” house” of candy”

Figure 10. Sketch-Shape results, conditioned on a low-poly house
shape. Our RGB Refinement was applied to improve detail quality.

We also exhibit in Figure 14 the effectiveness of shape-
guidance, by showing results of the same prompts with and
without the shape loss.

4.3. Latent-Paint Generation
We tested Latent-Paint on a variety of input shapes

shown in Figs. 12 and 13. As all of the shapes in these
figures do not contain precomputed UV parameterization,
we use XAtlas [52] to compute such parameterization au-
tomatically. In contrast, the fish mesh in Figure 15 (ob-
tained from [13]) already contains high quality UV param-
eterization, which we are also able work with. Figure 13
compares our Latent-Paint approach to two closely related
methods, Tango [9] and CLIPMesh [26]. As can be seen,
our approach achieves more precise textures thanks to the
guidance from the diffusion model.

Note that Latent-Paint can work without assuming or
computing any UV-map by simply optimizing per-face la-
tent attributes. Yet, we found it better to use a UV-map for
two main reasons: (i) The UV map makes the texture gran-
ularity independent of the geometric resolution, i.e., coarse
geometries do not imply course colorization; and (ii) tex-
ture maps are easier to use with downstream applications
like MeshLab [11] and Blender [12].

“a robot hand, realistic”

“a teddy bear in a tuxedo”

“a lego man”

‘a sports car, highly detailed”

Figure 11. Additional Sketch-Shape-guided results.

Input

“A wooden “A next “A black “A garden gnome
brown cabinet” gen nascar” grand piano” with a red hat”

“A steel “A next “A pink “A garden gnome
cabinet” gen nascar” grand piano” with a green hat”

Figure 12. Latent-Paint results on shapes from ModelNet40 [48].
UV parameterization was not given for any of the meshes in this
figure. For the Nascar shapes, the same text prompt was used with
a different initialization.

12669



Ta
ng

o
[9

]
C

LI
PM

es
h

[2
6]

La
te

nt
-P

ai
nt

(O
ur

s)

“A black boot” “A blue converse allstar
shoe”

“UGG boot”

Figure 13. Generating different shoe textures over the same input
mesh by only changing the conditioning text prompt. The surface
parameterization was computed using XAtlas [52].

Shape guidance No shape guidance Shape guidance No shape guidance

“A robot hand, realistic” “a lego man”

Figure 14. Results for the same prompts with and without shape-
guidance. The guiding shapes are the same as in Figure 11.

“Piranha Fish” “A fish with leopard
spots”

“Goldfish”

Figure 15. Latent-Paint results for an input mesh containing pre-
computed UV parameterization. Model courtesy of ”Keenan’s 3D
Model Repository” [13].

Latent-NeRF with “A photo of a squirrel”

Stable Diffusion with “A photo of a squirrel, backview”

Figure 16. note that the generated squirrel in the first row contains
two faces from some view directions; see the second to the left
view. This problem may be attributed to the fact that Stable Diffu-
sion fails to generate back views of a squirrel; see bottom row.

5. Limitations
Our presented technique is yet a preliminary step to-

wards the challenging goal of a comprehensive text-to-

0.05 0.1 0.3 0.7 1.5

Figure 17. Sketch-Shape ablation over �S values (Eq. (4)) and
input shape from Figure 9. As �S grows, the constraint becomes
more lenient, and enables the shape to evolve into new geometries.

shape model that uses no 3D supervision. Still, the pro-
posed latent framework has its limitations. To attain a plau-
sible 3D shape, we use the same “prompt tweaking” used
by DreamFusion [35], i.e., adding a directional text-prompt
(e.g., ”front”, ”side” with respect to the camera) to the input
text prompt. We find that this assistance tends to fail with
our approach when applied to certain objects. Moreover, we
find that even Stable Diffusion tends to generate unsatisfac-
tory images when specifying the desired direction as shown
in Figure 16. Additionally, similar to most works that em-
ploy diffusion models, there is a stochastic behavior to the
results, such that the quality of the results may significantly
vary between different seeds.

6. Conclusions
In this work, we introduced a latent framework for gen-

erating 3D shapes and textures using different forms of text
and shape guidance. We first adapted the score distilla-
tion loss for LDMs, enabling the use of recent, powerful
and publicly available text-to-image generation models for
3D shape generation. Successfully applying score distilla-
tion on LDMs results in a fast and flexible object gener-
ation framework. We then introduced shape-guided con-
trol on the generated model. We showed two versions of
shape-guided generation, Sketch-Shape and Latent-Paint,
and demonstrated their effectiveness for providing addi-
tional control over the generation process.

Typically, the notion of rendering refers to generating an
image in pixel space. Here, we have presented a method that
renders directly into the latent space of a neural model. We
believe that our Latent-NeRF approach opens the avenue for
more latent space rendering methods, which can gain from
a compact and effective latent representation, and advance
the use of neural models that operate in latent space rather
than pixel space. Furthermore, our novel approach and its
ease-of-use nature would encourage further research toward
effective text-guided shape generation.

This work was supported by the European research council (ERC-StG
757497 PI Giryes), and the Israel Science Foundation (grants no. 2492/20
and 3441/21).

12670



References
[1] Omri Avrahami, Ohad Fried, and Dani Lischinski. Blended

latent diffusion. arXiv preprint arXiv:2206.02779, 2022. 2,
3

[2] Omer Bar-Tal, Dolev Ofri-Amar, Rafail Fridman, Yoni Kas-
ten, and Tali Dekel. Text2live: Text-driven layered image
and video editing. arXiv preprint arXiv:2204.02491, 2022.
2

[3] Gavin Barill, Neil G Dickson, Ryan Schmidt, David IW
Levin, and Alec Jacobson. Fast winding numbers for soups
and clouds. ACM Transactions on Graphics (TOG), 37(4):1–
12, 2018. 4

[4] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter
Hedman, Ricardo Martin-Brualla, and Pratul P Srinivasan.
Mip-nerf: A multiscale representation for anti-aliasing neu-
ral radiance fields. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 5855–5864,
2021. 2

[5] Miguel Angel Bautista, Pengsheng Guo, Samira Abnar, Wal-
ter Talbott, Alexander Toshev, Zhuoyuan Chen, Laurent
Dinh, Shuangfei Zhai, Hanlin Goh, Daniel Ulbricht, Afshin
Dehghan, and Josh Susskind. Gaudi: A neural architect for
immersive 3d scene generation. arXiv, 2022. 2

[6] Eric Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu,
and Gordon Wetzstein. pi-gan: Periodic implicit gener-
ative adversarial networks for 3d-aware image synthesis.
2021 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 5795–5805, 2021. 2

[7] Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano,
Boxiao Pan, Shalini De Mello, Orazio Gallo, Leonidas J
Guibas, Jonathan Tremblay, Sameh Khamis, et al. Efficient
geometry-aware 3d generative adversarial networks. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 16123–16133, 2022. 2

[8] Xuelin Chen, Daniel Cohen-Or, Baoquan Chen, and Niloy J.
Mitra. Towards a neural graphics pipeline for controllable
image generation. Computer Graphics Forum, 40(2), 2021.
2

[9] Yongwei Chen, Rui Chen, Jiabao Lei, Yabin Zhang, and
Kui Jia. Tango: Text-driven photorealistic and robust
3d stylization via lighting decomposition. arXiv preprint
arXiv:2210.11277, 2022. 1, 2, 7, 8

[10] Zhiqin Chen and Hao Zhang. Learning implicit fields for
generative shape modeling, 2018. 2

[11] Paolo Cignoni, Massimiliano Corsini, and Guido Ranzuglia.
Meshlab: an open-source 3d mesh processing system.
ERCIM News, 2008(73), 2008. 7

[12] Blender Online Community. Blender - a 3D modelling and
rendering package. Blender Foundation, Stichting Blender
Foundation, Amsterdam, 2018. 6, 7

[13] Keenan Crane. Keenan’s 3d model
repository. https://www.cs.cmu.edu/ km-
crane/Projects/ModelRepository/, 2022. 7, 8

[14] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. Advances in Neural Informa-
tion Processing Systems, 34:8780–8794, 2021. 1

[15] Clement Fuji Tsang, Maria Shugrina, Jean Francois
Lafleche, Towaki Takikawa, Jiehan Wang, Charles Loop,
Wenzheng Chen, Krishna Murthy Jatavallabhula, Edward
Smith, Artem Rozantsev, Or Perel, Tianchang Shen, Jun
Gao, Sanja Fidler, Gavriel State, Jason Gorski, Tommy Xi-
ang, Jianing Li, Michael Li, and Rev Lebaredian. Kaolin:
A pytorch library for accelerating 3d deep learning re-
search. https://github.com/NVIDIAGameWorks/
kaolin, 2022. 5

[16] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patash-
nik, Amit H Bermano, Gal Chechik, and Daniel Cohen-
Or. An image is worth one word: Personalizing text-to-
image generation using textual inversion. arXiv preprint
arXiv:2208.01618, 2022. 6

[17] Rinon Gal, Or Patashnik, Haggai Maron, Amit H Bermano,
Gal Chechik, and Daniel Cohen-Or. Stylegan-nada: Clip-
guided domain adaptation of image generators. ACM Trans-
actions on Graphics (TOG), 41(4):1–13, 2022. 2

[18] Jun Gao, Tianchang Shen, Zian Wang, Wenzheng Chen,
Kangxue Yin, Daiqing Li, Or Litany, Zan Gojcic, and
Sanja Fidler. Get3d: A generative model of high quality
3d textured shapes learned from images. arXiv preprint
arXiv:2209.11163, 2022. 2

[19] Lin Gao, Jie Yang, Tong Wu, Yu-Jie Yuan, Hongbo Fu, Yu-
Kun Lai, and Hao Zhang. Sdm-net: Deep generative net-
work for structured deformable mesh. ACM Transactions on
Graphics (TOG), 38(6):1–15, 2019. 2

[20] Amir Hertz, Or Perel, Raja Giryes, Olga Sorkine-Hornung,
and Daniel Cohen-Or. Spaghetti: Editing implicit
shapes through part aware generation. arXiv preprint
arXiv:2201.13168, 2022. 2

[21] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. Advances in Neural Information
Processing Systems, 33:6840–6851, 2020. 1, 3

[22] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional adver-
sarial networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1125–1134,
2017. 3

[23] Alec Jacobson, Ladislav Kavan, and Olga Sorkine-Hornung.
Robust inside-outside segmentation using generalized wind-
ing numbers. ACM Transactions on Graphics (TOG),
32(4):1–12, 2013. 4

[24] Ajay Jain, Ben Mildenhall, Jonathan T. Barron, Pieter
Abbeel, and Ben Poole. Zero-shot text-guided object gen-
eration with dream fields. 2022. 2, 5

[25] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh,
Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen Li, and Tom
Duerig. Scaling up visual and vision-language representa-
tion learning with noisy text supervision. In International
Conference on Machine Learning, pages 4904–4916. PMLR,
2021. 1

[26] Nasir Mohammad Khalid, Tianhao Xie, Eugene Belilovsky,
and Popa Tiberiu. Clip-mesh: Generating textured meshes
from text using pretrained image-text models. SIGGRAPH
Asia 2022 Conference Papers, 2022. 2, 5, 7, 8

12671



[27] Chun-Liang Li, Manzil Zaheer, Yang Zhang, Barnabas Poc-
zos, and Ruslan Salakhutdinov. Point cloud gan. arXiv
preprint arXiv:1810.05795, 2018. 2

[28] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi.
Blip: Bootstrapping language-image pre-training for uni-
fied vision-language understanding and generation. arXiv
preprint arXiv:2201.12086, 2022. 1

[29] Oscar Michel, Roi Bar-On, Richard Liu, Sagie Benaim, and
Rana Hanocka. Text2mesh: Text-driven neural stylization
for meshes. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 13492–
13502, 2022. 1, 2

[30] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106, 2021. 1,
2

[31] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM Trans. Graph., 41(4):102:1–
102:15, July 2022. 2, 5

[32] Michael Niemeyer and Andreas Geiger. Campari: Camera-
aware decomposed generative neural radiance fields. 2021
International Conference on 3D Vision (3DV), pages 951–
961, 2021. 2

[33] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation.
In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 165–174, 2019. 2

[34] Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or,
and Dani Lischinski. StyleCLIP: Text-driven manipulation
of StyleGAN imagery. arXiv preprint arXiv:2103.17249,
2021. 2

[35] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Milden-
hall. Dreamfusion: Text-to-3d using 2d diffusion. arXiv
preprint arXiv:2209.14988, 2022. 1, 2, 3, 4, 5, 8

[36] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In International Conference on Machine Learning,
pages 8748–8763. PMLR, 2021. 1, 2

[37] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image gen-
eration with clip latents. arXiv preprint arXiv:2204.06125,
2022. 1

[38] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray,
Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever.
Zero-shot text-to-image generation. arXiv:2102.12092,
2021. 1

[39] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models, 2021. 1, 3

[40] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed
Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi,

Rapha Gontijo Lopes, Tim Salimans, Jonathan Ho, David J
Fleet, and Mohammad Norouzi. Photorealistic text-to-image
diffusion models with deep language understanding, 2022.
1, 2, 3, 6

[41] Aditya Sanghi, Hang Chu, Joseph G Lambourne, Ye Wang,
Chin-Yi Cheng, and Marco Fumero. Clip-forge: To-
wards zero-shot text-to-shape generation. arXiv preprint
arXiv:2110.02624, 2021. 2

[42] Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and
Sanja Fidler. Deep marching tetrahedra: a hybrid represen-
tation for high-resolution 3d shape synthesis. In Advances in
Neural Information Processing Systems (NeurIPS), 2021. 2

[43] Jiaxiang Tang. A pytorch implementation of the text-to-3d
model dreamfusion, powered by the stable diffusion text-to-
2d model. https://github.com/ashawkey/stable-dreamfusion,
2022. 3, 4, 5

[44] Guy Tevet, Brian Gordon, Amir Hertz, Amit H Bermano,
and Daniel Cohen-Or. Motionclip: Exposing human motion
generation to clip space. arXiv preprint arXiv:2203.08063,
2022. 2

[45] Kevin Turner. Decoding latents to rgb without upscal-
ing. https://discuss.huggingface.co/t/decoding-latents-to-
rgb-without-upscaling/23204, 2022. 2, 3, 4

[46] Can Wang, Menglei Chai, Mingming He, Dongdong Chen,
and Jing Liao. Clip-nerf: Text-and-image driven manip-
ulation of neural radiance fields. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3835–3844, 2022. 2

[47] Daniel Watson, William Chan, Ricardo Martin-Brualla,
Jonathan Ho, Andrea Tagliasacchi, and Mohammad
Norouzi. Novel view synthesis with diffusion models.
arXiv:2210.04628, 2022. 2

[48] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1912–1920, 2015. 7

[49] Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge
Belongie, and Bharath Hariharan. Pointflow: 3d point cloud
generation with continuous normalizing flows. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 4541–4550, 2019. 2

[50] Jie Yang, Kaichun Mo, Yu-Kun Lai, Leonidas J Guibas,
and Lin Gao. Dsg-net: Learning disentangled structure and
geometry for 3d shape generation. ACM Transactions on
Graphics (TOG), 2022. 2

[51] Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman.
Volume rendering of neural implicit surfaces. In Thirty-
Fifth Conference on Neural Information Processing Systems,
2021. 2

[52] Jonathan Young. Xatlas: Mesh parameterization / uv un-
wrapping library. https://github.com/jpcy/xatlas, 2022. 5, 7,
8

[53] Xiaohui Zeng, Arash Vahdat, Francis Williams, Zan Goj-
cic, Or Litany, Sanja Fidler, and Karsten Kreis. Lion: La-
tent point diffusion models for 3d shape generation. arXiv
preprint arXiv:2210.06978, 2022. 1

12672



[54] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 586–595, 2018. 3

12673


