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Abstract

Although CNNs are believed to be invariant to transla-
tions, recent works have shown this is not the case due to
aliasing effects that stem from down-sampling layers. The
existing architectural solutions to prevent the aliasing ef-
fects are partial since they do not solve those effects that
originate in non-linearities. We propose an extended anti-
aliasing method that tackles both down-sampling and non-
linear layers, thus creating truly alias-free, shift-invariant
CNNs1. We show that the presented model is invariant to
integer as well as fractional (i.e., sub-pixel) translations,
thus outperforming other shift-invariant methods in terms
of robustness to adversarial translations.

1. Introduction
Convolutional Neural Networks (CNNs) are the most

common model in the image classification field. They were
originally intended to have two properties:

1. Shift-invariant output: when we spatially translate the
input image, their output does not change.

2. Shift-equivariant representation: when we spatially
translate the input image, their internal representation
translates in the same way.

Both these properties are thought to be beneficial for gener-
alization (i.e., they are useful inductive biases), as we expect
the image class not to change by an image translation, and
its features to shift together with the image. Moreover, with-
out the first property, the CNN might become vulnerable to
adversarial attacks using image translations. Such attacks
are real threats since they are very simple to execute in a
“black-box” setting (where we do not know anything about
the CNN). For example, consider a person trying to fool a
CNN-based face scanner, by simply moving continuously
until a face match is achieved.

It was commonly assumed that these useful properties
were maintained since CNNs use only shift-equivariant op-
erations: the convolution operation and component-wise

1Our code is available at github.com/hmichaeli/alias free convnets/.

non-linearities. However, CNN models typically also in-
clude downsampling operations such as pooling and strided
convolution. Unfortunately, these operations violate equiv-
ariance, and this also leads to CNNs not being shift-
invariant. Specifically, Azulay and Weiss [2] have shown
that shifting an input image by even one pixel can cause the
output probability of a trained classifier to change signifi-
cantly. This vulnerability can be further exploited in adver-
sarial attacks, lowering classifiers’ accuracy by more than
20% [8]. Later, Zhang [33] has shown that this problem-
atic behavior stems from an aliasing effect, taking place in
downsampling operations such as pooling and strided con-
volutions, and non-linear operations on the downsampled
signals.

Previous works have shown an improvement in CNN
invariance to translations using partial solutions that re-
duced aliasing. For example, Zhang [33] has suggested
adding a low-pass filter before the downsampling opera-
tions. This approach has been shown to reduce aliasing
caused by downsampling, thus improving shift-invariance,
as well as accuracy and noise robustness. Karras et al. [17]
have addressed aliasing in the generator within generative
adversarial networks (GANs). They have shown that with-
out proper treatment, aliasing in GANs leads to a decou-
pling of the high-frequency features (texture) from the low-
frequency content (structure) in the generated images, thus
limiting their applicability in smooth video generation. To
alleviate this issue, Karras et al. [17] extended the low-
pass filter approach and suggested a solution for the implicit
aliasing caused by non-linearities. Their method wraps the
component-wise non-linear operations by upsampling and
downsampling layers in an attempt to mimic the effect of
applying the non-linear operations in the continuous do-
main, where they theoretically do not cause aliasing.

Yet, none of the previous solutions completely elimi-
nates aliasing, thus their suggested CNN architectures are
not guaranteed to be shift-invariant. A different approach to
shift-invariant CNNs was suggested by Chaman and Dok-
manić [4]. They have proposed to use downsampling oper-
ations that dynamically choose the subsampling grid using
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a shift-equivariant decision rule. Although it does not solve
the aliasing problem, nor guarantees shift-equivariant rep-
resentations, this approach enables the creation of CNNs
whose outputs are completely invariant to integer circular
shifts. However, this approach does not lead to invariance
to subpixel shifts, which are common in real-world applica-
tions. For example, consider a case where the CNN receives
input from a camera with some finite resolution. If we con-
tinuously shift the camera with respect to the scene, then the
resulting shift in the CNN’s discretely sampled input would
rarely be integer-valued.

Considering the anti-aliasing approach again, the prob-
lem with the solution suggested by Karras et al. [17] is
that the aliasing resulting from non-linearities that increase
the signal’s bandwidth indefinitely (such as ReLU) can be
avoided only when they are used in a continuous domain
(i.e., with infinite resolution), which is impractical. How-
ever, this problem can be solved by replacing such non-
linearities with alternatives whose effect does not lead to
an indefinite increase in the signal’s bandwidth — such as
polynomials.

Polynomial activations Despite their ease of computa-
tion, polynomials are not considered promising candidates
for activation functions. The main practical reason for this
is that polynomial activations have large (super-linear) mag-
nitudes compared to standard activations (e.g., ReLU) and
thus typically cause training instability (e.g., exploding gra-
dients) [11]. There seems also to be a theoretical disad-
vantage since shallow feedforward neural networks with
polynomial activation functions are not universal approxi-
mators [15]. However, this last issue may not be a serious
disadvantage: Kidger and Lyons [18] have shown that feed-
forward neural networks with polynomial activations can
become universal approximators with sufficient depth — a
regime more relevant for modern CNNs. In addition, re-
cent research [11] has shown that by using normalization to
truncate the dynamic range of the pre-activations, the train-
ing of Neural Networks with polynomial activations can be
stabilized, and converge to reasonable results in simple im-
age classification tasks (MNIST and CIFAR). Yet, there are
still a few significant challenges in using polynomial acti-
vations: First, to the best of our knowledge, they were not
shown to achieve competitive performance (similar to stan-
dard activations) on tasks of more realistic scales, such as
ImageNet. In addition, the normalization method for dy-
namic range truncation causes the (truncated) polynomial
to increase the signal’s bandwidth indefinitely, which is not
suitable for aliasing-free CNNs. This normalization was
shown to be crucial for convergence even in small tasks and
it is reasonable to expect that is even more important for
larger tasks.

Contributions In this paper
• We propose the first Alias-Free Convnet (AFC).

• We prove the AFC has both shift-invariant outputs and
shift-equivariant internal representations — even for
fractional shifts, where previous models fail.

• We show how simple and easy “black-box” adversar-
ial attacks built on fractional image translation can de-
grade a CNN performance, even when the CNN is in-
variant to integer shifts. In contrast, the AFC has certi-
fied robustness to such attacks and superior test accu-
racy in this regime.

• Specifically, the robustness of AFCs is certified for
circular shifts and the ideal (Sinc) interpolation ker-
nel. However, we show empirically that AFCs have
improved robustness even with other types of transla-
tions.

• Interestingly, our model relies on polynomial activa-
tions, and we are the first to demonstrate competitive
performance with such activations on ImageNet, to the
best of our knowledge.

2. Methods
Let τ∆ : L2(R2) → L2(R2) be the translation operator,

which shifts a continuous-domain two-dimensional signal
by ∆ ∈ R2. An operator f : L2(R2) → L2(R2) is said
to be shift-equivariant if it commutes with τ∆ for every ∆.
Namely,

f (τ∆ (x)) = τ∆ (f (x))

for every x ∈ L2(R2) and every ∆ ∈ R2.
An operator f : L2(R2) → Rd is said to be shift-invariant
if its output is invariant to translation of its input, i.e.

f (τ∆ (x)) = f (x) .

The definitions of equivariance and invariance to transla-
tions naturally transfer to discrete-domain signals in L2(Z2)
and integer shifts ∆ ∈ Z2. To simplify notations, from now
on we will not specify the domain over which operators are
defined, and will also omit the subscript ∆ from τ , when-
ever the meaning is clear from the context.

CNN architectures for classification commonly comprise
a Feature Extractor, which is mainly composed of convolu-
tion layers, and a Classifier, which is typically composed
of a linear layer and a softmax activation. A sufficient con-
dition for the model to be shift-invariant is that the Classi-
fier be shift-invariant, and the Feature Extractor be shift-
equivariant. This is because the composition of a shift-
equivariant f and a shift-invariant g yields a shift-invariant
function, as

g (f (τ (x))) = g (τ (f (x))) = g (f (x)) .

For our discussion, we assume that the Classifier is shift-
invariant as its inputs are the spatially-averaged channels.
However, the Feature Extractor part of CNNs commonly
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includes also downsampling layers. The spatial dimensions
of the output of such layers are smaller than the spatial di-
mensions of their input. Therefore, for such layers, shift-
equivariance is not a desired property. Indeed, when shift-
ing an image by 2 pixels at the input of a layer that performs
downsampling by a factor of 2, we expect the output image
to shift by only 1 pixel, not 2. Even worse, when shift-
ing an image by only 1 pixel, it is not clear how precisely
the output should shift. In order to extend the discussion
to include these networks, here we consider equivariance
w.r.t. the continuous domain. To simplify the exposition,
let us present the definitions for 1D signals, where ‘dis-
crete’ and ‘continuous’ will refer to the signal index we use.
Namely, a discrete signal x[n] is defined over n ∈ Z while
a continuous signal x(t) is defined over t ∈ R.

Definition 1 (Fractional translation for discrete signals)
Let x[n] be a discrete-domain signal and let ∆ ∈ R be a
(possibly non-integer) shift. Then the translation operator
τ∆ is defined by τ∆(x)[n] = z(nT + ∆), where z(t) is
the unique 1/2T -bandlimitted continuous-domain signal
satisfying x[n] = z(nT ).

Note that the uniqueness of z(t) in Definition 1 is guar-
anteed by the Nyquist theorem. It is also easily verified that
this definition does not depend on T . Equipped with this
definition, we can define the following.

Definition 2 (shift-equivariance w.r.t. the cont. domain)
An operator f operating on discrete signals is said to be
shift-equivariant w.r.t. the continuous domain if it commutes
with fractional shifts. Namely, f(τ∆(x)) = τ∆(f(x)) for
every x ∈ L2(Z) and every ∆ ∈ R.

Similarly, we can define the following.
Definition 3 (shift-invariance w.r.t. the cont. domain)
An operator f operating on discrete signals is said to be
shift-invariant w.r.t. the continuous domain if it is invariant
to fractional shifts of its input. Namely, f(τ∆(x)) = f(x)
for every x ∈ L2(Z) and every ∆ ∈ R.

An important observation is the following.
Proposition 1 In a network comprised of a Feature Ex-
tractor and a Classifier, if the Feature Extractor ends with
a global average pooling layer, then shift-equivariance
w.r.t. the continuous domain of the Feature Extractor im-
plies shift-invariance w.r.t. the continuous domain of the en-
tire model.

Indeed, in this case, the Classifier’s input is only depen-
dent on the average of the Feature Extractor, which is shift-
invariant. The last statement stems from the fact that when
shifting the input of an operator that is shift-equivariant
w.r.t. the continuous domain, the output must be a faith-
ful translated discrete representation of the same continu-
ous signal. Namely, there exists some 1/2T -bandlimited

continuous signal f̃(t) such that f(x)[n] = f̃(nT ) and
f(τ(x))[n] = f̃(nT + ∆). Thus, the averages of f(x)[n]
and f(τ(x))[n] are both equal to the “DC component” of f̃ ,
and therefore must be equal.

In order to examine the property of equivariance
w.r.t. continuous domain of CNNs, we shall look at the dis-
crete signal that propagates in a CNN as a representation of
a continuous signal, and at each layer as a representation of
a continuous operation on the continuous signal. As shown
by Karras et al. [17], aliasing in the discrete representation
prevents shift-invariance of CNNs since it decouples the
discrete signal from its continuous equivalent. In contrast,
they have shown that alias-free operations preserve shift-
equivariance w.r.t. continuous domain, and lead to shift-
invariant CNNs. There, Karras et al. [17] have shown that
convolutions and downsamplers which are properly treated
using low-pass filters (LPFs), are indeed alias-free and thus
shift-equivariant w.r.t. the continuous domain. In addition,
they proposed a method to reduce the implicit aliasing of
non-linearities which we describe next.

In the continuous domain, pointwise non-linearities may
induce indefinitely high new frequencies. Applying a point-
wise non-linearity in the discrete domain is equivalent to
sampling a continuous signal after applying the pointwise
non-linearity — which may break the Nyquist condition
and cause aliasing. This implies that pointwise nonlinear-
ities applied in the discrete domain are generally not shift-
invariant w.r.t. the continuous domain. Using upsampling
before the non-linearity may solve this problem since it in-
creases the frequency support that does not cause aliasing.
However, this approach cannot generally prevent aliasing,
since the new frequencies generated by non-linear opera-
tions can be arbitrarily high. For example, the outputs of
non-differentiable operations such as ReLU can have infi-
nite support in the frequency domain, thus aliasing will be
induced for every finite upsampling factor.

In this study, we propose replacing non-linear operations
with a band-limited preserving alternative — polynomial
functions. The proposed scheme for an aliasing-free poly-
nomial function of degree d is defined in Algorithm 1. In
this algorithm, Upsamplez performs upsampling by a fac-
tor z (i.e. resampling the input continuous signal at a z×
larger sampling frequency), LPFz is an ideal low-pass filter
with cut-off z, Downsamplez performs downsampling by a
factor z (i.e. dividing the sample frequency by z), and

Polyd(x) =

d∑
i=0

aix
i . (1)

The practical implementations of the operations above
are described in Section 3 and Appendix C. Our contribu-
tion to the general framework that has been presented by
Karras et al. [17] is the usage of polynomial activations,
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Algorithm 1 Alias-free polynomial activation
Inputs: x - input signal, Polyd - polynomial of degree d.
xup ← Upsample d+1

2
(x)

ypoly ← Polyd (xup)
yLPF ← LPF 2

d+1
(ypoly)

y ← Downsample d+1
2

(yLPF)

Output: y

Figure 1. ConvNeXt baseline architecture vs AFC modifica-
tions. D-conv: depthwise convolution 7 × 7, P-Conv: pointwise
convolution, Strided-conv: convolution 4× 4, stride 4. LN: Layer
Norm, AF-LN: Alias free Layer Norm, Poly: Polynomial activa-
tion. Up x2: Upsample x2, LPF: ideal LPF with cutoff 0.5, Down
x2: Downsample x2. Detailed explanations about BlurPool, Poly
and LPF-Poly activations can be found in Section 3.

which extends the frequency bandwidth in a limited fash-
ion, unlike other non-linearities. Hence, by using appropri-
ate upsampling as in Algorithm 1, aliasing can be avoided,
as described in Figure 2. Specifically, in Appendix F.1 we
prove the following.

Proposition 2 The operator defined by Algorithm 1 is shift-
equivariant w.r.t. the continuous domain.

By combining Proposition 1 and Proposition 2 with the
shift-equivariance of the other layers (as described above),
we conclude the network output is shift-invariant. Next,
we describe the proposed process of non-linearities in the
frequency domain, which is additionally demonstrated in
Figure 2. In the first step, the input x is upsampled, lead-
ing to a contraction of its support in the frequency domain
(Fig. 2(b)). Effectively, it expands the range of allowed
new frequencies generated by the following non-linearity
(Fig. 2(c1)). Then, a low-pass filter is applied in order
to prevent aliasing in the following downsampling layer
(Fig. 2(d1), (e1)). Overall, for an upsampling factor that
is appropriate for the frequency expansion of the polyno-
mial, the effective frequencies for the output are not being
overlapped at any of the steps, thus aliasing is prevented.
However, in the case of non-linearities that do not preserve
the band-limited property, upsampling cannot prevent the
frequency overlap in Figure 2(c2).

3. Implementation
We propose an Alias-Free Convnet (AFC), based on

the ConvNeXt architecture [19], which has been shown to
achieve state-of-the-art results in image classification tasks.
We modify the layers which suffer from aliasing (as de-
scribed in Fig. 1) so that the convnet is completely free of
aliasing. The theoretical derivation in Section 2 assumes
infinite-length discrete signals, hence cannot be directly ap-
plied in practical systems. However, it can be naturally used
by limiting the discussion to circular translations, which im-
plies that the continuous signals are periodic. In this case,
the theoretical results from Section 2 can be equivalently
attained with finite-length signals using our following im-
plementation.

Convolution We use circular convolutions to meet the pe-
riodic signal assumption, as described above. This is practi-
cally done by replacing zero padding with circular padding,
similarly to Chaman and Dokmanić [4].

BlurPool Similarly to the model presented by Zhang [33],
we separate strided convolutions into linear convolution and
downsampling operations. The downsampling operation
is replaced by BlurPool, which applies sub-sampling after
low-pass filtering. Instead of implementing a low-pass fil-
ter using convolutions with custom fixed kernels, we imple-
ment an “ideal low-pass filter” by truncating high frequen-
cies in the Fourier domain. Specifically, we transform the
input to the Fourier domain using Pytorch FFT kernel [23],
zero out the relevant frequencies, and transform it back to
the spatial domain. This is an efficient implementation of
downsampling after applying multiplication with filter H2D

in DFT domain, which is defined as

H2D = HHT , (2)

where for stride s and spatial-domain size N × N , H is
defined as

H[k] =


1, 0 ≤ k < N

2s ,

0, N
2s ≤ k ≤ 3N

2s ,

1, 3N
2s < k ≤ N − 1 .

(3)

A derivation of this filter can be found in Appendix G.

Activation function We replace the original GeLU acti-
vation with a polynomial function of degree 2, whose coef-
ficients are trainable parameters, per channel:

Poly2(x) = a0 + a1x+ a2x
2 . (4)

The coefficients {a0, a1, a2} are initialized by fitting this
function to the GeLU, as proposed by Gottemukkula [11].
All activation functions are wrapped according to the alias-
free technique presented in Algorithm 1. Generally, replac-
ing the activation function in a Deep Neural Network may
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Figure 2. A demonstration of the proposed non-linearities in the frequency domain. The top plot at each panel represents the signal in
the continuous domain, and the bottom represents the discrete domain. Where the input (a) is upsampled it shrinks its frequency response,
expanding the allowed frequencies (b). Applying the polynomial activation expands the frequency response support by as factor d, without
causing aliasing in the relevant frequencies (c1). Thus, the discrete signal remains a faithful representation of the continuous signal after
applying LPF (d1) and downsample back to the same spatial size (d2). However, applying GeLU expands the support infinitely (c2). This
leads to an aliasing effect — interference in the relevant frequencies marked in red in (c2). This causes the discrete signal not to be a correct
representation of the continuous one, after LPF (d2) and downsampling (e2).

change the scale of the propagated activation, thus requir-
ing adjusting the weight initialization. In our experiments
the activation scale had a large impact on the achieved accu-
racy, thus searching for an appropriate scale factor was re-
quired. Details regarding the activation tuning can be found
in Appendix D. Overall, in our case (polynomial activation
in ConvNeXt) using the appropriate scale seemed to recover
most or all of the lost accuracy.

Normalization ConvNeXt model implementation uses a
variation of LayerNorm, which centers and scales each
pixel according to its mean and standard deviation over
channels, respectively. The scaling operation requires the
multiplication of each pixel with a different scalar which,
like other point-wise non-linearities, is not alias-free. We
construct an alias-free alternative by using scaling per layer
instead of scaling per pixel, i.e. all pixels are scaled by the
standard deviation of the layer, which is shift-equivariant
w.r.t. the continuous domain. Although eliminating aliasing
effects, this modification caused a small reduction in the
model accuracy, as we shall see later. We hypothesize this

reduction results from the “normalization-per-pixel” oper-
ation functioning as an additional non-linearity, which en-
larges the model capacity. Yet, this modification is required
for the property of shit-equivariance w.r.t. continuous do-
main, which leads to an overall improvement in terms of
robustness to sub-pixel image translations, as shown in Sec-
tion 4.

First downsample layer Unlike other CNN architectures
that were examined in the context of aliasing prevention,
ConvNeXt does not have a non-linearity before the first
downsampling layer. Thus, due to the commutativity of
convolutions with the LPFs, we cannot replace the first
downsampling operation with BlurPool — since this is
equivalent to applying a low-pass filter directly on the in-
put, effectively reducing its resolution. Such composition
may prevent the model from using high-frequency features
and lead to a reduction in the model’s accuracy. To solve
this problem, we add an additional activation function be-
fore the first BlurPool. For computation efficiency, instead
of using the regular scheme which requires upsampling be-
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fore the activation, we replace the usual activation Poly2(x)
with

LPFPoly2(x) = a0 + a1x+ a2x · LPF 3
4
(x) . (5)

This modification of the polynomial activation leads to a
smaller increase of the signal bandwidth. Thus, it does not
require upsampling to avoid aliasing when it is followed by
an LPF, as in the first BlurPool. Specifically, since it is fol-
lowed by a BlurPool with a cutoff 1/4, The maximally al-
lowed cutoff for the LPF-Poly’s filter is 3/4. More details
on this activation function can be found in Appendix F.2.

4. Experiments

We compare our Alias-Free Convnet (AFC) model to
the baseline ConvNeXt model and to the previous inte-
ger shift-invariant method Adaptive Polyphase Sampling
(APS) [4]. We implemented all models with cyclic convo-
lutions and trained them on ImageNet [6] according to the
ConvNeXt training regime [19]. The experiments were con-
ducted with circular translations similarly to the setting in
previous works [4, 33]. For sub-pixel translations, we used
our “ideal upsampling” implementation (see Algorithm 2
in Appendix G); translation by m/n pixels was conducted
by upsampling by n, translating by m pixels and downsam-
pling by n.

4.1. Shift equivariance

Our model is designed to be not only shift-invariant (in
terms of classification output), but also to have a Feature-
Extractor that is shift-equivariant w.r.t. to the continuous do-
main. We verified this property by examining the response
of the output of each of the layers to a translation of 1

2 pixel
in the input image. This was done by propagating the two
translated inputs and measuring the difference between their
outputs in each layer, after upsampling back to the input’s
spatial size. The results in Figure 3 show, in each layer,
the normalized difference between the two translated layer
outputs y0 and y1, after they were averaged across all HW
pixels (indexed by i, j) and C channels (indexed by c),

diff ≜
1

CHW

∑
c,i,j

∣∣y0c,i,j − y1c,i,j
∣∣

max
(∣∣y0c,i,j∣∣ , ∣∣y1c,i,j∣∣)+ ε

, (6)

where ε = 10−9 was added in the denominator to avoid di-
vision by 0. The results show that ConvNeXt-AFC has only
a negligible difference in the continuous representation of
the translated responses at each layer, e.g. y0 = y1, which
means it is indeed shift-equivariant w.r.t. the continuous do-
main (up to numerical error). In contrast, in the case of the
baseline and APS models, the upsampled signals differ by
more than 50% across all the layers.

Layer-0 Layer-1 Layer-2 Layer-3
Layer

0.0

0.2

0.4

0.6

0.8

1.0

Di
ffe

re
nc

e 
ra

tio

ConvNeXt-AFC
ConvNeXt-APS
ConvNeXt-Baseline

Figure 3. Shift-equivariance measure w.r.t. continuous signal.
The averaged difference (Eq. (6)) for 1/2 pixel translated inputs
(y-axis), across all layers (x-axis). This experiment was run on 64
random samples from the validation set. While the AFC model
has practically 0 difference, the baseline and APS models have at
least 50% difference across all layers.

4.2. Consistency and Classification accuracy

The main measure used so far to quantify the shift-
invariance of a model is called “consistency” [2,4], which is
the percentage of predictions changed on the test set follow-
ing an image shift. Previously this measure has been used
with integer shift values, however, in Table 1 we test it also
under sub-pixel shifts. We see that the changes we add to
the baseline model gradually improve its consistency, until
we reach 100%. In contrast, the previous APS approach [4]
is near 100% consistent to integer shifts (due to numeri-
cal accuracy), but for fractional shifts, it only has slightly
higher consistency than the baseline. Even though the alias-
free modifications in our model lead to perfect consistency,
they cause a 1.08% reduction in the (standard) test accuracy.
We conclude that the main source of accuracy reduction is
the modification of the normalization layer, as explained in
Section 3. However, as we shall see next, despite such a
reduction in accuracy, our model outperforms the previous
models in adversarial shifts setting, due to its increased ro-
bustness.

4.3. Translation robustness

Since standard models are not invariant to image transla-
tion, this might be exploited as a very easy form of a “black-
box” adversarial attack: we simply move the image until we
notice the prediction is changed. We examine this vulner-
ability, to assess each model’s actual robustness to transla-
tions. For each sample, we performed all possible transla-
tions in some set T , and checked the resulting classification
for each shift. We define the adversarial accuracy corre-
sponding to T as the portion of samples that are classified
correctly for all translations in T . We tested three types of
basic translation grids — Integer, Half pixel and Fractional:

Tinteger = {(i, j) | 1 ≤ i, j ≤ 31} (7)

Thalf =

{(
i

2
,
j

2

)
| 1 ≤ i, j ≤ 63

}
(8)
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Model modification
Test

accuracy
Change

Integer
shift consistency

Change
Fractional

shift consistency
Change

ConvNeXt-Baseline [19] 82.12 94.816 92.034
+ Polynomial activation 81.77 -0.35 95.126 0.31 92.708 0.67
+ BlurPool 78.99 -3.12 96.635 1.82 96.572 4.54
+ First layer activation 81.51 -0.61 97.354 2.54 97.347 5.31
+ AF LayerNorm 80.66 -1.46 97.030 2.21 96.990 4.96
+ Activation upsample
(ConvNeXt-AFC, ours)

81.04 -1.08 100.000 5.18 100.000 7.97

ConvNeXt-APS [4] 82.11 -0.01 99.998 5.18 93.227 1.19

Table 1. Alias-free modifications ImageNet accuracy and shift-consistency effect. Integer shift consistency is defined as the percentage
of test samples that did not change their prediction following a random integer translation. Fractional shift consistency is defined as the
percentage of test samples that did not change their prediction following a random half-pixel translation. Consistency was averaged on five
runs on ImageNet validation set with random seeds. The final AFC model is 100% consistent to both integer and fractional translations.
Note that though the APS model [4] exhibits near 100% integer shifts consistency (as expected), it has only slightly better consistency than
the baseline model in terms of fractional shift consistency.

Model
Integer

grid
Half-pixel

grid
Fractional

grid

ConvNeXt-Baseline [19] 76.63 73.65 77.82
ConvNeXt-APS [4] 82.11 79.68 76.31
ConvNeXt-AFC (ours) 81.04 81.04 81.04

Table 2. Translation adversarial accuracy (ImageNet). Ad-
versarial accuracy defined as the percentage of correctly classi-
fied samples for each translation in the corresponding set: Eq. (7),
Eq. (8) or Eq. (9) with k = 12.

Tfrac,k =

{(
m1

n1
,
m2

n2

)
| 1 ≤ m1,2 ≤ n1,2 ≤ k

}
(9)

In Table 2 we observe the adversarial robustness with re-
spect to these translation sets. In the baseline model the test
accuracy of 82.1% drops to 76.63% for integer grid and to
73.65% for half-pixel grid accuracy. This significant drop
reflects that more than 10% of the correctly classified test
set samples may be misclassified due to translations. The
APS model [4] is, by construction, robust to integer transla-
tions and therefore has no accuracy reduction in the integer
grid. However, it gets even worse results than the baseline
in fractional adversarial accuracy (76.31% vs 77.82%). In
contrast, our AFC model is invariant to any of these shifts,
and therefore its accuracy remains constant at 81.04%, sur-
passing the other models. This robustness is ‘certified’,
and will not be compromised with larger translation sets, or
other types of attacks (e.g., white box attacks) which can po-
tentially decrease the performance of the other models even
more. We repeat this experiment on “Out of distribution”
data using ImageNet-C that contains common corruptions
of the ImageNet images. The results in Appendix A show
that the APS and Baseline models are even more vulnerable
to fractional translation attacks on corrupted images, while

AFC adversarial accuracy does not change.

4.4. Robustness to other shifts

We next test the models’ robustness to other types of
translations, where our model’s shift-invariance guarantee
conditions are not satisfied.

Zero-padding, bilinear-interpolation We tested the
models’ robustness to translation using the framework pre-
sented by Engstrom et al. [8], originally designed to test the
robustness of classification models to translations and rota-
tions. We zero-pad the images by 8 pixels and translate by
(a possibly fractional) amount limited by 8 pixels, so there
are no artifacts due to circular translations, nor data loss.
The remaining parts are zero-padded and fractional trans-
lations are done using bilinear interpolation (see Fig. 9 in
Appendix E). The results in Figure 4 (top) show the mod-
els’ adversarial accuracy to this attack with different grid
sizes. Although our model is not perfectly invariant to the
performed translations due to the bilinear interpolation, it
outperforms the other models by more than 4% at the largest
tested grid.

Crop-shift In the experiments above, we used the com-
mon ImageNet input: the 224×224 center crop of the orig-
inal 256 × 256 image. In contrast, in this experiment, we
adversarially translated the cropped area, modeling trans-
lating a camera w.r.t. the scene (see Fig. 8 in Appendix E).
We measure the adversarial accuracy of translations by up
to m integer pixels in each direction (i.e. grid search at size
(2m+ 1) × (2m+ 1)). The results in Figure 4 (bottom)
show that our model is more robust to this kind of transla-
tion, which are not cyclic, include data loss, and are integer-
valued. We additionally evaluate the original ConvNeXt
model (zero-pad convolutions) which interestingly has the
worst robustness in this setting.
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Figure 4. Adversarial accuracy for other types of shifts. Top:
Zero-padding, bilinear interpolation results. AFC is the most ro-
bust model for all tested grid sizes. Bottom: Crop-shift results.
AFC is the most robust model for m ≥ 2. The accuracy improve-
ment over the baseline and APS models reaches to 2.9% and 2%
respectively for the strongest attack in our scope (m = 10).

5. Related work

Modern Convolutional Neural Networks use downsam-
pling operations such as pooling and strided convolutions
to increase the net’s receptive field, with lower computation
cost than using larger kernels for that matter. It was shown
that this architectural design breaks the shift-equivariance
property of the convolution operation due to the aliasing
effect [2], leading CNNs to be not shift-invariant. Even
though it was shown this property can be partially learned
using appropriate data augmentation [12], other works tried
to architecturally regain shift-invariance.

Another work [33] suggested shift-equivariance could
be maintained by reducing aliasing using low-pass filters
(LPFs) before downsampling [22]. Others [34] improved
the LPF method by using content-aware adaptive filters.
These changes were shown to improve convnets robustness
to translations, as well as accuracy and generalization, yet
another work showed that focusing on circular shifts may
induce adversarial attack vulnerabilities [27].

Instead of tackling the aliasing problem, other works
suggested solving shift variance by using adaptive subsam-
pling grids [4, 24, 31]. This approach was shown ability
to produce perfect shift-invariance in image classification
tasks. Yet, as it does not eliminate the aliasing effects, it
does not produce shift-invariance to fractional shifts, and it
does not ensure shift-equivariance of the internal represen-
tations.

Since it is known that aliasing in discrete signals is
caused by non-linearities in addition to subsampling, a few
studies suggested methods for alias-free activation func-
tions. Karras et al. [17] suggested using upsampling be-
fore non-linearities to reduce aliasing in generative mod-
els, which cause failure in embedding “high-frequency fea-
tures” such as textures in their outputs. The idea of us-
ing polynomial non-linearities to battle aliasing has been
mentioned previously [7, 22]. Franzen and Wand [9] have
recently shown this methodology can be used to improve
rotation-equivariance. However, it has never been applied
in a complete alias-free setting, nor in modern-scale deep
networks. Other smooth activation functions have been sug-
gested as well [16,29], yet they do not completely eliminate
aliasing.

It is worth mentioning that other equivariance properties
have been studied as well, such as rotation, reflection and
group equivariance [3, 5, 20, 21, 25, 30–32]. This work is
focused on the specific property of shift-invariance in CNNs
for image classification.

6. Discussion

In this paper we proposed the Alias-Free Convnet, which
for the first time, is guaranteed to eliminate any aliasing ef-
fects in the model, to ensure the output is invariant to any
input shifts (even sub-pixel ones), and to ensure the inter-
nal representations are equivariant to any shifts (even sub-
pixel ones). We demonstrate this numerically and show this
leads to (certified) high performance under adversarial shift-
based attacks — in contrast to existing models which de-
grade in performance. However, this comes at a cost, such
as a 1.08% reduction in standard test accuracy (as meth-
ods that increase robustness often reduce accuracy) and in-
creased computation cost. We further discuss these limita-
tions as well as limitations regarding the certified robust-
ness conditions in Appendix B. We discuss possible future
work and applications of the AFC in Appendix C, and the
potential of polynomial activation functions in general (i.e.,
beyond AFC) in Appendix D.
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