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Figure 1. An example of the inputs and outputs of our 3D inpainting framework. In addition to the images captured from the scene and
their corresponding camera parameters, users are tasked with providing a few points in a single image to indicate which object they wish
to remove from the scene (upper-left inset). These sparse annotations are then automatically transferred to all other views, and utilized
for multiview mask construction (upper-right inset). The resulting 3D-consistent mask is used in a perceptual optimization problem that
results in 3D scene inpainting (lower row), with rendered depth from the optimized NeRF shown for each image as an inset.

Abstract

Neural Radiance Fields (NeRFs) have emerged as a pop-
ular approach for novel view synthesis. While NeRFs are
quickly being adapted for a wider set of applications, intu-
itively editing NeRF scenes is still an open challenge. One
important editing task is the removal of unwanted objects
from a 3D scene, such that the replaced region is visually
plausible and consistent with its context. We refer to this
task as 3D inpainting. In 3D, solutions must be both con-
sistent across multiple views and geometrically valid. In
this paper, we propose a novel 3D inpainting method that
addresses these challenges. Given a small set of posed im-
ages and sparse annotations in a single input image, our
framework first rapidly obtains a 3D segmentation mask for
a target object. Using the mask, a perceptual optimization-
based approach is then introduced that leverages learned
2D image inpainters, distilling their information into 3D
space, while ensuring view consistency. We also address
the lack of a diverse benchmark for evaluating 3D scene

inpainting methods by introducing a dataset comprised of
challenging real-world scenes. In particular, our dataset
contains views of the same scene with and without a target
object, enabling more principled benchmarking of the 3D
inpainting task. We first demonstrate the superiority of our
approach on multiview segmentation, comparing to NeRF-
based methods and 2D segmentation approaches. We then
evaluate on the task of 3D inpainting, establishing state-of-
the-art performance against other NeRF manipulation al-
gorithms, as well as a strong 2D image inpainter baseline.

1. Introduction
Neural rendering methods, especially Neural Radiance

Fields (NeRFs) [35], have recently emerged as a new
modality for representing and reconstructing scenes [50],
achieving impressive results for novel view synthesis. Sub-
stantial research effort continues to focus on formulating
more efficient NeRFs (e.g., [6, 20, 43]), to make NeRFs
more accessible in use-cases with more limited computa-
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tional resources. As NeRFs become more widely accessi-
ble, the need for editing and manipulating the scenes rep-
resented by NeRFs will continue to grow. One notable
editing application is removing objects and inpainting the
3D scene, analogous to the well-studied 2D image inpaint-
ing task [23]. However, several obstacles impede progress
on this task, not only for the 3D inpainting process itself,
but also in obtaining the input segmentation masks. First,
NeRF scenes are implicitly encoded within the neural map-
ping weights, resulting in an entangled and uninterpretable
representation that is non-trivial to manipulate (compared
to, say, the explicit discretized form of 2D image arrays or
meshes in 3D). Moreover, any attempt to inpaint a 3D scene
must not only generate a perceptually realistic appearance
in a single given view, but also preserve fundamental 3D
properties, such as appearance consistency across views and
geometric plausibility. Finally, to obtain masks for the tar-
get object, it is more intuitive for most end users to interact
with 2D images, rather than 3D interfaces; however, requir-
ing annotations of multiple images (and maintaining view-
consistent segments) is burdensome to users. An appealing
alternative is to expect only a minimal set of annotations for
a single view. This motivates a method capable of obtaining
a view-consistent 3D segmentation mask of the object (for
use in inpainting) from single-view sparse annotations.

In this paper, we address these challenges with an in-
tegrated method that takes in multiview images of a scene,
extracts a 3D mask with minimal user input, and fits a NeRF
to the masked images, such that the target object is replaced
with plausible 3D appearance and geometry. Existing inter-
active 2D segmentation methods do not consider the 3D as-
pects of the problem (e.g., [42]), while current NeRF-based
approaches are unable to use sparse annotations [76] to per-
form well, or do not attain sufficient accuracy [44]. Sim-
ilarly, while some current NeRF manipulation algorithms
allow object removal, they do not attempt to provide percep-
tually realistic inpaintings of newly unveiled parts of space
(e.g., [64]). To our knowledge, this is the first approach
that handles both interactive multiview segmentation and
full 3D inpainting in a single framework.

Our technique leverages off-the-shelf, 3D-unaware mod-
els for segmentation and inpainting, and transfers their out-
puts to 3D space in a view-consistent manner. Building
on the (2D) interactive segmentation [8, 15, 33] literature,
our framework starts from a small number of user-defined
image points on a target object (and a few negative sam-
ples outside it). From these, our algorithm initializes masks
with a video-based model [4], and lifts them into a coherent
3D segmentation via fitting a semantic NeRF [36, 76, 77].
Then, after applying a pretrained 2D inpainter [48] to the
multiview image set, a customized NeRF fitting process is
used to reconstruct the 3D inpainted scene, utilizing per-
ceptual losses [72] to account for inconsistencies in the 2D

inpainted images, as well as inpainted depth images to reg-
ularize the geometry of the masked region. Overall, we pro-
vide a complete method, from object selection to novel view
synthesis of the inpainted scenes, in a unified framework
with minimal burden on the user, illustrated in Figure 1.

We demonstrate the effectiveness of our approach
through extensive qualitative and quantitative evaluations.
In addition, we address the lack of a benchmark for compar-
ing scene inpainting methods, and introduce a new dataset
where the “ground-truth inpaintings” (i.e., real images of
the scene without the object) are available as well.

In summary, our contributions are as follows: (i) a com-
plete process for 3D scene manipulation, starting from ob-
ject selection with minimal user interaction and ending with
a 3D inpainted NeRF scene; (ii) to perform such selec-
tion, an extension of 2D segmentation models to the multi-
view case, capable of recovering 3D-consistent masks from
sparse annotations; (iii) to ensure view-consistency and per-
ceptual plausibility, a novel optimization-based formulation
of 3D inpainting in NeRFs, which leverages 2D inpainters;
and (iv) a new dataset for 3D object removal evaluation that
includes corresponding object-free ground-truth.

2. Related Work
Image Inpainting. Inpainting in 2D has received signif-

icant research attention [23]. While early techniques relied
on patches [9,16], recent neural methods optimize both per-
ceptual realism and reconstruction (e.g., [22, 27, 48]). Vari-
ous lines of research continue to be explored for improving
visual fidelity, including adversarial training (e.g., [40,73]),
architectural advances (e.g., [27,30,62,63]), pluralistic out-
puts (e.g., [73,75]), multiscale processing (e.g., [21,58,69]),
and perceptual metrics (e.g., [22, 48, 72]). Our work lever-
ages LaMa [48], which applies frequency-domain trans-
forms [7] inspired by transformers [11, 12]. Yet, none of
these lift the problem into 3D; thus, inpainting multiple cap-
tures of a scene in a consistent manner remains an underex-
plored task. While there are some existing 3D-aware image
inpainting algorithms, they either only partially operate in
3D [65], rely on reference images [74], or consider more
limited scenarios [24]. In contrast, our method operates di-
rectly in 3D, via the multiview-based NeRF model.

NeRF Manipulation. Representing scenes via volumet-
ric rendering has recently become an important research
direction [50]. Based on differentiable volume render-
ing [18,52] and positional encoding [13,49,53], NeRFs [35]
have demonstrated remarkable performance in novel-view
synthesis. Recent works have studied potential improve-
ments in NeRF’s training or rendering speed [5, 6, 17, 38,
47,67], reconstruction quality [1,2,10,29], and data require-
ments [28,56,59,68]. However, manipulating NeRF scenes
remains a challenge. Clip-NeRF [55], Object-NeRF [64],
LaTeRF [36], and others [25, 32, 70] introduce approaches
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to alter and complete objects represented by NeRFs; how-
ever, their performance is limited to simple objects, rather
than scenes with significant clutter and texture, or they fo-
cus on tasks other than general inpainting (e.g., recolor-
ing or deforming). Most closely related to our method
is NeRF-In [31], a concurrent unpublished work, which
inpaints NeRF scenes with geometry and radiance priors
from 2D image inpainters, but does not address inconsis-
tency; instead, its use of a simple pixelwise loss relegates
it to simply reducing the number of views used for fit-
ting, which reduces final view synthesis quality. Simi-
larly using a pixelwise loss, the concurrent Remove-NeRF
model [60] reduces inconsistencies by excluding views
based on an uncertainty mechanism. In contrast, our ap-
proach is able to inpaint NeRF representations of chal-
lenging real-world scenes by incorporating 2D information
in a view-consistent manner, via a perceptual [72] train-
ing regime. This avoids over-constraints on the inpainting,
which would normally lead to blurriness.

3. Background: Neural Radiance Fields
NeRFs [35] encode a 3D scene as a function, f :

(x, d) ! (c,�), that maps a 3D coordinate, x, and a view
direction, d, to a color, c, and density, �. The function f
can be modelled in various ways (e.g., [35, 47]). For a ray,
r, the expected color is estimated by volumetric rendering
via quadrature; the ray is divided into N sections between
tn and tf (the near and far bounds), with ti sampled from
the i-th section, to render the estimated color, bC(r):

bC(r) =
NX

i=1

Ti(1� exp(��i�i))ci, (1)

where Ti = exp(�
Pi�1

j=1 �j�j) is the transmittance, �i =
ti+1 � ti is the distance between two adjacent points, and
ci and �i are the color and density at ti, respectively. For
the rays passing through pixels of the training views, the
ground-truth color CGT(r) is available, and the model is op-
timized using the reconstruction loss:

Lrec =
X

r2R
k bC(r)� CGT(r)k2, (2)

where R is a ray batch sampled from the training views.

4. Method
Given a set of RGB images, I = {Ii}ni=1, with cor-

responding 3D poses, G = {Gi}ni=1, and camera intrin-
sic matrix, K, our model expects one additional “source”
view with sparse user annotations (i.e., a few points identi-
fying the unwanted object). From these inputs, we produce
a NeRF model of the scene, capable of synthesizing an in-
painted image from any novel view. We begin by obtaining
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Figure 2. Overview of our multiview segmentation architecture.
As input, this network takes in a 3D coordinate, x, and a view di-
rection, d, and returns view-independent density, �(x), objectness
logit, s(x), and view-dependent color, c(x, d).

an initial 3D mask from the single-view annotated source
(§ 4.1.1), followed by fitting a semantic NeRF, to improve
the consistency and quality of the mask (§ 4.1.2). Finally,
in § 4.2 we describe our view-consistent inpainting method,
which takes the views and recovered masks as inputs. Our
approach leverages the outputs of 2D inpainters [48] as ap-
pearance and geometry priors to supervise the fitting of a
new NeRF. Figure 1 illustrates our entire approach, includ-
ing the inputs and outputs. Additional details are in our
supplementary material.

4.1. Multiview Segmentation
4.1.1 Mask Initialization

We first describe how we initialize a rough 3D mask
from single-view annotations. Denote the annotated source
view as I1. The sparse information about the object and
the source view are given to an interactive segmentation
model [15] to estimate the initial source object mask, cM1.
The training views are then treated as a video sequence
and, along with cM1, given to a video instance segmentation
model V [4, 57], to compute V ({Ii}ni=1, cM1) = {cMi}ni=1,

where cMi is the initial guess for the object mask for Ii.
The initial masks, {cMi}ni=1, are typically inaccurate around
the boundaries, since the training views are not actually ad-
jacent video frames, and video segmentation models are
usually 3D-unaware. Hence, we use a semantic NeRF
model [36, 76, 77] to resolve the inconsistencies and im-
prove the masks (§ 4.1.2), thus obtaining the masks for each
input view, {Mi}ni=1, to use for inpainting (§ 4.2).

4.1.2 NeRF-based Segmentation

Our multiview segmentation module takes the input RGB
images, {Ii}ni=1, the corresponding camera intrinsic and
extrinsic parameters, and the initial masks, {cMi}ni=1, and
trains a semantic NeRF [76]. Figure 2 depicts the network
used in the semantic NeRF; for a point, x, and a view direc-
tion, d, in addition to a density, �(x), and color, c(x, d), it
returns a pre-sigmoid “objectness” logit, s(x). The object-
ness probability is then acquired as p(x) = Sigmoid

�
s(x)

�
.
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We use Instant-NGP [3, 37, 38] as our NeRF architecture
due to its fast convergence. The expected objectness logit,
bS(r), associated with a ray, r, is obtained by rendering the
logits of the points on r instead of their colors, with respect
to the densities, in Eq. 1 [36]:

bS(r) =
NX

i=1

Ti(1� exp(��i�i))si, (3)

where for simplicity, s(r(ti)) is denoted by si. The object-
ness probability of a ray, bP (r) = Sigmoid

�bS(r)
�
, is then

supervised using the classification loss:

Lclf =
1

|R|
X

r2R
BCE

�
1r2Rmasked , bP (r)

�
, (4)

where 1 is the indicator function, BCE stands for the bi-
nary cross entropy loss, and Rmasked is the set of rays pass-
ing through pixels that are masked in {cMi}ni=1. During the
calculation of the classification loss, Lclf, the weights of the
colors in the rendering equation (Eq. 1) are detached to limit
the supervised updates to the logits; this prevents changes to
the existing geometry, due to gradient updates altering the
� field. The geometry is supervised using a reconstruction
loss, Lrec, as in NeRF [35], via the given RGB images. The
overall loss, used to supervise the NeRF-based multiview
segmentation model, is then given by:

Lmv = Lrec + �clfLclf, (5)

where the classification weight, �clf, is a hyper-parameter.
After optimization, 3D-consistent masks, {Mi}ni=1, are
obtained by thresholding the objectness probabilities and
masking the pixels with probabilities greater than 0.5. Fi-
nally, we use two stages for optimization to further improve
the masks; after obtaining the initial 3D mask, the masks
are rendered from the training views, and are used to super-
vise a secondary multiview segmentation model as initial
guesses (instead of the video segmentation outputs).

4.2. Multiview Inpainting
Figure 3 shows an overview of our view-consistent in-

painting method. As the paucity of data precludes directly
training a 3D inpainter, our method leverages existing 2D
inpainters to obtain depth and appearance priors, which then
supervise the fitting of a NeRF to the completed scene. This
inpainted NeRF is trained using the following loss:

Linp = L0
rec + �LPIPSLLPIPS + �depthLdepth, (6)

where L0
rec is the reconstruction loss for the unmasked pix-

els, and LLPIPS and Ldepth define the perceptual and depth
losses (see below), with weights �LPIPS and �depth.

1IBRNet images in Fig. 3,5,6,7 by Wang et al. available in IBRNet [56]
under an Apache License 2.0.
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Figure 3. Overview of our inpainting method. Using posed input
images and their corresponding masks (upper- and lower-left in-
sets), we obtain (i) an initial NeRF with the target object present
and (ii) the set of inpainted input RGB images with the target ob-
ject removed (but with view inconsistencies). The initial NeRF (i)
is used to compute depth, which we inpaint to obtain depth images
as geometric priors (upper-right inset). The inpainted RGB images
(ii), which act as appearance priors, are used with the depth priors,
to fit a 3D consistent NeRF to the inpainted scene.1

4.2.1 RGB Priors

Our proposed view-consistent inpainting approach uses
RGB inputs, {Ii}ni=1, the camera intrinsic and extrinsic pa-
rameters, and corresponding object masks, {Mi}ni=1, to fit
a NeRF to the scene without the undesired object. To be-
gin with, each image and mask pair, (Ii,Mi), is given to an
image inpainter, INP, to obtain the inpainted RGB images,
{eIi}ni=1, where eIi = INP(Ii,Mi) [48]. Since each view
is inpainted independently, directly supervising a NeRF us-
ing the inpainted views leads to blurry results due to the
3D inconsistencies between each eIi (see Figure 7). In this
paper, instead of using mean squared error (MSE) to opti-
mize the masked area, we propose the use of a perceptual
loss, LPIPS [72], to optimize the masked parts of the im-
ages, while still using MSE for the unmasked parts, where
no inpainting is needed. This loss is calculated as follows:

LLPIPS =
1

|B|
X

i2B
LPIPS(bIi, eIi), (7)

where B is a batch of indices between 1 and n, and bIi is the
i-th view rendered using NeRF. Our model for multiview
inpainting and segmentation uses the same architecture (see
Figure 2), except for the additional logit output, s.

4.2.2 Depth Priors

Even with the perceptual loss, the discrepancies between
the inpainted views can incorrectly guide the model towards
converging to degenerate geometries (e.g., ‘foggy’ geom-
etry may form near the cameras, to explain the disparate
per-view information). Thus, we use inpainted depth maps
as additional guidance for the NeRF model, and detach the
weights when calculating the perceptual loss and use the
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perceptual loss to only fit the colors of the scene. For this
purpose, we use a NeRF optimized on images that include
the unwanted object, and render the depth maps, {Di}ni=1,
corresponding to the training views. Depth maps are calcu-
lated by substituting the distance to the camera instead of
the color of points into Eq. 1:

D(r) =
NX

i=1

Ti(1� exp(��i�i))ti. (8)

The rendered depths are then given to an inpainter to ob-
tain inpainted depth maps, { eDi}ni=1, where eDi is obtained
as eDi = INP(Di,Mi). We found that using LaMa [48]
for depth inpainting, as in the RGB case, gave sufficiently
high-quality results. Note that this is all calculated as a pre-
processing step, and with a NeRF optimized on the original
scene. This NeRF can be the same model used for multi-
view segmentation. If using another source for obtaining
masks, such as human annotated masks, a new NeRF is fit-
ted to the scene. These depth maps are then used to super-
vise the inpainted NeRF’s geometry, via the `2 distance of
its rendered depths, bDi, to the inpainted depths, eDi:

Ldepth =
1

|R|
X

r2R

��� bD(r)� eD(r)
���
2
, (9)

where bD(r) and eD(r) are the depth values for a ray, r.

4.2.3 Patch-based Optimization

Calculating the perceptual loss, Eq. 7, requires full input
views to be rendered during the optimization. Since render-
ing each pixel necessitates multiple forward passes through
the MLP, for high-resolution images, this is an expensive
process, resulting in issues such as (i) the batch size, |B|,
has to be small to fit the rendered images and their cor-
responding computation graphs in memory, and (ii) slow
optimization, even with batch sizes as small as |B| = 1.
A straightforward solution is to render a downsized image
and compare it to the downsized version of the inpainted
images; however, this leads to a loss of information if the
downsizing factor is large. Following image-based works
(e.g., SinGAN [46] and DPNN [14]), and 3D works (e.g.,
ARF [71]), we perform the computations on a patch-basis;
instead of rendering complete views, we render batches
of smaller patches, and compare them with their counter-
parts in the inpainted images based on the perceptual loss.
Only patches inside the bounding box of the object mask
are used. For fitting the unmasked areas, recall that L0

rec
(Eq. 6) simply alters Lrec (Eq. 2) to sample rays only from
unmasked pixels. By separating the perceptual and recon-
struction losses, we prevent inconsistency within the mask,
while avoiding unnecessary changes to the rest of the scene.

���,QSXW�9LHZV���&DPHUD�3RVHV ���*7�9LHZV���&DPHUD�3RVHV+XPDQ�$QQRWDWHG�2EMHFW�0DVNV

Figure 4. Scenes from our dataset. Columns: input view (left), cor-
responding target object mask (middle), and a ground-truth view
without the target object, from a different camera pose (right).
Rows: different scenes; see supplement for examples of all scenes.

4.2.4 Mask Refinement

Here, we consider further leveraging the multiview data to
guide the image inpainter. In particular, parts of the train-
ing images that are currently being generated by the 2D im-
age inpainter might be visible in other views; in such cases,
there is no need to hallucinate those details, since they can
be retrieved from the other views. To prevent such unneces-
sary inpaintings, we propose a mask refinement approach:
for each source image, depth, and mask tuple, (Is, Ds,Ms),
we substitute pixels in Is and Ds that are visible from at
least one other view, to shrink the source mask, Ms. After
this refinement step, only parts of Is and Ds that are oc-
cluded by the undesired object in all of the training views
will remain masked. As a result, the image inpainter has
to fill in a smaller area, resulting in improved inpaintings.
Please see our supplementary material for details.

5. Experiments
Dataset. To evaluate multiview segmentation (MVSeg),

we adopt real-world scenes from LLFF [34], NeRF-
360 [35], NeRF-Supervision [66], and Shiny [61]. For mul-
tiview (MV) inpainting, in addition to providing qualitative
results on scenes from IBRNet [56], we address the need
for a standard benchmark including ground-truth captures
of scenes without the unwanted object as test views, and in-
troduce a dataset containing 10 real-world forward-facing
scenes with human annotated object masks. For each scene,
we provide 60 training images with the object and 40 test
images without the object. This dataset is further suitable
for evaluating tasks such as real-time 3D inpainting, unsu-
pervised 3D segmentation, and video inpainting. Figure 4
shows sample views from two scenes of our dataset.

Metrics. To evaluate our segmentation model, we use
the accuracy of the predictions (pixel-wise) and the intersec-
tion over union (IoU) metric. For MV inpainting, we follow
the image-to-image literature [48] and report the average
learned perceptual image patch similarity (LPIPS) [72], and
the average Fréchet inception distance (FID) [19] between
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Table 1. Quantitative evaluation of multiview segmentation mod-
els, for the task of transferring the source mask to other views.

Method Acc." IoU"
Proj. + Grab Cut [45] (2D) 91.08 46.61
Proj. + EdgeFlow [15] (2D) 96.84 81.63
Semantic NeRF [76] (only source mask) 94.63 75.13
Proj. + EdgeFlow [15] + Semantic NeRF [76] 97.26 83.95
Feature Field Distillation [26] 97.37 83.07
Video Segmentation [4, 57] 98.43 88.34
Ours 98.85 90.96
Ours (two-stage) 98.91 91.66

the distribution of the ground-truth test views and model
outputs. Since our focus is the inpainting, we only calculate
the LPIPS and FID inside the bounding box of the object
mask (using our MVSeg model, we can render the object
mask from the test views that do not contain the object).

Multiview Segmentation Baselines. For MVSeg, one
category of baselines is projection-based approaches: the
source mask is projected into the other views using the
scene geometry from a NeRF. This gives us an incomplete
mask in the other views. Then, a variety of interactive seg-
mentation approaches are applied to the incomplete masks,
propagating them to obtain complete object masks: Proj.
+ Grab Cut [45] and Proj. + EdgeFlow [15]. In ad-
dition, we consider Proj. + EdgeFlow + Semantic NeRF,
where an additional Semantic NeRF [76] is fitted to make
the outputs 3D consistent. Another baseline [26] is a rep-
resentative of the concurrent works on distilling 2D pixel-
level features to 3D scenes [51] and post-processing them
for obtaining segmentation masks. As a baseline for video-
segmentation [57], we compare to Dino [4] since it does not
rely on temporally close neighboring frames.

Multiview Inpainting Baselines. Masked NeRF only
uses the unmasked pixels to optimize a NeRF. Object
NeRF [64] filters the unwanted points in 3D without explic-
itly inpainting the missing regions. No code is available for
NeRF-In [31], so we use our own implementation of their
model, with slight modifications (we use LaMa [48] as the
inpainter). In addition, we compare our results to LaMa [48]
as a representative of state-of-the-art 2D inpainters. To en-
able fair comparison between the NeRF-based 3D models
(which, in addition to inpainting, have to synthesize novel
views), we compare to LaMa by (i) fitting a NeRF on the
views with the object2, (ii) rendering the test views from
the fitted NeRF, and (iii) passing these rendered images to
LaMa. Finally, for reference and as an ideal “gold stan-
dard” 3D inpainting baseline, we fit a NeRF on the ground-
truth test images, use the optimized NeRF to render the
test-views, and then compare the rendered results to the
ground-truth. We provide these results for completeness, as

2Since the test views that do not contain the object should not be avail-
able to the model during the inference.

Table 2. Quantitative evaluation of our inpainting method, using
human-annotated object masks.

Method LPIPS# FID#
Ideal 0.4079 100.25
LaMa (2D) [48] 0.5369 174.61
Object NeRF [64] 0.6829 271.80
Masked NeRF [35] 0.6030 294.69
NeRF-In [31] 0.5699 238.33
NeRF-In [31] (Single) 0.4884 183.23
Ours (no geo. inpainting) 0.4952 200.34
Ours 0.4654 156.64
Ours (Refined RGB/Depth) 0.4664 163.79
Ours (Refined RGB) 0.4529 147.31

an upper-bound on the best possible results one can expect
to obtain when using the same NeRF architecture.

5.1. Results
Multiview Segmentation. We first evaluate our MVSeg

model without any inpainting. In this experiment, we as-
sume that the sparse image points are already given to an
off-the-shelf interactive segmentation model, and that the
source mask is available. Thus, the task is to transfer
the source mask to other views. Table 1 shows that our
model outperforms all of the 2D (3D-inconsistent) and 3D-
consistent baselines. In addition, our two-stage optimiza-
tion helps to further improve the obtained masks.

Qualitatively, Figure 5 compares the results of our seg-
mentation model with the outputs of Neural Volumetric Ob-
ject Selection (NVOS) [44] and video segmentation [4, 57].
Compared to the coarse edges of the 3D-unaware video seg-
mentation model, our model reduces noise and improves
consistency across views. Although NVOS uses scribbles,
rather than the sparse points used in our model, our MVSeg
visually outperforms NVOS. Since the NVOS code base is
not available, we reproduce the published qualitative results
for NVOS [44] (see supplemental for more examples).

Multiview Inpainting. Our dataset is used for quanti-
tative evaluation of our proposed inpainting method against
the baselines. Table 2 shows the comparison of our MV
inpainting method with the baselines, assuming that the ob-
ject masks from all of the views are given. The “ideal” row
is not a baseline, but rather a NeRF fitted to the ground-
truth test views (views of the scene without the object).
While this is only one instantiation of the many possible
inpainted scenes, it provides a convenient measure of the
best performance one might reasonably expect in this sce-
nario. Overall, our method significantly outperforms the
alternative 2D and 3D inpainting approaches. Although our
model uses a 2D image inpainter’s [48] outputs to obtain a
view-consistent inpainted NeRF, it is able to use this ensem-
ble of MV information, in addition to the priors encoded by
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Figure 5. A qualitative comparison of our multiview segmentation model against Neural Volumetric Object Selection (NVOS) [44] (re-
produced from original paper), video segmentation [4], and the human-annotated masks (GT). Our two-stage approach refers to running
our multiview segmentation model twice, with the output of the first run as the initialization of the second (see § 4.1.2). Our method is
less noisy than NVOS, which also misses some pieces of the target (e.g., the lowest flower in the bottom row), but captures more details
than the video segmentation alone (e.g., the blurred edges of the flowers). Our two-stage approach helps fill in some missing aspects of the
one-stage output. Please see our supplement for additional qualitative examples.

Table 3. Quantitative evaluation of our inpainting method, using
the outputs of our multiview segmentation model.

Method LPIPS# FID#
LaMa (2D) [48] 0.5439 169.92
Object NeRF [64] 0.6679 286.55
Masked NeRF [35] 0.6340 332.70
NeRF-In [31] 0.5858 240.27
NeRF-In [31] (Single) 0.5054 176.27
Ours 0.4662 140.56

the perceptual loss function, to outperform the 2D inpainter.
Table 2 further shows that removing geometry guidance im-
pairs the inpainted scene quality.

We display qualitative results of our MV inpainting
method in Figure 6, showing that it can reconstruct a view-
consistent scene with detailed textures, including coherent
view-dependent radiance for both shiny and non-shiny sur-
faces. In addition, in Figure 7, we provide a visual com-
parison to the unpublished concurrent work NeRF-In [31],
which has the second-lowest error. We observe that a NeRF-
In model fitted to all of the inpainted views results in blurry
outputs. Alternatively, using a single inpainted view for
supervising the masked region leads to artifacts in further
views, due to the lack of supervision for the view-dependent
radiance, as well as the poor extrapolation capabilities of
the network. In contrast, our perceptual approach relaxes
the exact reconstruction constraints in the masked region,
thus preventing blurriness despite using all of the images,
while avoiding artifacts caused by single-view supervision.

Table 2 shows that refinement provides a small but sig-
nificant boost in inpainting quality, due to smaller masks
requiring less hallucination from the inpainter. Yet, em-
pirically, refinement only subtly trims the masks (reducing

Table 4. Evaluation of our 3D inpainting method across input view
number (upper half) and mask dilation level (lower half).

Input Views 10 20 40 60
LPIPS# 0.4726 0.4713 0.4667 0.4654
FID# 171.19 172.63 158.02 156.64
Dilation 45 25 5 0
LPIPS# 0.6102 0.5369 0.4654 0.4904
FID# 283.01 230.03 156.64 164.66

mean masked area by 4.74% on our dataset), as the camera
has limited movement during data collection, to ensure sim-
ilarity between the training and testing views. Further, due
to noisy NeRF geometries projecting incorrect values, re-
fining depths lowers performance, whereas refining colours
alone achieves our best results.

So far, our experiments examine the performance of our
MVSeg and MV inpainting independently; however, one
can combine them to remove objects from NeRF scenes
with minimal user interaction. Table 3 shows that using
the output masks of our MVSeg model, instead of using
the human-annotated object masks, results in a subtle de-
crease in the inpainting quality. However, our model with
MVSegs still outperforms other methods, even when they
are fitted on human-annotated segmentations.

5.2. Variations and Ablation Studies
Number of Input Views. Limiting the number of input

views is a standard approach employed in the literature to
modulate the reconstruction quality of NeRFs [54]. Table 4
shows that the performance of our inpainter degrades with
fewer inputs. Thus, we argue that as better-quality NeRFs
are introduced, our approach, which is agnostic to the un-
derlying NeRF model, can readily benefit.
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Figure 6. Visualizations of our view-consistent inpainting results. Upper rows per inset show NeRF renderings of the original scene from
novel views, with the first image also displaying the associated mask. Lower rows show the corresponding inpainted view. Notice that the
synthesized views maintain consistency with each other; however, view-dependent effects still remain (e.g., the lighting on the uncovered
part of the piano). Please see our supplement for additional scenes, and our project website with videos for better visualization.

NeRF NeRF-In NeRF-In (Single) Ours

Figure 7. Qualitative comparisons with other baselines. Columns:
novel views of the scene, synthesized by a NeRF (on the unmasked
images), NeRF-In, NeRF-In (with a single masked training im-
age), and our approach. NeRF-In is significantly more blurry,
while NeRF-In (single) tends to have difficulty with details closer
to the edge of the mask boundary (zoom into boxes for examples).

Importance of Accurate Masks. Here, we examine the
impact of accurate masks on inpainting, via variable dila-
tions of the object masks with a 5⇥ 5 kernel. Larger masks
lead to relying more on the view-inconsistent outputs and

hallucinations of the 2D inpainters, while smaller masks
may permit parts of the unwanted object’s edges to remain
and confuse the 2D inpainter. A subtle dilation is also use-
ful for reducing the effect of shadows. This balance be-
tween over-masking and under-masking is demonstrated in
Table 4, with five dilation iterations found to be optimal and
therefore used for all other experiments.

6. Conclusion
In this paper, we presented a novel approach to inpaint

NeRF scenes, which enforces viewpoint consistency based
on image and geometric priors, given a single-view object
mask. In addition, we provided a multiview segmentation
method that simplifies the annotation process by using a set
of sparse pixel-level clicks on (and around) the undesired
object and translating them into a 3D mask that can be ren-
dered from novel views. We provided experiments to show
the effectiveness of our segmentation and inpainting meth-
ods. The main limitation of our work is the assumption of
semantically consistent image priors, potentially only dif-
fering in terms of textures. Finally, we introduce a dataset
that not only addresses the lack of challenging benchmarks
for multiview inpainting, but which we believe can assist
future advances in this new line of research.
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