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Abstract

In many real-world settings, the critical class is rare and
a missed detection carries a disproportionately high cost.
For example, tumors are rare and a false negative diagno-
sis could have severe consequences on treatment outcomes;
fraudulent banking transactions are rare and an undetected
occurrence could result in significant losses or legal penal-
ties. In such contexts, systems are often operated at a high
true positive rate, which may require tolerating high false
positives. In this paper, we present a novel approach to ad-
dress the challenge of minimizing false positives for systems
that need to operate at a high true positive rate. We propose
a ranking-based regularization (RankReg) approach that is
easy to implement, and show empirically that it not only ef-
fectively reduces false positives, but also complements con-
ventional imbalanced learning losses. With this novel tech-
nique in hand, we conduct a series of experiments on three
broadly explored datasets (CIFAR-10&100 and Melanoma)
and show that our approach lifts the previous state-of-the-
art performance by notable margins.

1. Introduction
The cost of error is often asymmetric in real-world sys-

tems that involve rare classes or events. For example, in
medical imaging, incorrectly diagnosing a tumor as benign
(a false negative) could lead to cancer being detected later
at a more advanced stage, when survival rates are much
worse. This would be a higher cost of error than incor-
rectly diagnosing a benign tumour as potentially cancerous
(a false positive). In banking, misclassifying a fraudulent
transaction as legitimate may be more costly in terms of
financial losses or legal penalties than misclassifying a le-
gitimate transaction as fraudulent (a false positive). In both
of these examples, the critical class is rare, and a missed de-
tection carries a disproportionately high cost. In such situa-
tions, systems are often operated at high true positive rates,
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Figure 1. Which optimization option is preferred in operational
contexts with critical positives? We propose a novel regularizer for
systems that need to operate at a high true positive rate (TPR). Our
approach prioritizes reducing false positives at a high TPR when
presented with different options that equally improve the base ob-
jective, e.g. area under the ROC curve (AUC). In this toy example,
option 2 is preferred because, with a suitable threshold depicted
by the dashed line, all positives can be detected (100% TPR) with
only one false positive (i.e., 25% FPR at 100% TPR), better than
option 1 where two false positives need be tolerated. Our regular-
izer is consistent with this preference: ℓreg is lower for option 2
than option 1 (i.e., 13 vs. 17).

even though this may require tolerating high false positive
rates. Unfortunately, false positives can undermine user
confidence in the system and responding to them could in-
cur other costs (e.g. additional medical imaging tests).

In this paper, we present a novel approach to address
the challenge of minimizing false positives for systems that
need to operate at a high true positive rate. Surprisingly, this
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high-stakes operational setting has rarely been studied by
the research community. In contrast to conventional imbal-
anced classification methods, we propose a general method
for inducing a deep neural network to prioritize the reduc-
tion of false positives at a high true positive rate. To re-
main as broadly applicable as possible, we make minimal
assumptions on the architecture and optimization details of
the deep neural network. Our key insight is that the false
positive rate at a high true positive rate is determined by how
the least confident positives are ranked by the network. Our
plug-and-play solution adds a simple yet effective ranking-
based regularization term to the usual neural network train-
ing objective. The regularization term places an increasing
penalty on positive samples the lower they are ranked in
a sorted list of the network’s classification scores, which
works to push up the scores of the hardest positives.
Contributions. The main contributions of this paper are as
follows:

• We present a novel plug-and-play regularization term
that induces a deep neural network to prioritize the re-
duction of false positives in operational contexts where
a high true positive rate is required.

• Our regularizer is generic and can be easily combined
with other methods for imbalanced learning.

• We conduct extensive experiments on three public
benchmarks to show how the proposed regularization
term is complementary to conventional imbalanced
learning losses, and achieves state-of-the-art perfor-
mance in the high true positive rate operational setting.

2. Related work
Imbalanced classification. Class imbalance poses a chal-
lenge in training real-world neural network models. With-
out intervention, the optimization of a classification net-
work becomes dominated by the common classes at the ex-
pense of the rare classes. Performing robust and efficient
classification on imbalanced data is of practical importance
and has seen much recent progress. In general, existing
methods for imbalanced classification can be summarized
into three major groups: cost function based, model out-
put based, and data based. In the first group, various aux-
iliary optimization objectives are used during training, with
a special attention to increase (or balance) the impact of
under-represented classes. One such effort used weighted
binary cross entropy (WBCE) [35], where the losses of
minority samples are multiplied by a scaling factor (typi-
cally larger than one) to introduce more cost. Other cost
function based approaches include symmetric margin loss
(S-ML) [20], symmetric focal loss (S-FL) [18], asymmet-
ric margin loss (A-ML) and focal loss (A-FL) [17], class-
balanced BCE (CB-BCE) [8] and label distribution aware

margin (LDAM) [4]. The second group of work tackles
the problem by post-processing the model outputs. One
simple approach divides the output scores with class co-
occurrence frequencies [1, 15]. Similarly, other work ad-
justs the outputs by re-balancing the probabilities based on
minority classes [28]. The third group of work focuses on
data re-sampling or augmentation. Re-sampling or over-
sampling the minority classes has shown solid benefits [6].
Enhancing samples from rare classes via augmentation also
has received much consideration in recent years. Some
representative examples are UnMix [31], ReMix [7] and
MixUp [36]. Though approaching the same problem differ-
ently, all aforementioned methods have been used in a vari-
ety of vision tasks, e.g., image classification [1,2,6,12], ob-
ject detection [5,16] and image/video segmentation [14,32],
where class imbalance is severe.

Our work falls into the first group (i.e. cost function
based). We show in the experiments that our ranking-based
regularization term is complementary to a wide range of es-
tablished cost function based approaches (see Sec. 4). Im-
portantly, in contrast to conventional imbalanced classifica-
tion methods, we prioritize the reduction of false positives
at a high true positive rate.
Differentiable ranking. Our regularization objective re-
quires ranking the critical positive samples higher than the
negative samples. This task is challenging as ranking op-
erations are piece-wise constant functions, which have zero
gradient almost everywhere [11]. Learning ranking directly
through backprop is not feasible. To this end, many alter-
native solutions have been explored. For instance, an ear-
lier effort considered using the expectation of the ranking
as soft-ranker [27]. Some recent work used dynamic pro-
gramming, instead of backprop, for weights update [26],
while others achieved this purpose using a differentiable re-
laxation of histogram binning [3,13,21]. Other work has re-
formulated it as an optimal transport problem [9]. Our work
relies on a recent advance that recasts the ranking operation
as the minimizer of a linear combinatorial objective [29],
which can be sovled elegantly by a blackbox combinatorial
solvers [30] that can provide informative gradients from a
continuous interpolation.
Deep AUC optimization. Our work can be considered (and
will be demonstrated in Section 4) as an optimizer for maxi-
mizing the AUC score, cf. [10,19,33,34]. Nonetheless, none
of them are designed to favor low false positive rates given
a high true positive rate requirement. The work most simi-
larly motivated to ours is ALM [24], which recently advo-
cated yielding higher score (i.e. probability) for critical pos-
itives than non-critical negatives, thus improving the AUC.
ALM formulates the problem from a constrained optimiza-
tion perspective and achieves strong empirical results. We
provide comprehensive comparisons with this state-of-the-
art baseline in our experiments.
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Figure 2. An illustration of the regularization term by example.
Given a batch of inputs and a buffer (i.e., external memory) of
positive samples, we collect the probability scores from the classi-
fier, fθ , and apply the ranking function, rk(·), to obtain a vector r
of rank values. The rank values associated with the positive sam-
ples (i.e., numbers in green boxes) are then used to compute the
ranking-based regularization loss, ℓreg , using Eq. 4; we drop the
normalization in this figure for simplicity of presentation. Note
that fθ can be an arbitrary classification architecture and RankReg
does not rely on the specifics of that approach.

3. Technical approach

We present a novel, plug-and-play regularization loss as
a generic method for inducing a neural network to prioritize
minimizing false positives at a high true positive rate. First,
we formulate the imbalanced binary classification task with
critical positives in Sec. 3.1. Second, to obtain a solution
that is tailored asymmetrically to the high true positive rate
setting, we introduce a ranking-based regularization term
that encourages models to rank the critical positives higher
than the non-critical negatives, while prioritizing reducing
the false positive rate at high true positive rate thresholds.
Third, we discuss the used optimization solution in Sec. 3.4,
as the ranking operation is challenging to optimize with
back-propagation due to its non-differentiable nature.

3.1. Problem formulation

We seek to predict the correct label over a
highly imbalanced binary classification dataset
D = {(x1, y1), (x2, y2), . . . , (xn, yn), yi ∈ {0, 1}},
where xi are data samples, yi are labels, and the critical
data samples (positive class, labelled 1) appear much less
frequently than the non-critical data samples (negative
class, labelled 0). For example, medical images with
cancerous tumors may be critical positives, while images
with benign tumors or no tumors may be negatives. It is
assumed that the cost of missing the positive class (a false

negative) carries a disproportionately high cost, and that
the system is required to operate at a high true positive rate.

Our goal is to produce a general method for inducing a
deep neural network (DNN) classifier fθ : Rd → R, map-
ping d-dimensional inputs to output scores, to prioritize the
reduction of false positives at a high true positive rate [24].
To be as general as possible, the method should make min-
imal assumptions on the architecture and optimization de-
tails of fθ.

3.2. Preliminary

We propose a novel ranking-based [11, 29] regularizer
that fulfills the above desiderata. Our key insight is that
the false positive rate at a high true positive rate is deter-
mined by how the least confident positives are ranked by
the network. Our plug-and-play approach adds a regulariza-
tion term to the usual DNN training objective, making our
solution complementary to a wide range of base objective
functions, from conventional binary cross-entropy to more
sophisticated imbalanced losses such as asymmetric focal
loss [17]. In other words, we modify the DNN training ob-
jective to be:

ℓ(fθ(x),y) = ℓbase(fθ(x),y) + λ ℓreg(fθ(x),y), (1)

where ℓbase is the base objective function, ℓreg is the new
regularization term, and λ is a balancing hyperparameter
with value empirically set to 1.

3.3. Ranking regularizer

Denote by rk(·) the ranking function that takes a vector
of real values a and outputs the rank of each element in the
sorted vector. In other words, the ith element in rk(a) is
given by

rk(a)i = 1 + |{j : aj > ai}|. (2)

Then, we devise a regularization term that is computed
as the normalized sum over the squared rank values of the
positive samples:

r = rk ([fθ(x1), fθ(x2), . . . , fθ(xB)]) , (3)

ℓreg(fθ(x),y) =
1

|P |

B∑
i=1

r2i · 1[yi = 1], (4)

where |P | =
∑B

i=1 1[yi = 1] is the number of positive sam-
ples in the batch of B samples. In practice, since positive
samples may be severely under-represented in the dataset,
we compute the regularization term over the union of the
batch and an external memory that caches previous positive
samples; we will revisit the implementation details of this
buffer in Section 3.5. We also normalize the rank values r
to be between 0 and 1.

15785



To see how this regularization term prioritizes the reduc-
tion of false positives at a high true positive rate, let us con-
sider the toy example in Figure 1. Suppose that the classi-
fier fθ currently produces the sorted ordering shown in the
left column. The ground-truth critical positives are repre-
sented by green plus icons and the ground-truth negatives
are represented by grey minus icons. The positive examples
induce the second and fourth highest classification scores
(higher is better for positives). To achieve a high true posi-
tive rate of 100% on these two positives, we would have to
accept at least two false positives, obtaining a false positive
rate of 50%. Now, suppose that in the next training iter-
ation, the optimizer has two options, shown in the middle
and right columns, that would equally improve the training
objective; here, we illustrate with the area under the ROC
curve (AUC), a common retrieval-based objective. While
equally preferable by the training objective, the right col-
umn is better aligned with our goal of reducing false posi-
tives at a high true positive rate: with a suitable threshold
(depicted by the dashed line), we can obtain a false positive
rate of 33% at a true positive rate of 100%. On the other
hand, the middle column can at best achieve a false positive
rate of 50% at a true positive rate of 100%.

The proposed regularization term distinguishes between
the middle and right columns, and assigns a higher loss to
the middle column. In the middle column, the positives
have the first and fourth highest classification scores, pro-
ducing a regularization loss of 12 + 42 = 17 (we drop the
normalization terms here for simplicity of presentation). In
the right column, the positives have the second and third
highest classification scores, producing a regularization loss
of 22 + 32 = 13. The proposed regularization therefore fa-
vors the right column, as desired. Note that if we use the
ranks directly instead of squaring, the regularization loss
would be 5 in both cases (1 + 4 = 2 + 3 = 5). Squar-
ing places an increasing penalty on positive samples the
lower they are ranked in a sorted list of the network’s out-
put scores, which works to push up the scores of the least
confident positive samples.

3.4. Optimization on ranking operations

Rank-based objectives often arise in computer vision
[13,25,27] and are typically challenging to optimize due to
the non-differentiability of the ranking function. The rank-
ing function is piece-wise constant, i.e., perturbing the input
would most likely not change the output. Thus, we cannot
obtain informative gradients (i.e., gradients are zero almost
everywhere). We adopt the optimization approach of [22],
which frames the ranking function as a combinatorial solver
and relies on an elegant way of backpropagating through
blackbox combinatorial solvers [29]. The combinatorial ob-
jective version of computing the ranking function is given

by
rk(a) = argmin

π∈Πn

a · π, (5)

for an arbitrary vector a of real values (see Eq. 2), where Πn

is a set that contains all the permutations of {1, 2, · · · , n}.
This reframing enables us to leverage [29] to differentiate
through a blackbox combinatorial solver: [29] proposes a
family of piecewise affine continuous interpolation func-
tions parameterized by a single hyperparameter that con-
trols the tradeoff between faithfulness to the true function
and informativeness of the gradient. In brief, we com-
pute and return the gradient of the continuous interpolation:
∂L
∂a = − 1

γ (rk(a) − rk(aγ)), where aγ is a perturbed in-
put derived from the incoming gradient information ∂L

∂rk via
aγ = a + γ ∂L

∂rk . We refer the interested reader to [22] for
further details.

3.5. Buffer of positive samples

During training, we maintain a buffer (i.e., an external
memory) of positive samples to enable the regularization
term to be computed per batch even in datasets with se-
vere imbalance ratios, as a batch may contain few (or no)
positive samples. The whole buffer is always appended to
the batch. We implement the buffer as a priority queue and
it works as follows. At the start of training, positive sam-
ples are accumulated from the incoming batches and added
to the buffer up to a fixed maximum capacity. Afterwards,
as batches are processed, new positive samples replace the
samples in the buffer for which the model is the most cer-
tain, i.e., the buffered samples with the maximum fθ re-
sponses. This replacement strategy keeps the hard positives
in the buffer and removes positives for which the classifier
is already confident. We consider the alternative replace-
ment strategies of first-in-first-out (FIFO) and minimum fθ
responses in the ablation studies. The complete pipeline,
including the buffer of positive samples, is illustrated by
example in Figure 2 (without normalization for simplicity
of presentation).

4. Empirical evaluation
4.1. Overview

To demonstrate the effectiveness of RankReg, exten-
sive experiments are conducted on three public image-based
benchmarks: binary imbalanced CIFAR-10, binary imbal-
anced CIFAR-100, and Melanoma. To adapt CIFAR-10
and CIFAR-100 to the critical positives setting, we follow
the same experimental protocol as the state-of-the-art base-
line [24]. As we do not have access to the private med-
ical imaging dataset used in [24], we performed experi-
ments on a publicly available medical imaging dataset (i.e.,
Melanoma). In this section, we first describe the bench-
marks, baselines, and training details. We then present ex-
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Binary CIFAR10, imb. 1:100

Methods FPR@ ↓
98%TPR

FPR@ ↓
95%TPR

FPR@ ↓
92%TPR

AUC ↑

BCE 56.0 45.0 29.0 91.2
+ALM 52.0 34.0 21.0 93.1
+RankReg 47.1 26.2 20.6 94.3

S-ML 59.0 40.0 26.0 91.7
+ALM 50.0 37.0 24.0 92.5
+RankReg 45.6 31.4 29.7 93.9

S-FL 59.0 40.0 27.0 91.7
+ALM 55.0 39.0 25.0 91.5
+RankReg 53.3 35.4 20.7 92.8

A-ML 54.0 36.0 23.0 92.4
+ALM 45.0 35.0 23.0 92.8
+RankReg 47.8 28.9 21.4 94.1

A-FL 50.0 38.0 24.0 92.3
+ALM 49.0 37.0 23.0 92.8
+RankReg 50.5 28.7 20.9 94.3

CB-BCE 89.0 72.0 59.0 78.0
+ALM 67.0 51.0 36.0 88.1
+RankReg 48.8 29.9 24.6 93.2

W-BCE 69.0 52.0 37.0 87.4
+ALM 66.0 48.0 31.0 89.3
+RankReg 60.0 39.4 29.6 92.1

LDAM 65.0 48.0 34.0 89.0
+ALM 60.0 42.0 31.0 91.0
+RankReg 42.8 25.6 23.8 95.0

Avg. ∆ 6.0 9.7 2.8 2.3

Table 1. Comparison results for binary imbalanced CIFAR-10
showing FPRs at {98%, 95%, 92%} TPRs. Baseline numbers are
quoted from ALM [24]. “+ALM” and “+RankReg” are shorthand
for BaseLoss+ALM and BaseLoss+RankReg, respectively.

perimental results on the three benchmarks, showing how
the proposed regularizer is complementary to conventional
imbalanced learning losses and achieves state-of-the-art re-
sults. We conclude with ablations and analyses of design
choices.

4.2. Datasets and evaluation protocol

Binary imbalanced CIFARs. For a fair comparison, we
adopt the same binary imbalanced versions of CIFAR-10
and 100 as curated by the authors of the state-of-the-art
method [24]. In brief, binary imbalanced CIFAR-10 is con-
structed by randomly designating two classes as positives
and negatives. All training samples from the negative class
are used, while training samples from the positive class are
subsampled. Binary imbalanced CIFAR-100 is constructed
by designating one super-class as the negative class and
a sub-class of a different super-class as the positive class.

Binary CIFAR100, imb. 1:100

Methods FPR@ ↓
98%TPR

FPR@ ↓
95%TPR

FPR@ ↓
90%TPR

AUC ↑

BCE 93.0 63.0 47.0 81.8
+ALM 91.0 49.0 39.0 82.7
+RankReg 85.2 42.4 28.7 85.5

S-ML 89.0 65.0 43.0 82.7
+ALM 88.0 69.0 41.0 81.7
+RankReg 64.0 44.8 34.5 85.4

S-FL 89.0 62.0 44.0 82.6
+ALM 88.0 60.0 42.0 81.7
+RankReg 84.6 49.2 38.4 84.7

A-ML 91.0 63.0 44.0 81.8
+ALM 89.0 55.0 37.0 82.7
+RankReg 81.6 43.4 32.6 85.5

A-FL 88.0 63.0 45.0 82.8
+ALM 86.0 62.0 40.0 83.2
+RankReg 70.0 53.4 35.8 84.6

CB-BCE 93.0 75.0 52.0 78.8
+ALM 89.0 59.0 36.0 83.8
+RankReg 89.8 48.6 33.4 84.1

W-BCE 88.0 59.0 41.0 79.7
+ALM 87.0 53.0 39.0 83.2
+RankReg 84.0 60.0 41.1 82.9

LDAM 84.0 70.0 42.0 82.3
+ALM 80.0 59.0 40.0 83.2
+RankReg 70.3 51.6 35.0 84.7

Avg. ∆ 8.6 8.6 4.3 1.9

Table 2. Comparison results for binary imbalanced CIFAR-100
showing FPRs at {98%, 95%, 90%} TPRs. Baseline numbers are
quoted from ALM [24]. “+ALM” and “+RankReg” are shorthand
for BaseLoss+ALM and BaseLoss+RankReg, respectively.

Again, all training samples from the negative class are used,
while training samples from the positive class are subsam-
pled. We refer the interested reader to [24] for the con-
struction details. Following the evaluation protocol in [24],
we experiment with 1:100 and 1:200 imbalance ratios (1
critical positive to 100 or 200 negatives), set aside 100 and
50 samples per class to form the validation set for hyper-
parameter selection for CIFAR-10 and 100 respectively, and
evaluate on a class-balanced test set.
Melanoma. The Kaggle Melanoma dataset is a medical im-
age classification dataset that was first proposed on a com-
petition for identifying melanoma (a common form of skin
cancer) in imaging scans of skin lesion [23]. It is composed
of 33,126 images collected from patients in large variance,
where only 584 out of the entire set are malignant (i.e., pos-
itive) melanoma; therefore, the dataset has a 1:176 imbal-
ance ratio. It is split into training, validation, and test sets
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with ratios of 70%, 10%, and 20%, respectively. The orig-
inal resolutions of images in Melanoma are too high (e.g.,
[6000, 4000] or [1920, 1080]) to fit in the backbone net-
work (i.e., ResNet-18). We resize them into [256, 256] for
the convenience of computational resources, cf. [34]. Since
Melanoma is naturally imbalanced, no further curation is
needed for our study.
Metrics. We evaluate the performance using the false
positive rate (FPR) against several increasingly strict
true positive rates (TPR), i.e., FPR@{β}TPR and β ∈
{90%, 92%, 95%, 98%}. For completeness, we also eval-
uate using the area under curve metric (AUC) to reveal the
overall classification performance, as typically seen in re-
lated work [10, 19, 33, 34].
Baseline methods. Following previous method [24], we
consider applying our proposed regularizer with several dif-
ferent existing loss functions, most of which have been
designed to handle class imbalance: binary cross-entropy
(BCE), symmetric margin loss (S-ML) [20], symmetric fo-
cal loss (S-FL) [18], asymmetric margin loss (A-ML) and
focal loss (A-FL) [17], cost-weighted BCE (WBCE) [35],
class-balanced BCE (CB-BCE) [8], and label distribution
aware margin (LDAM) [4].

4.3. Implementation details

Backbone architectures. For the binary imbalanced CI-
FAR datasets, we adopt the ResNet-10 architecture up to the
second last layer as feature extractor and append a multi-
layer perceptron (MLP) with shape [512→ 2] as the clas-
sifier. For Melanoma, we adopt the richer architecture of
ResNet-18 and repeat the same step to create the classifier.
Buffer usage. The buffer of positive samples can have a
rebalancing effect when used to compute the base loss in
addition to the usual batch samples. We leverage this effect
when training models on the binary imbalanced CIFAR-10
and CIFAR-100, which have balanced test sets following
the protocol in [24]. Since all splits in the Melanoma dataset
follow the data’s natural class imbalance, when training
the Melanoma models we compute the base loss using the
batch samples only. Throughout our experiments, we set
the batch size to 64 when training other methods (including
base methods and ALM). When training RankReg models,
we use a buffer size of 32 and reduce the batch size to 32.
Hyper-parameter search. For CIFAR-10 and CIFAR-100,
which we have in common with [24], we use the same
hyper-parameters on all base loss functions, for the sake of
fair comparison. For Melanoma dataset, we tune the hyper-
parameters as follows. The more general parameters like
learning rate and batch size are chosen and fixed to work
with the BCE loss. For ALM [24], a two step grid-search is
performed. In the first step, we perform a grid-search over
ρ and µ(0). We choose ρ from the set {2, 3} and µ(0) from
the set {10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8, 10−9}

Melanoma, imb. 1:170

Methods FPR@ ↓
98%TPR

FPR@ ↓
95%TPR

FPR@ ↓
92%TPR

FPR@ ↓
90%TPR

AUC ↑

BCE 49.8 45.9 38.6 35.5 85.7
+ALM 49.9 41.8 40.0 37.7 85.6
+RankReg 49.4 37.9 33.9 31.6 86.8

S-ML 46.6 42.8 38.4 37.4 85.3
+ALM 51.3 40.5 39.8 36.2 83.5
+RankReg 54.6 42.4 36.1 34.4 86.3

S-FL 59.0 47.3 44.4 39.5 83.8
+ALM 47.8 42.7 39.2 38.1 84.0
+RankReg 56.6 37.8 31.2 29.8 86.1

A-ML 47.5 42.9 40.4 36.6 85.4
+ALM 51.0 41.5 37.5 37.1 83.7
+RankReg 58.3 40.8 36.7 33.9 86.2

A-FL 55.6 45.0 42.7 41.2 84.4
+ALM 49.0 42.4 40.1 38.1 83.6
+RankReg 48.0 36.2 30.7 28.8 86.3

CB-BCE 67.2 59.5 35.7 33.2 82.6
+ALM 60.8 59.5 46.3 45.8 81.5
+RankReg 57.8 44.9 35.7 34.7 83.7

W-BCE 69.0 52.0 37.0 32.1 87.4
+ALM 66.0 48.0 31.0 30.7 89.3
+RankReg 56.4 41.1 33.0 30.5 90.9

LDAM 59.7 48.2 46.2 39.0 83.4
+ALM 62.7 47.7 43.3 40.7 81.5
+RankReg 65.6 47.5 45.7 43.9 81.7

Table 3. Comparison results for Melanoma dataset showing FPRs
at {98%, 95%, 92%, 90%} TPRs. “+ALM” and “+RankReg” are
shorthand for BaseLoss+ALM and BaseLoss+RankReg, respec-
tively.

(note that this is a slightly more thorough grid-search than
the original paper). When these two are fixed, we search for
the best δ from the set {0.1, 0.25, 0.5, 1.0}. These parame-
ters are tuned based on the AUC on the validation set.
Model ensembling. For CIFAR-10 and CIFAR-100 where
the datasets are rather small, we report results from 10
ensembling models for higher reliability and to diminish
dataset-dependant biases, matching the protocol in [24]. In
detail, 10 random stratified splits of the dataset are created
and a model is trained on each. Finally, these models are
ensembled by averaging their outputs in the logit space. We
do not perform ensembling on Melanoma, as it is larger and
has a standard data split.

4.4. Comparison to alternative approaches

Binary imbalanced CIFAR-10. Table 1 compares the per-
formance of using RankReg as well as the previous state-of-
the-art method ALM [24] together with eight base losses on
CIFAR-10 dataset, curated with a imbalance ratio of 1:100
(see Sec. 4.2). We group the empirical results by base loss
(BCE, S-ML, S-FL, etc.). Within each group, we first show
the results obtained by applying the base method as well as
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FPR@βTPR CIFAR10 CIFAR100

98% 95% 92% AUC 98% 95% 90% AUC

Ranks 52.1 35.2 24.0 93.6 86.3 52.8 43.0 83.2
Squared ranks 47.1 26.2 20.6 94.3 85.2 42.4 28.7 85.5
Cubed ranks 45.5 31.9 23.0 93.7 84.2 53.8 50.4 83.7
Exponential of ranks 44.5 34.0 24.3 93.6 83.6 48.8 39.4 84.9

Table 4. Ablation study of different ranking penalty choices on
imbalanced CIFAR-10 and 100 datasets.

the previous state-of-the-art approach. Then, we show our
results. For each FPR and overall AUC, the best result is
either underlined or highlighted in red text.

It is clear that our results are consistently better on most
metrics, except for three FPR values at S-ML, A-FL and
A-ML baselines, where RankReg is the second best ap-
proach. The performance improvement is especially strik-
ing when coupling RankReg with CB-BCE: RangReg re-
duces the FPR at the strictest TPR ratio by 18%, i.e., from
67.0 to 48.8 in FPR@98%TPR. The best overall results
are obtained by fusing RankReg with the LDAM baseline,
where we achieve the higest AUC score (i.e., 95.0) as well
as the lowest FPR@98%TPR value (i.e., 42.8) across all ex-
perimental results.

Even though our goal is not to have higher AUC scores,
our approach obtains the new state-of-the-art AUC perfor-
mance on all baselines. The bottom row in Table 1 shows
the improvements on FPRs using RankReg compared to
previous best results, averaged across all baselines. It is
notable that our approach obtains larger gains at higher
TPRs. For instance, our approach achieves 6.0 and 9.7 FPR
improvements at 98% and 95% TPRs, respectively, com-
pared to 2.8 at 92% TPR, which is favored by our goal (see
Sec. 3.3).
Binary imbalanced CIFAR-100. To show the capability of
our method to scale, we evaluate our method on the curated
CIFAR-100 dataset. The results in Table 2 are consistent
with our results on CIFAR-10. Once again, our approach is
the top performer across most metrics. However, this time,
both the BCE and A-ML baselines achieve the highest AUC
score using RankReg. Moreover, it is notable that on the
highest TPR (i.e., 98%), our approach outperforms the pre-
vious state-of-the-art with the margin > 10% on 5 different
baselines (i.e., A-FL, S-ML, BCE, LDAM and S-FL). Such
notable gains are only observed twice in previous experi-
ments (i.e., LDAM and CB-BCE in Table 1).
Melanoma. We demonstrate the application of RankReg
on imbalanced cancer classification using the Melanoma
benchmark and show results in Table 3. As we are the
first to perform FPR vs. TPR study on such a large-scale
dataset, there is a lack of comparison methods. Therefore,
we provide results for all baselines as well as their combi-
nation with ALM by running experiments ourselves. It can
be seen that, across all baselines, RankReg achieves state-

FPR@βTPR CIFAR100 Melanoma

98% 95% 92% AUC 98% 95% 92% AUC

Dequeue Max 85.2 42.4 28.7 85.5 49.4 37.9 33.9 86.8
FIFO 86.8 44.2 31.2 85.2 59.2 47.6 40.5 83.1
Dequeue Min 88.2 55.9 44.8 83.2

Table 5. Ablation study on buffer update strategy. Swapping
out the most confident sample with incoming ones (i.e., Dequeue
Max) performs better than other alternatives.

FPR@βTPR CIFAR10 CIFAR100

98% 95% 92% AUC 98% 95% 90% AUC

Buffer = 0 58.8 43.6 30.2 90.4 93.4 48.4 37.4 83.1
Buffer = 5 53.0 42.4 28.7 92.6 86.6 57.2 39.0 82.5
Buffer = 10 48.1 26.9 26.2 94.5 85.2 50.2 28.7 84.6
Buffer = 20 47.6 26.2 22.0 93.8 85.2 50.0 29.8 84.9
Buffer = 32 47.1 26.2 20.6 94.3 85.2 42.4 28.7 85.5
Buffer = 48 46.1 24.3 23.2 93.9 85.2 42.1 27.6 85.5

Table 6. Illustration of the impact of the positive buffer. We re-
port false positive rate results at high true positive rates for various
buffer sizes.

of-the-art performance in the majority of metrics, with a mi-
nor setback on LDAM, where both ours and ALM achieve
one best metric. These results verify the effectiveness of
RankReg on a real-world dataset with critical positives.
Discussion. We attribute the performance lift obtained by
RankReg to its more direct approach in ordering the criti-
cal positives ahead of the negatives, which is accomplished
indirectly through margins in the previous state-of-the-art
method ALM [24]. The FPR at a given TPR depends only
on how samples are ranked relative to each other, and not
on the magnitude of the classification scores. Furthermore,
the FPR at a high TPR is determined by the ranking of the
least confident positives. Our regularizer places an increas-
ing penalty on positive samples the lower they are ranked,
which works to push up the scores of the hardest positives.

4.5. Ablations and additional analyses

In this section, we examine the impact of used compo-
nents as well as provide additional evaluation to reveal our
system’s pros and cons. For these additional studies, un-
less otherwise indicated, we present results from using our
approach with BCE as the base function.
Rank penalty ablation. Table 4 shows an ablation study on
different choices for the rank penalty in Eq. 4, including raw
rank values r, squared rank values r2, cubed rank values
r3, and the exponential of rank values er. Squared rank
provides the best overall result while being simple.
Impact of buffer maintenance strategy. Our approach
uses a buffer of critical positive samples to have meaning-
ful ranking regularization signals at each batch of training.
We evaluate the role of buffer by considering three kinds
of maintenance strategies: (1) remove the most confident
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Figure 3. Evalution of ROC results produced by our approach vs.
others on the CIFAR10 dataset (in 1:100 imbalance ratio).

sample while adding new positive samples from a incoming
batch (i.e., Dequeue Max), (2) first-in-first-out (i.e., FIFO),
and (3) remove the least confident sample (i.e., Dequeue
Min). The results in Table 5 show that feeding sufficient
amount of low-ranking positives to the model is useful, as
evidenced by the increased performance across all metrics.
Impact of buffer size. Throughout the empirical results in
Sec. 4.4, we use a buffer size of 32. Next, we ablate the size
of the buffer by allowing the model to use more buffered
positive samples during training. Table 6 shows that the
buffer plays an important role in our approach. Indeed, ex-
cluding the buffer component yields worse results; and per-
formance (especially FPR@98TPR) improves quickly as
buffer size increases. 32 seems to be an improving plateau.
Visualization of ROCs. To further estimate the effective-
ness of our approach to reduce false positive rates at high
true positive rates, we visualize our ROC curves as well as
comparison methods, as shown in Figure 3. The top two
curves (i.e., ours and ALM) significantly surpass that of the
BCE baseline on FPRs at earlier TPRs, i.e., starting from
30% TPR and onward. Importantly, our approach performs
on par with ALM up until ∼75% TPR, and then consistently
yields lower FPR values ever since to almost 100% TPR.
Robustness to label noise. Real-world datasets often con-
tain mislabeled data. To evaluate the robustness of our ap-
proach in the presence of label noise, we perform additional
experiments in which we incrementally flip a proportion
η of training labels. Figure 4 shows how FPR@{98, 95,
92}%TPR (left to right) degrade as a function of η in the
range of [0, 0.5], using BCE as base loss. These results sug-
gest that RankReg is as robust to label noise as the state-of-
the-art approach [24].
1:200 imbalance ratio. We also test our model on more
imbalanced situations, e.g., 1:200 imbalance ratio. To this
end, we use the same data curation pipeline as introduced
in Sec. 4.2 and build binary imbalanced CIFAR-10 and 100
datasets with a 1:200 imbalance ratio. We defer the full re-
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Figure 4. Label noise experiments using BCE as base loss on CI-
FAR10. We report FPR@{98, 95, 92}%TPR (left to right) with
varied noise ratios.

Error@β%TPR ↓ LT-CIFAR10 imb. 100 LT-CIFAR10 imb. 200

80% 90% Acc. 80% 90% Acc

CE 29.8 34.7 70.4 37.8 42.4 64.0
CE+ALM 28.9 33.9 70.9 36.1 39.9 65.1
CE+RankReg 26.7 29.3 71.6 36.7 37.8 65.0

Table 7. Multi-class experiments using long-tailed CIFAR-10.
Baseline numbers are quoted from ALM [24].

sult tables to the supplementary material for space reasons.
Looking at the averaged improvements (i.e., Avg.∆) in the
bottom row, our approach leads by a large margin.
Multi-class extension. RankReg can be used in multi-
class settings by ranking the critical samples higher than
others based on the output probability for each class. Ta-
ble 7 shows additional results in the multi-class setting us-
ing long-tailed CIFAR-10 following the experiment proto-
col in [24]. We report the average error rate of other classes
after setting thresholds for {80, 90}%TPR on the critical
class [24]. Our method performs better than [24] under
the 1:100 imbalance ratio setting and comparably under the
1:200 setting.

5. Conclusion

The problem setting of critical rare positives has been
surprisingly under-studied in the research community. This
paper introduces a general method for inducing a neural net-
work to prioritize the reduction of false positives when the
operational context calls for a high true positive rate. Mo-
tivated by the observation that the false positive rate at a
high true positive rate is determined by how the least con-
fident positives are ranked by the network, we formulated a
ranking-based regularizer that places an increasing penalty
on positive samples the lower they are ranked in a sorted
list of the network’s classification scores. Experimental re-
sults show how our regularizer can be combined with a wide
range of conventional losses and achieves state-of-the-art
results in standard evaluations. We hope that our findings
will inspire broader interest in this important problem set-
ting, as well as provide practitioners a simple yet effective
method to train better neural network models for critical
rare classes.
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