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Abstract

Video steganography is the art of unobtrusively conceal-
ing secret data in a cover video and then recovering the
secret data through a decoding protocol at the receiver end.
Although several attempts have been made, most of them
are limited to low-capacity and fixed steganography. To
rectify these weaknesses, we propose a Large-capacity and
Flexible Video Steganography Network (LF-VSN) in this
paper. For large-capacity, we present a reversible pipeline
to perform multiple videos hiding and recovering through
a single invertible neural network (INN). Our method can
hide/recover 7 secret videos in/from 1 cover video with
promising performance. For flexibility, we propose a key-
controllable scheme, enabling different receivers to recover
particular secret videos from the same cover video through
specific keys. Moreover, we further improve the flexibility
by proposing a scalable strategy in multiple videos hid-
ing, which can hide variable numbers of secret videos in
a cover video with a single model and a single training
session. Extensive experiments demonstrate that with the
significant improvement of the video steganography perfor-
mance, our proposed LF-VSN has high security, large hid-
ing capacity, and flexibility. The source code is available at
https://github.com/MC-E/LF-VSN .

1. Introduction
Steganography [10] is the technology of hiding some se-

cret data into an inconspicuous cover medium to generate
a stego output, which only allows the authorized receiver
to recover the secret information. Unauthorized people can
only access the content of the plain cover medium, and hard

∗Corresponding author. This work was supported by the King Abdul-
lah University of Science and Technology (KAUST) Office of Sponsored
Research through the Visual Computing Center (VCC) funding, SDAIA-
KAUST Center of Excellence in Data Science and Artificial Intelligence,
and Shenzhen Research Project JCYJ20220531093215035.

to detect the existence of secret data. In the current digital
world, image and video are commonly used covers, widely
applied in digital communication [27], copyright protec-
tion [36], information certification [31], e-commerce [26],
and many other practical fields [10, 12].

Traditional video steganography methods usually hide
messages in the spatial domain or transform domain by
manual design. Video steganography in the spatial domain
means embedding is done directly to the pixel values of
video frames. Least significant bits (LSB) [8,45] is the most
well-known spatial-domain method, replacing the n least
significant bits of the cover image with the most significant
n bits of the secret data. Many researchers have used LSB
replacement [6] and LSB matching [34] for video steganog-
raphy. The transform-domain hiding [5, 17, 39] is done by
modifying certain frequency coefficients of the transformed
frames. For instance, [44] proposed a video steganogra-
phy technique by manipulating the quantized coefficients
of DCT (Discrete Cosine Transformation). [9] proposed to
compare the DWT (Discrete Wavelet Transformation) co-
efficients of the secret image and the cover video for hid-
ing. However, these traditional methods have low hiding
capacity and invisibility, easily being cracked by steganaly-
sis methods [15, 28, 33].

Recently, some deep-learning methods were proposed to
improve the hiding capacity and performance. Early works
are presented in image steganography. Baluja [3, 4] pro-
posed the first deep-learning method to hide a full-size im-
age into another image. Recently, [21,32] proposed design-
ing the steganography model as an invertible neural network
(INN) [13,14] to perform image hiding and recovering with
a single model. For video steganography, Khare et al. [22]
first utilized back propagation neural networks to improve
the performance of the LSB-based scheme. [43] is the first
deep-learning method to hide a video into another video.
Unfortunately, it simply aims to hide the residual across ad-
jacent frames in a frame-by-frame manner, and it requires
several separate steps to complete the video hiding and re-
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Figure 1. Illustration of our large-capacity and flexible video steganography network (LF-VSN). Our LF-VSN reversibly solves multiple
videos hiding and recovering with a single model and the same parameters. It has large-capacity, key-controllable and scalable advantages.

covering. [35] utilize 3D-CNN to explore the temporal cor-
relation in video hiding. However, it utilizes two separated
3D UNet to perform hiding and recovering, and it has high
model complexity (367.2 million parameters). While video
steganography has achieved impressive success in terms of
hiding capacity to hide a full-size video, the more challeng-
ing multiple videos hiding has hardly been studied. Also,
the steganography pipeline is rigid.

In this paper, we study the large-capacity and flexible
video steganography, as shown in Fig. 1. Concretely, we
propose a reversible video steganography pipeline, achiev-
ing large capacity to hide/recover multiple secret videos
in/from a cover video. At the same time, our model
complexity is also attractive by combining several weight-
sharing designs. The flexibility of our method is twofold.
First, we propose a key-controllable scheme, enabling dif-
ferent receivers to recover particular secret videos with spe-
cific keys. Second, we propose a scalable strategy, which
can hide variable numbers of secret videos into a cover
video with a single model and a single training session. To
summarize, this work has the following contributions:

• We propose a large-capacity video steganography
method, which can hide/recover multiple (up to 7) se-
cret videos in/from a cover video. Our hiding and re-
covering are fully reversible via a single INN.

• We propose a key-controllable scheme with which dif-
ferent receivers can recover particular secret videos
from the same cover video via specific keys.

• We propose a scalable embedding module, utilizing a
single model and a single training session to satisfy
different requirements for the number of secret videos
hidden in a cover video.

• Extensive experiments demonstrate that our proposed

method achieves state-of-the-art performance with
large hiding capacity and flexibility.

2. Related Work
2.1. Video Steganography

Steganography can date back to the 15th century, whose
goal is to encode a secret message in some transport medi-
ums and covertly communicate with a potential receiver
who knows the decoding protocol to recover the secret mes-
sage. Since the human visual system is less sensitive to
small changes in digital media, especially digital videos.
Video steganography is becoming an important research
area in various data-hiding technologies [10].

Traditional video steganography methods usually per-
formed hiding and recovering in the spatial domain, e.g.,
Pixel Value Differencing (PVD) [20, 40] and Least Signifi-
cant Bits (LSB) [6, 34, 41]. PVD embeds the secret data in
the difference value of two adjacent pixels. In [40], a PVD-
based video steganography system is proposed to embed the
secret data in a compressed domain of the cover medium.
[20] utilized enhanced pixel-value differencing (EPVD) to
improve the video steganography performance. LSB meth-
ods work by replacing the n least significant bits of the
cover data with the most significant n bits of the secret in-
formation. [41] utilized LSB replacement technique to hide
secret text in grayscale video frames. To enhance the secu-
rity in LSB-based methods, [2] shuffled the secret data and
embedded the index of correct order into the cover video. In
addition to spatial-domain methods, some transformed do-
main methods [9, 44] were proposed to perform hiding by
modifying certain frequency coefficients of the transformed
cover video. For instance, [44] proposed a video steganog-
raphy technique by manipulating the quantized coefficients
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of DCT transformation. [9] proposed to compare the DWT
transformation coefficients of the secret image and the cover
video for hiding. Nevertheless, the above traditional meth-
ods have low hiding capacity and invisibility, easily pro-
ducing artificial markings and being cracked by steganaly-
sis methods [15, 28, 33].

Motivated by the success of deep learning, some deep-
learning methods were proposed. [16] introduced GAN to
steganography, showing that the adversarial training scheme
can improve hiding security. [49] improve the hiding qual-
ity by utilizing two independent adversarial networks to cri-
tique the video quality and optimize for robustness. [25]
studied the lossless steganography below 3 bits per pixel
(bpp) hiding. [38] embedded the secret data in the wavelet
transform coefficients of the video frames. The above meth-
ods focus more on the robustness of low-capacity hiding.
One of the important applications of low-capacity steganog-
raphy is watermarking [1, 42, 52], in which the secret bit
string represents the sign of the owner. Some deep-learning
methods were proposed for large-capacity hiding. [3, 4]
first explored hiding a full-size image into another im-
age. [21, 32] proposed a cheaper pipeline by implement-
ing image hiding and recovering with a single invertible
neural network (INN) [13, 14]. Compared with image hid-
ing, video hiding is a more challenging task, requiring a
larger hiding capacity. [43] first studied to hide/recover a
video in/from another video. However, this method sim-
ply hides the residual across adjacent frames in a frame-by-
frame manner. [35] explores the temporal correlation by 3D
CNN in video steganography. However, it utilizes two sepa-
rate 3D UNet to perform hiding and recovering and has high
model complexity (367.2M model parameters). These pre-
vious works demonstrate that deep networks have great po-
tential in video hiding, inspiring us to study the more chal-
lenging task of multiple and flexible video hiding.

2.2. Invertible Neural Nerwork

Since the concept of invertible neural network (INN) was
proposed in [13, 14], INN has attracted more and more at-
tention due to its pure invertible pipeline. Pioneering re-
search on INN can be seen in image generation tasks. For
instance, Glow [24] utilized INN to construct an invertible
mapping between the latent variable z and nature images
x. Specifically, the generative process x = fθ(z) given a
latent variable can be specified by an INN architecture fθ.
The direct access to the inverse mapping z = f−1

θ (x) makes
inference much cheaper. Up to now, INN has been studied
in several vision tasks (e.g., image rescaling [19,46], image
restoration [29, 30], image coloring [51], and video tempo-
ral action localization [50]) and presents promising perfor-
mance.

The architecture of INN needs to be carefully designed
to guarantee the invertibility. Commonly, INN is composed

of several invertible blocks, e.g., the coupling layer [13].
Given the input h, the coupling layer first splits h into two
parts (h1 and h2) along the channel axis. Then they un-
dergo the affine transformations with the affine parameters
generated by each other:

ĥ1 = h1 · ψ1(h2) + ϕ1(h2)

ĥ2 = h2 · ψ2(ĥ1) + ϕ2(ĥ1),
(1)

where ψ(·) and ϕ(·) are arbitrary functions. ĥ1 and ĥ2 are
the outputs of the coupling layer. Correspondingly, the in-
verse process is defined as:

h1 =
ĥ1 − ϕ1(h2)

ψ1(h2)
; h2 =

ĥ2 − ϕ2(ĥ1)

ψ2(ĥ1)
. (2)

In this paper, we employ the reversible forward and
backward processes of INN to perform multiple videos hid-
ing and recovering, respectively. We further improve INN
to explore flexible video steganography.

3. Methodology
3.1. Overview

An overview of our LF-VSN is presented in Fig. 2.
Specifically, given Ns secret videos xse = {xse(n)}Ns

n=1

and a cover video xco, the forward hiding is operated group-
by-group through a sliding window, traversing each video
from head to tail. After hiding, a stego video xst is pro-
duced, ostensibly indistinguishable from xco to ensure that
xse is undetectable. In the backward recovering, a channel-
wise broadcasting operation (R3×W×H copy−→ R3L×W×H )
copies each stego frame in the channel dimension to form
the reversed input. During recovering, multiple secret
videos are recovered frame-by-frame in parallel. It is worth
noting that the forward hiding and backward recovering
share the same model architecture and parameters.

3.2. Steganography Input and Output Design

At the beginning of each hiding step, a fusion module
is applied to fuse frames in each group to take advantage
of the inner temporal correlation. Considering that it is
easy to produce texture artifacts and color distortion when
hiding in the spatial dimension [15, 21], we perform the
fusion by a frequency concatenation. Specifically, given
the j-th cover group Xco⊛j ∈ RL×3×W×H and secret
groups {Xse⊛j(n) ∈ RL×3×W×H}Ns

n=1 (each contains L
frames), we adopt Haar discrete wavelet transform (DWT)
to split each frame into four frequency bands (i.e., LL, HL,
LH, HH). In each frame group, we concatenate the part
in the same frequency band from different frames in the
channel dimension and then concatenate these four bands
in order of frequency magnitude, producing the final se-
cret input {Xse⊛j(n) ∈ R12Ls×W

2 ×H
2 }Ns

n=1 and cover in-
put Xco⊛j ∈ R12Lc×W

2 ×H
2 . The output of the forward
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Figure 2. Network architecture of our LF-VSN. It is composed of several invertible blocks. In the forward hiding process, multiple secret
videos are hidden in a cover video to generate a stego video, together with redundancy. In the backward recovering process, the stego video
and predicted redundancy are fed to the reverse data flow of the same network with the same parameters to recover secret videos.

hiding comprises a stego group Xst⊛j and several redun-
dancy groups {Xre⊛j(n)}Ns

n=1. Xst⊛j is converted from
the frequency domain to the spatial domain by a frequency
separation, i.e., the inverse of the frequency concatenation.
Xre⊛j(n) represents the redundancy of the Xse⊛j(n) that
does not need to be hidden and will be discarded. In our
LF-VSN, we utilize the adjacent frames to cooperate with
hiding the central frame. Thus, we only output the central
stego frame in each hiding step. The backward recovering
is similarly operated in the frequency domain and converted
to the spatial domain at the output.

3.3. Invertible Block

As shown in Fig. 2, our hiding and recovering have
reverse information flow constructed by several invert-
ible blocks (IBs). The architecture of IB is presented in
Fig. 3. Concretely, in the k-th IB, there are two branches
to process the input cover group Xk

co⊛j and secret groups
{Xk

se⊛j(n)}
Ns
n=1, respectively. Several interaction pathways

between these two branches construct the invertible pro-
jection. We use an additive transformation to project the
cover branch and employ an enhanced affine transformation
to project the secret branch. The transformation parame-
ters are generated from each other. Here we utilize weight-
sharing modules (η1k(·) and ϕ1k(·)) to extract features from
all secret groups, producing a feature set {Fk

se(n)}
Ns
n=1 =

{ϕk(ηk(Xk
se⊛j(n)))}

Ns
n=1. ηik(·) and ϕik(·) (i = 1, 2, 3)

refer to a 3 × 3 convolution layer and a five-layer dense
block [18], respectively. Then, we concatenate Fk

se in the
channel dimension and pass through an aggregation mod-
ule ξk(·) to generate the transformation parameters of the
cover branch. Note that ξk(·) is optional in different cases.
In our fixed hiding, ξk(·) is a 3× 3 convolution layer, and it
is a scalable embedding module in our scalable hiding. The

Figure 3. Illustration of the architecture of our invertible block.
The dashed line refers to weight sharing.

transformation parameters of the secret branch are gener-
ated from Xk

co⊛j and shared among different secret groups.
Thus, in the k-th invertible block, the bijection of the for-
ward propagation in Eq. (1) is reformulated as:

Xk+1
co⊛j = Xk

co⊛j + ξk(||ϕ1
k(η

1
k(X

k
se⊛j(n)))||Ns

n=1)

{Xk+1
se⊛j(n)}

Ns
n=1 =

Xk
se⊛j(n) · exp(ϕ2

k(η
2
k(X

k+1
co⊛j))) + ϕ3

k(η
3
k(X

k+1
co⊛j)),

(3)

where || · || refers to the channel-wise concatenation. exp(·)
is the Exponential function. Accordingly, the backward
propagation is defined as:

{Xk
se⊛j(n)}Ns

n=1 =

(Xk+1
se⊛j(n)− ϕ3

k(η
3
k(X

k+1
co⊛j))) · exp(−ϕ2

k(η
2
k(X

k+1
co⊛j)))

Xk
co⊛j = Xk+1

co⊛j − ξk(||ϕ1
k(η

1
k(X

k
se⊛j(n)))||Ns

n=1).

(4)
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Figure 4. The architecture of our redundancy prediction module
(RPM). It has two model settings: (a) RPM without (w/o) key
controlling; (b) RPM with (w) key controlling.

3.4. Redundancy Prediction Module (RPM) & Key-
controllable Design

As illustrated previously, we retain the stego part and
discard the redundancy information in the forward hiding.
Therefore, we need to prepare a suitable redundancy in the
backward process to utilize the reversibility of INN to re-
construct the forward input (i.e., secret and cover). In differ-
ent tasks, most INN-based methods [21,24,32,46] constrain
the generated redundancy information to obey the Gaussian
distribution and utilize random Gaussian sampling to ap-
proximate this part in the backward process. Nevertheless,
such random sampling lacks data specificity and adaptiv-
ity. In our LF-VSN, we predict the redundancy information
from the stego group through a redundancy prediction mod-
ule (RPM), as shown in Fig. 4(a). It is composed of several
residual blocks (RB) without the Batch Normalization layer.

In this paper, we present a novel extension of RPM to
construct key-controllable video steganography, with which
we can hide multiple secret videos in a cover video and re-
cover a secret video conditioned on a specific key. The ar-
chitecture is shown in Fig. 4(b). Given the index nkey of
a secret video Xse(nkey), a specific key is generated by a
key encoder, which is composed of several fully connected
(FC) layers. The key is then fed into a FC layer at the
end of each RB in RPM to generate a condition vector with
2Crpm channels, which is divided into two modulation vec-
tors α, β ∈ RCrpm×1×1 in the channel dimension. Crpm is
the feature channel of each RB in RPM. Then we modulate
the output feature Frpm of each RB as Frpm · α + β. In
the training process, we constrain the recovered output the
same as the nkey-th secret video (i.e., Xse(nkey)). More
details can be found in Sec. 3.6.

Figure 5. Illustration of our scalable embedding module. It takes
the input feature map with scalable channels Cin ∈ [1, C] and
produces output features with fixed channels Cout.

3.5. Scalable Embedding Module

The scalable design is used to handle the case where
there are different requirements for the number of secret
videos hidden in a cover video. It is succinctly designed
on the feature aggregation part ξk(·) in each IB, as shown
in Fig. 3. The illustration of our scalable embedding mod-
ule is presented in Fig. 5. It can be regarded as a special
convolution layer, whose dimension of the convolution ker-
nel can be changed according to the input. All convolution
kernels M̃ with different dimensions are parameter-shared
from the same base kernel M. Technically, given the in-
put feature Fin ∈ RCin×W×H , we truncate a convolution
kernel M̃ ∈ RCin×Cout×k×k from M ∈ RC×Cout×k×k to
match the input dimension and then perform convolution:
Fout = M̃ ∗ Fin. In this way, the training of M is com-
pleted through the training of all sub-kernels M̃.

3.6. Loss Function

In our LF-VSN, the loss function is used to constrain
two parts, i.e., forward hiding and backward recovering.
The forward hiding is to hide multiple secret videos in the
cover video. The generated stego video Xst should be un-
detectable to secret videos and as similar as possible to the
cover video. Therefore, we constrain Xst to be the same as
the cover video Xco:

Lf = ||Xst⊛j [Ic]−Xco⊛j [Ic]||22, (5)

where || · ||22 donates the ℓ2 norm. Ic is the index of the
central frame in each group. In the backward recovering,
there are two patterns: with and without key controlling. In
both patterns, we aim to recover the secret information from
the cover video. The difference stands between recovering
a specific secret video and all secret videos. In the pattern
without key controlling, the loss function is defined as:

Lb =

Ns∑
n=1

||X̂se⊛j(n)[Ic]−Xse⊛j(n)[Ic]||22+

||X̂co⊛j [Ic]−Xco⊛j [Ic]||22,

(6)
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Table 1. Quantitative comparison (PSNR/SSIM) on Vimeo-T200. The best and second-best results are highlighted and underlined. Our
LF-VSN achieves the best performance in stego and secret quality with acceptable complexity.

Weng et al. [43] Baluja [4] ISN [32] HiNet [21] RIIS [47] PIH [11] LF-VSN (Ours)
Stego 29.43/0.862 34.14/0.860 42.08/0.965 42.09/0.962 43.50/0.951 - 45.17/0.980
Secret 32.08/0.899 35.21/0.931 42.11/0.984 44.44/0.991 44.08/0.964 36.48/0.939 48.39/0.996

Params. 42.57M 2.65M 3.00M 4.05M 8.15M 0.67M 7.40M

Se
cr

et
vi

de
o

2
Se

cr
et

vi
de

o
4

GroundTruth ISN [32] PIH [11] LF-VSN (Ours)
Figure 6. Visual comparison between our LF-VSN, ISN [32], and PIH [11] in 4 videos Steganography. We present the secret reconstruction
results of video 2 and video 4. Our LF-VSN produces better result with intact color and details.

Xco

Xst

Xse(3)

X̂se(3)

Xse(5)

X̂se(5)

Xse(7)

X̂se(7)

Figure 7. Visualization of our LF-VSN in 7 videos steganography,
showing promising performance in such an extreme case.

where X̂se and X̂co represent the recovered secret and cover
videos. In the pattern with key controlling, the loss function
is defined to guarantee that the key generated from the video
index nkey can only recover the nkey-th secret video. Thus,
the loss function is reformulated as:

Lb = || 1

Ns

Ns∑
n=1

X̂se⊛j(n)[Ic]−Xse⊛j(nkey)[Ic]||22+

||X̂co⊛j [Ic]−Xco⊛j [Ic]||22.

(7)

We optimize our LF-VSN by minimizing the forward
loss function Lf and backward loss function Lb as:

L = Lf + λLb, (8)

where λ is a hyper-parameter to make a trade-off between
forward hiding and backward recovering. We set λ = 4 to
balance these two loss portions.

4. Experiment
4.1. Implementation Details

In this work, we adopt the training set of Vimeo-
90K [48] to train our LF-VSN. Each sequence has a fixed
spatial resolution of 448 × 256. During training, we ran-
domly crop training videos to 144 × 144 with random hor-
izontal and vertical flipping to make a data augmentation.
We use Adam optimizer [23], with β1 = 0.9, β2 = 0.5. We
set the batch size as 16. The weight decay factor is set as
1×10−12. We use an initial learning rate of 1×10−4, which
will decrease by half for every 30K iterations. The number
of total iterations is set as 250K. The training process can
be completed on one NVIDIA Tesla V100 GPU within 3
days. For testing, we select 200 sequences from the testing
set of Vimeo-90K, denoted as Vimeo-T200 in this paper.

4.2. Comparison Against Other Methods

Here we compare our LF-VSN with other methods on
single video steganography and challenging multiple videos
steganography. The evaluation includes the stego quality in
forward hiding and the secret quality in backward recov-
ering. For single video steganography, we compare our
LF-VSN with some well-known methods [4, 43] and re-
cent proposed methods [11, 21, 32, 47]. Note that PIH [11]
highlighted the need to quantize the stego image from the
floating-point format of 32 × 3 to 8 × 3 bits per pixel.
But PIH just added the quantization to the compared meth-
ods without retraining. Here we retrain HiNet [21] with
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Table 2. Multiple videos steganography comparison (PSNR) of
our LF-VSN, ISN [32], and PIH [11] on Vimeo-T200 test set. Our
LF-VSN can hide/recover 7 videos with promising performance.

Videos 2 3 4 5 6 7

N Stego 37.60 36.41 32.56 31.46 - -

IS Secret 41.47 38.76 33.42 33.39 - -

PI
H Stego - - - - - -

P Secret 35.95 34.96 34.20 - - -

O
ur

s Stego 40.97 38.55 37.55 36.57 35.68 35.01

O Secret 44.24 42.27 40.21 38.88 36.94 35.71

Secret video 2

Key 2 recovered

Key 2∗ recovered

Secret video 4

Key 4 recovered

Key 4∗ recovered

Secret video 6

Key 6 recovered

Key 6∗ recovered
Figure 8. Visualization of our key-controllable scheme in 6 videos
steganography. In the second and third rows, we use the correct
and wrong (*) keys of 2, 4, 6 to recover secret videos, respectively.

quantization to make a more fair comparison. Thus, its
performance may be slightly higher than that reported in
PIH. ISN [32], RIIS [47] and PIH were originally designed
with quantization, which can be directly compared. Tab. 1
presents that our method achieves the best performance on
stego and secret while maintaining acceptable complexity.

For multiple videos steganography, ISN [32] and
PIH [11] studied how to hide multiple secret images in a
cover image, which can be competitive counterparts of our
LF-VSN. ISN can hide up to 5 secret images into 1 cover
image, and PIH can hide 4 secret images. The compari-
son in Tab. 3 shows the better performance of our LF-VSN.
Even in the 7 videos hiding, our method still has promising
stego and secret quality (> 35dB). We present the visual
comparison of different methods in 4 videos steganography
in Fig. 6. Obviously, ISN has color distortion, and PIH has
a loss of details. By contrast, our LF-VSN can recover high-
fidelity results. We also present the secret and stego quality
of our LF-VSN in 7 videos hiding in Fig. 7. These videos
are from DAVIS [37] dataset. One can see that our LF-VSN
has promising performance in such an extreme case.

4.3. Key-controllable Video Steganography

Hiding multiple secret videos in a cover video is chal-
lenging; doing so for different receivers is even more dif-

Table 3. Performance comparison between controllable (C) and
non-controllable (NC) video steganography of our LF-VSN.

Num. videos 2 4 6
Stego (NC/C) 40.97/38.67 37.55/34.41 35.68/30.48
Secret (NC/C) 44.24/41.04 40.21/37.15 36.94/31.95

1 2 3 4 5 6 7
Number of secret videos

34

36

38

40

42

44

PS
N

R
 (d

B
)

Stego

Fixed
Scalable

1 2 3 4 5 6 7
Number of secret videos

32.5

35.0

37.5

40.0

42.5

45.0

47.5

Secret

Fixed
Scalable

Figure 9. Performance comparison between our scalable and fixed
design in multiple videos steganography.

ficult. In this paper, we present a key-controllable scheme
in multiple videos steganography. It enables different re-
ceivers to recover particular secret videos through specific
keys. The comparison in Tab. 3 presents that our con-
trollable scheme still has a large hiding capacity (up to 6
videos) with attractive performance (> 30dB). The visual-
ization of recovering quality is presented in the second row
of Fig. 8, showing the high-quality and key-controllable re-
sults of our LF-VSN in multiple videos steganography.

We also study the security of our controlling scheme, i.e.,
the key is sensitive and model-specific. Here we take two
sets of parameters, producing from the 250K and 240K it-
erations in the same training process. We use the key pro-
duced by one model (*) to recover the secret video hidden
by another. The result in the third row of Fig. 8 presents
that the wrong key has no controlling and recovering ability.
Thus, our key-controllable scheme not only has the control-
ling function but also enhances data security.

4.4. Scalable Video Steganography

In this paper, we present a scalable scheme in multiple
videos steganography. It can hide a variable number of se-
cret videos into a cover video with a single model. We eval-
uate the performance of our scalable design and compare
it with the fixed version in Tab. 9. Obviously, our method
has an attractive performance (> 31dB) in hiding a vari-
able number (up to 7) of secret videos into a cover video by
a single model. The performance degradation compared to
fixed version is acceptable. With this design, a single model
can satisfy multiple steganography demands.

4.5. Steganographic Analysis

The data security is one of the most important concerns
in steganography. In this section, we evaluate the anti-
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Table 4. The ablation study of different components in our LF-VSN. It includes the sliding window size, number of invertible blocks (IB),
frequency concatenation (FreqCat), and redundancy prediction module (RPM).

Num. videos 2 4 6 3 3 3
Window size 1 3 5 1 3 5 1 3 5 3 3 (ours) 3 3 3

Num. IB 16 16 16 16 16 16 16 16 16 12 16 20 16 16
FreqCat ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ×

RPM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓

Stego 39.64 40.97 41.08 36.41 37.55 37.86 34.47 35.46 35.96 38.03 38.55 38.91 38.28 36.85
Secret 42.97 44.24 44.43 37.67 40.21 40.42 35.11 36.83 39.97 41.99 42.27 42.40 41.69 40.36

Figure 10. Statistics-based steganalysis by StegExpose [7]. The
closer the detection accuracy is to 50%, the higher the security is.

steganalysis ability of different methods, which stands for
the possibility of detecting stego frames from nature frames
by steganalysis tools. We utilize the StegExpose [7] to at-
tack different steganography methods. The detection set is
built by mixing stego and cover with equal proportions. We
vary the detection thresholds in a wide range in StegEx-
pose and draw the receiver operating characteristic (ROC)
curve in Fig. 10. Note that the ideal case represents that the
detector has a 50% probability of detecting stego from an
equally mixed cover and stego, the same as random sam-
pling. Therefore, the closer the curve is to the ideal case,
the higher the security is. Obviously, the stego frames gen-
erated by our LF-VSN are harder to be detected than other
methods. Even in the multiple videos (e.g., 2 and 4 videos)
hiding, our method can still achieve attractive performance,
demonstrating the higher data security of our LF-VSN.

4.6. Ablation Study

In this subsection, we present the ablation study in Tab. 4
to investigate the effect of different components in our LF-
VSN. The experiments are conducted on Vimeo-T200.
Sliding window size. In this paper, we utilize the temporal
correlation within each frame group to improve the video
steganography performance. To demonstrate the effective-
ness, we evaluate the performance of our LF-VSN with the
window size L = {1, 3, 5} in 2, 4, and 6 videos steganog-
raphy. The results in Tab. 4 present that the temporal corre-

lation has obvious performance gains to the multiple videos
steganography. Considering the model complexity, we set
the sliding window size as 3 in our LF-VSN.
Number of invertible blocks (IB). As mentioned above,
our LF-VSN is composed of several IBs. To investigate the
effectiveness of IB, we evaluate the performance of our LF-
VSN with the number of IB being 12, 16, and 20. The re-
sults in Tab. 4 present that the performance increases with
the number of IB. To make a trade-off between performance
and complexity, we utilize 16 IBs in our LF-VSN.
Frequency concatenation (FreqCat). In our LF-VSN, we
use the DWT transform to merge each input group in the
frequency domain. To demonstrate the effectiveness, we
replace this operation with direct channel-wise concatena-
tion. Tab. 4 presents that there are 1.7dB and 1.91dB gains
of FreqCat on stego and secret quality in 3 videos steganog-
raphy. The possible reason is that DWT transform can sepa-
rate the low-frequency and high-frequency sub-bands, mak-
ing it more effective for information fusion and hiding.
Redundancy prediction module (RPM). In our LF-VSN,
we employ RPM to predict the redundancy in the backward
process instead of randomly sampling. To demonstrate
the effectiveness of RPM, we replace this module with a
random Gaussian sampling. The result in Tab. 4 shows
that RPM can be used not only to design key-controllable
steganography, but also to improve performance.

5. Conclusion
In this paper, we propose a large-capacity and flexible

video steganography network (LF-VSN). The novelty of
our method is twofold. First, our LF-VSN has a large hid-
ing capacity, with which we can hide 7 secret videos into
a cover video and then recover them well (> 35dB). Sec-
ond, we explore the flexibility in multiple videos steganog-
raphy by proposing a key-controllable scheme and a scal-
able design. Specifically, our key-controllable scheme can
enable different receivers to recover particular secret videos
through specific keys. Also, the key controlling is sen-
sitive and model-specific, which can enhance data secu-
rity. Our scalable design further improves the flexibility to
hide a variable number of secret videos into a cover video
with a single model. Extensive experiments demonstrate
that our proposed LF-VSN has state-of-the-art performance
with high security, large hiding capacity, and flexibility.
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