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Abstract

Embodied control requires agents to leverage multi-
modal pre-training to quickly learn how to act in new en-
vironments, where video demonstrations contain visual and
motion details needed for low-level perception and control,
and language instructions support generalization with ab-
stract, symbolic structures. While recent approaches ap-
ply contrastive learning to force alignment between the two
modalities, we hypothesize better modeling their comple-
mentary differences can lead to more holistic representa-
tions for downstream adaption. To this end, we propose
Emergent Communication for Embodied Control (EC2), a
novel scheme to pre-train video-language representations
for few-shot embodied control. The key idea is to learn an
unsupervised “language” of videos via emergent commu-
nication, which bridges the semantics of video details and
structures of natural language. We learn embodied repre-
sentations of video trajectories, emergent language, and
natural language using a language model, which is then
used to finetune a lightweight policy network for down-
stream control. Through extensive experiments in Meta-
world and Franka Kitchen embodied benchmarks, EC2

is shown to consistently outperform previous contrastive
learning methods for both videos and texts as task inputs.
Further ablations confirm the importance of the emergent
language, which is beneficial for both video and language
learning, and significantly superior to using pre-trained
video captions. We also present a quantitative and qual-
itative analysis of the emergent language and discuss fu-
ture directions toward better understanding and leveraging
emergent communication in embodied tasks.

1. Introduction
We study the problem of few-shot embodied control,

where an embodied agent needs to execute language in-
structions or follow video demonstrations given only a few
examples in a new environment. Such a capability of fast
adaption is key to practical robotic deployment, as it is non-
scalable and expensive to collect extensive action-labeled
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(b) Performance comparison on overall success rate across all tasks.

Figure 1. Overview of EC2. The key idea of EC2 is to build
the link between perceptual grounding and symbolic concept via
emergent communication (EC) language. We learn to extract em-
bodied representation via language model utilizing emergent lan-
guage or natural language as prompt and visual observation as in-
put for downstream embodied control tasks. The actions are gen-
erated by a lightweight policy network containing a few MLP [51]
layers that map the learned frozen embodied representation into
action space. Extensive experiments show that EC2 outperforms
existing methods in Metaworld [60] and Franka Kitchen [17]
benchmarks.

trajectories for each new application scenario. Instead,
agents need to leverage pre-trained video and language rep-
resentations to quickly learn how to act, and generalize
across high-level concepts (e.g. object and verb types) as
well as low-level visual features.

How can we pre-train multi-modal representations of
videos and texts for downstream embodied control in dif-
ferent domains? Inspired by the success of image-text
models such as CLIP [47], recent work has investigated
contrastive representation learning approaches using paired
video-language data, with application toward robotic ma-
nipulation and control tasks [24, 38]. However, simply
aligning video and language pairs in the embedding space
omits the difference between these two modalities: while
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videos contain more visual and motion details, language
abstracts away key structures underlying the task. For ex-
ample, a video of opening a door contains details of ap-
proaching the handle, pressing the handle, pulling the door
open, and so on, while the corresponding language descrip-
tion could be as simple as “open a door” — more detailed
language descriptions such as “press down the handle” is
usually not available in existing datasets and very expensive
to manually label. But for downstream control purposes,
a video and its abstract language description could present
complementary benefits — while the former is expressive
in details needed for low-level control, the latter provides
the structure for generalization across domains, tasks, and
skills. Leveraging such modality differences presents op-
portunities to better incorporate language and videos for
embodied representation learning, marrying their respective
benefits rather than forcing them to be aligned.

One perspective to view the video-language difference
is through the emergence of language [39, 55]: language
derives meaning from its use [57]. It is a communica-
tion tool humans develop to collaboratively solve embodied
tasks, thus abstracting perception experiences like videos
into symbolic concepts. Emergent communication in ma-
chine learning [9, 26, 28, 30, 56] aims to similarly learn an
“emergent language” of perception in an unsupervised and
domain-adaptive way: as Figure 2(a) shows, a speaker and
a listener network play a referential game, where a speaker
maps some visual stimuli (e.g. image, video) into a message
of discrete tokens, and a listener uses the message to choose
the speaker reference out of detractors. By jointly optimiz-
ing for game success, the communication protocol emerges
structural and semantic properties resembling language, yet
its discrete tokens might convey more fine-grained con-
cepts than natural language useful for distinguishing stim-
uli. Thus, an emergent language can act as a bridge between
natural language and videos, featuring a structure similar to
the former while preserving the semantics of the latter.

Inspired by recent work that links emergent and natu-
ral language [58], we propose Emergent Communication
for Embodied Control (EC2), a three-phase scheme to learn
embodied representations for downstream few-shot control
(Figure 1(a-c)). First, we learn an emergent language of
demonstration videos without using any language labels,
which could potentially capture domain-specific concepts
not directly available in paired natural language captions.
Second, we learn an embodied representation by using a
language model to predict trajectory segments conditional
on trajectory contexts and language annotations, both natu-
ral and emergent. Rather than forcing video and language
representations to be aligned, such a sequence modeling
approach learns to represent natural language (for compo-
sitional generalization) and emergent language (for low-
level perception and control) jointly with video trajectories,

where the emergent language serves as a bridge between
language and videos. Third, we train a lightweight policy
network on top of the embodied representation to few-shot
adapt to downstream embodied control.

We demonstrate that emergent language can help embod-
ied control tasks and enable data-efficient few-shot down-
stream imitation learning via extensive experimental results
across two existing benchmark simulation environments
(Franka-Kitchen [18] and MetaWorld [60]). EC2 outper-
forms existing methods and achieves state-of-the-art per-
formance on both language and video instruction following
tasks. Our study also shows that although emergent lan-
guage and natural language are utilized in a parallel manner
in the pre-training phase, the word embeddings of natural
language can still be predicted by linear regression models
from emergent language. We further investigate the impact
of emergent language and natural language correlation on
the performance of downstream tasks and show that the per-
formance in downstream tasks is best when the learned EC
contains more information than natural language, i.e., when
the accuracy of predicting natural language from emergent
language is higher than that of predicting emergent lan-
guage from natural language. Overall, on the basis of these
results, we believe that EC2 has great potential to become a
promising embodied control framework.

To sum up, our work makes the following contribu-
tions. (1) we build an embodied representation pre-training
framework with emergent communication (EC) via a lan-
guage model, which incorporates both the abstract, com-
positional structure of language and visuals with low-level
motion details. (2) we develop a few-shot embodied con-
trol system, which transfers the pre-trained language model
to downstream tasks as a frozen module and quickly adapts
lightweight policy networks with a few expert data to gen-
erate actions. (3) we demonstrate that the learned represen-
tation with EC can benefit few-shot embodied control tasks
and extensive experiments show that EC2 outperforms ex-
isting methods in Metaworld [60] and Franka Kitchen [17]
benchmarks.

2. Related Work

2.1. Emergent Communication

The recent advances in NLP [7, 14, 49] benefits from
huge text corpora and are striving to find statistical regu-
larities on large amounts of data via big models like GPT
[7, 48, 49] and BERT [14]. This narrow focus was leaving
aside language emergence and language grounding (in some
other modalities, e.g., sight, with more complex inputs than
text). In contrast, human language acquisition [13] starts
with a cumulative series of interactions with other people
[3, 8] grounded in the physical and social world [1, 19, 54]
and does not rely on passive and complex corpora like
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Figure 2. The overall framework of EC2. Pre-training: (a) We first pre-train a speaker ( ) and listener ( ) via emergent communication
game for emergent language generation and a language model ( ) to extract embodied representations. (b) We generate the corresponding
emergent language ( ) for each demonstration video in the multi-modal dataset. Predicting the cropped part of a latent trajectory is used as
an auxiliary task to help pre-training the language model. The language model takes emergent language or natural language as prompt and
the cropped trajectory ( ) as input and aims to predict the cropped part of the trajectory ( ). The loss for the prediction using emergent
language as prompt and natural language as prompt is calculated separately. Few-shot downstream policy learning: In downstream
imitation learning tasks, both the EC speaker and the pre-trained language model( ) are frozen. The language model extracts effective
embodied features with current trajectory ( contains current state and historical information) as input. (c) For tasks with language
instruction, we use natural language as the prompt, and (d) for tasks with video instruction, we use emergent language as the prompt. The
output features of the language model are mapped into actions to mimic expert behavior by a few simple MLP [51] layers ( ).

Wikipedia. Emergent Communication (EC) is one promis-
ing direction toward this motivation, where a communi-
cation protocol is shaped through multi-agent interactions
with perceptual grounding like a human [43]. As a typical
example, the referential image game involves a speaker cre-
ating a sequence of discrete tokens based on an input image,
and a listener tasked with selecting the correct input from a
group of distractors using the message. Both networks are
optimized jointly using success signals from the game [58].
By studying games like this type, researchers are interested
in the emergence of desirable properties resembling natural
language, such as game success generalization and compo-
sitionality, which holds great promises towards more func-
tional [56, 57] and generalizable [27] language agents.

2.2. Embodied Control under Instruction

Embodied control has achieved much success in learn-
ing grasping and pick-place tasks from low-dimensional
state [2,4,10,25,36,42,52]. Deep learning makes embodied
control directly learn from high dimensional observations
becoming feasible [46,50,61]. Recent advances aim to build
a learning-based embodied control system with deep neural
networks that are flexibly conditioned on either a demon-
stration video [5, 59] of a human or a language instruction
[35, 53] via multi-modal representation learning. With the
guidance of instruction, the embodied agent aims to gener-

alize to new scenes [44], novel objects [5, 16, 22, 59, 62],
novel object configurations [40], and novel goal configu-
rations [12, 15, 20]. For instance, BC-Z [24] has devel-
oped a flexible imitation learning system that can learn from
demonstrations and interventions, based on various forms
of task information, such as pre-trained embeddings of nat-
ural language or human performance videos. R3M [38]
pre-trains visual representations on diverse human video-
language data by encouraging alignment between the two
modalities. However, since videos often convey more de-
tailed information than words, this framework may lose
valuable teaching information that can help robots perform
complex tasks. In this work, we aim to build an instruction-
conditioned embodied control framework without forcing
alignment on video and language and consider the video
demonstrations and language instructions as “parallel sen-
tences” during the pre-training process to learn useful infor-
mation for downstream tasks.

3. Method

As shown in Figure 2, we first pre-train a speaker and
listener via an emergent communication game for emergent
language generation and a language model to extract em-
bodied representations by predicting the cropped part of a
latent trajectory. The language model takes the emergent
language or natural language as prompt and the masked
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trajectory as input and aims to predict the masked part of
the trajectory separately. Then, we transfer the learned
speaker and language model into downstream embodied
control tasks as frozen modules. The output of the language
model extracts embodied representation from instruction
prompt and current observations and is mapped into actions
by the downstream policy network, which contains a few
task-specific MLP [51] layers.

3.1. Problem Statement

The goal for embodied control is to learn a policy πB
conditioned on the instruction, either language instruction
or video instruction, that reproduces the expert behavior
on the desired task specified by the instruction. Usu-
ally, the demonstrations of experts are presented in the
form of state-action trajectories, with each pair indicat-
ing the action to take at the state being visited. Let τE
denote a trajectory sampled from expert policy πE(s|c):
τE =

[
(s0, a0), (s1, a1), . . . , (sn, an)

]
. The instruction is

encoded into the latent vector c. To learn the behavior pol-
icy πB(s|c), the demonstrated actions are usually utilized as
the target label for each state, and the mapping a ∈ πB(s|c)
from states to actions is learned in a supervised manner with
given instructions.

3.2. Emergent Communication Language Genera-
tion for demonstration video

Our idea is to automatically generate synthetic language
that aligns with video demonstration through emergent
communications, which connect perceptual, language, and
action for pre-training. As shown in Figure 2(c), we con-
sider a typical speaker-listener referential game [29, 30, 33]
on a set of N video features DI = {I1, · · · , IN}. At each
training step, the speaker takes one video feature Ii and gen-
erates a discrete message Mi ∈ [V ]T using the Gumbel-
Softmax trick [23], where V is the vocabulary size, and T
is the sequence length limit. For simplicity, denotem =Mi

so thatmt =Mi,t denotes the t-th token of the messageMi.
The generated discrete message is defined as “emergent lan-
guage”, and the process of emergent language generation by
the speaker can be formulated as

hs0 = Ii, hst = GPTspk (mt−1,hst−1) (t > 0),

m0 = [CLS], mt = Softmax (MLPspk(hst)) (t > 0).
(1)

Here hst denotes speaker hidden states. Next, the listener
takes the messagem, and tries to guess the right video Ii out
of a set of K confounding videos Ci = {Ij1 , · · · , IjK} ⊂
DI − {Ii}. Note that different from the EC games on im-
ages, in order to learn temporal information, except for ir-
relevant videos, we also construct several additional can-
didates in Ci by performing temporal augmentation on the
original video, such as reverse order and random disorder.

The listener also uses a GRU [11] layer to turn the message
m into a hidden vector hlT

hl0 = 0, hlt = GPTlsn (mt,hlt−1) (t > 0). (2)

Based on hlT , the listener assigns a score for each candidate
video based on inverse square error [31], then selects the
image by Softmax sampling across the scores. The speaker
and listener are jointly optimized by minimizing the cross-
entropy loss of video selection:

score(I) = ∥hlT − MLPlsn(I)∥−2
2 ,

p( guess = I) = softmax(score(I)) (I ∈ {Ii} ∪ Ci) ,
LEC = −EIi,Ci

EMi
log p ( guess = Ii) .

(3)
The speaker can be employed to generate emergent lan-
guage DM = {M1, · · · ,MN} based on input videos.

3.3. Pre-training of Language Model with Emergent
Language

We conduct a trajectory completion task to pre-train the
GPT-like language model without action labels, as shown
in Figure 2(a)(b). Firstly, we random sample a sequence of
observations ô = {o1, o2, . . . , oN} stored in the dataset and
map it into latent trajectory τwhole by encoder gθ.

τwhole = gθ(ô) (4)

Then we crop a random segment τseg from the whole latent
trajectory τwhole and the remained trajectory is denoted as
τrem. The language model fϕ takes τrem as input and uses
either emergent language e generated by the speaker or nat-
ural language l as a prompt to predict the cropped segment
τseg. The language model is optimized by jointly minimiz-
ing LEC and LLang

LEC = (τseg − fθ(e, τrem))
2 (5)

LLang = (τseg − fθ(l, τrem))
2 (6)

The loss for the prediction using emergent language as
prompt and natural language as prompt is calculated sep-
arately.

EC2 uses the same language model for both emergent
language generation and trajectory completion pretext task
for framework thriftiness, and both the LEC-pre and LEC-gen
are used to update the language model jointly. To en-
sure that the speaker’s gradient is not truncated, we use an
MLP [51] layer to map from the logits of the word distribu-
tion to a 512-dimensional latent vector instead of selecting
a word embedding in the dictionary according to the token.
For natural language, we use the Byte-Pair Encoding (BPE)
tokenizer [6] to encode it into tokens, which are widely
used by OpenAI for tokenization when pre-training the GPT
model, including GPT [48], GPT-2 [49], RoBERTa [34],
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and BART [32]. We also learn a corresponding dictionary
of word embedding. Although the emergent language and
natural language are used separately, they can learn corre-
lated information via the pretext trajectory completion task.

3.4. Few-shot Policy Learning for Downstream Em-
bodied control

To transfer the pre-trained language model into
the downstream imitation learning tasks, the language
model fθ(·, ·) take the current trajectory τcur =
{st−T , . . . , st−1, st} and the emergent language e or nat-
ural language instruction l as prompt, then output the pre-
dicted features mt. Finally, the output mt of the language
model is mapped to specific action at by task-specific MLP
layers πψ . The language model fθ is frozen during down-
stream imitation learning. The action under learned behav-
ior policy is sampled by ât ∼ πψ(at|mt) and the expert
demonstration action at are used as the label for imitation
learning. For the video instruction following task, we gen-
erate emergent language by the speaker and use it as the
prompt of the language model. For language instruction
following tasks, the natural language is tokenized by the
BPE tokenizer, and select the corresponding word embed-
ding in the dictionary as the prompt as language model via
the inferred token. With a trajectory with lengthH , the task-
specific MLP layers are optimized by minimizing LIL(ψ).

LIL(ψ) = Eτ∼B

[
−

1

H

t+H−1∑
t

log πψ(at|mt)
]

(7)

The MLP [51] layers are implemented with hidden sizes
[256, 256] with batch normalization [21] and are trained
with a learning rate of 0.001 and a batch size of 32 for 20000
iterations.

4. Experiments
4.1. Pre-training Dataset

We use the LOReL [37] real robot dataset, which is
collected by Franka Emika Panda mounted over an IKEA
desk. The LOReL dataset contains 3000 episodes (150000
frames) of reinforcement learning that trains policies for
different behaviors on the IKEA desk using online RL.
The language instruction is annotated by leveraging crowd-
sourcing, specifically Amazon Mechanical Turk. Human
annotators are asked to describe the behavior if any, that the
robot is doing and to phrase it as a command without any
pre-specified template. The LOReL dataset contains 6000
annotations, two per episode, containing a total of 1699
unique instructions. The dataset contains different videos
with the same language instruction to ensure diversity. We
removed the episodes where annotators reported the robot
as inactive or its actions unclear, making them incompre-
hensible.

4.2. Downstream Testing Environments

We utilize two standard robotic manipulation bench-
marks, namely MetaWorld [60] and the Franka Kitchen en-
vironment [17], as our downstream testing environments.
It is worth noting that these testing environments were not
used during the training phase of EC2. In MetaWorld, the
agent is presented with a series of tasks, including assem-
bling a ring on a peg, picking and placing a block between
bins, pushing a button, opening a drawer, and hammering
a nail. In Franka Kitchen, the agent aims to learn how to
slide open the right door, open the left door, turn on the
light, turn the stove top knob, and open the microwave. As
shown in Figure 3, both environments offer image obser-
vations to the agent, as well as proprioceptive data, which
includes the end-effector pose and joint positions. These
data are concatenated with the encoded vision observations
for each task, providing the agent with a comprehensive un-
derstanding of the current task. All tasks involve random
environment variation, either by varying the position of the
target object in MetaWorld or the positioning of the desk
in Franka Kitchen. Additionally, we consider three views
for each environment to evaluate the robustness of repre-
sentations across viewpoints. Finally, for each environment,
we also consider three demo sizes used in downstream em-
bodied control tasks: [5, 10, 25] in MetaWorld and Franka
Kitchen.

4.3. Experimental Setup

For embodied control tasks, we take R3M and BC-Z
as the key baseline. R3M [38] learns the state-of-the-
art embodied representations pre-trained on diverse paired
human video-language data with time-contrastive learning,
which encourages states closer in time to be closer in em-
bedding space and video-language alignment to encour-
age the embeddings to capture semantically relevant fea-
tures. For sufficient comparison, we implement R3M with
both the language instruction-conditioned version and video
instruction-conditioned version, respectively, based on their
official implementation. For embodied control with natural
language instruction, we use the language encoder of the
pre-trained model officially released by their author team
to encode the natural language. For embodied control with
demonstration video instruction, we use the officially re-
leased vision encoder to extract features of every frame in
the video and map them into the instruction representation
by one MLP layer. BC-Z [24] jointly learns the align-
ment between video representation and language represen-
tation together with policy learning across multiple embod-
ied control tasks. Our evaluation methodology is inspired
by [38, 41]. We focus on evaluating the embodied rep-
resentation of instruction and observation for downstream
policy learning with behavior cloning. We parameterize the
downstream policy π as a two-layer MLP preceded by a
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Figure 3. Evaluation Environments: We consider a set of manipulation tasks including 5 tasks with a Sawyer from MetaWorld [60], 5
tasks from a Franka operating over a Kitchen [17]. We provide specific language instruction labels for every task and 25 demos per task
for evaluation. We show an example image and corresponding language instruction for each task shown above. Evaluation Viewpoints:
To robustly measure the efficacy of different visual representations, we consider three camera viewpoints per environment.

Benchmark Num. Demos Instruction EC2 (ours) R3M [38] BC-Z [24]

MetaWorld
10 Lang 72.4 ± 2.4% 69.2 ± 2.0% 63.4 ± 2.1%

Video 76.0 ± 2.1% (+3.6) 71.8 ± 1.8% (+2.6) 64.8 ± 2.0% (+1.4)

25 Lang 82.6 ± 2.0% 77.4 ± 2.4% 74.1 ± 2.2%
Video 85.0 ± 2.2% (+2.4) 79.0 ± 2.1% (+1.6) 75.2 ± 1.0%(+1.1)

Franka Kitchen
10 Lang 48.4 ± 2.5% 41.8 ± 2.5% 34.2 ± 2.3%

Video 53.6 ± 2.5%(+5.2) 45.7 ± 2.4% (+3.9) 37.5 ± 2.2% (+3.3)

25 Lang 59.8 ± 2.5% 56.0 ± 2.3% 38.6 ± 2.4%
Video 63.2 ± 2.6% (+3.4) 58.7 ± 2.0% (+2.7) 40.0 ± 2.0% (+1.4)

Table 1. Performance comparison on Success rate of embodied control with language/video instruction across different demo size. We
mark the performance difference between complete the task with natural language instruction and video instruction as blue.

BatchNorm at the input. We train the agent for 20,000 steps,
evaluate it online in the environment every 1000 steps, and
report the best success rate achieved. For each task, we run
5 seeds of behavior cloning. The final success rate reported
for one method on one task is the average over the 5 seeds
× 3 camera viewpoints × 3 demo sizes, for a total of 45
runs (see more details in Appendix).

4.4. Results

We aim to answer 5 questions to get insight into embod-
ied AI community: 1) Can emergent language help embod-
ied control tasks with natural language instruction? 2) Can
emergent language help the embodied control tasks with
video instruction? 3) Can the joint training of emergent
language and natural language in GPT-Like network archi-
tecture help each other? 4) Can emergent language provide
more detailed and effective guidelines than video captions?
5) What is the relationship between model size, control per-
formance, and the correlation between emergent language
and natural language?

To answer the first two questions, we study if EC2 en-
ables more data-efficient policy learning with both natural
language instructions and video instructions.

1) Can emergent language help the embodied control
tasks with natural language?

We measure the success rate of downstream few-shot
policy learning with different pre-training methods. In
Franka Kitchen and MetaWorld, we only use no more than
25 demos to perform downstream few-shot policy learning
and report the performance with both 10 and 25 demos sep-
arately in Table 1. Learning from scratch is struggled to per-
form well when working with small amounts of data since
it can be challenging for the model to identify meaningful
patterns or relationships with such limited data. While the
methods with a pre-trained model, like EC2, R3M, and BC-
Z performs better than those learning from scratch. Through
our study, as shown in Table 1, EC2 exceeds existing meth-
ods with natural language instruction, which indicates that
emergent language can help the embodied control tasks to
improve the performance with natural language instruction.
Across all the evaluations, EC2 is overall able to learn these
embodied tasks in an extremely low data regime (only 10
demos) with ≈60.4% overall success rate, despite never
seeing any data from the target environments in training the
representation, while R3M only achieves ≈55.5% overall
success rate.
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Benchmark Num. Demos Language Instruction Video Instruction
EC2 EC2 (-EC) EC2 EC2 (-NL) EC2 (+Cap,-EC)

MetaWorld 10 72.4 ± 2.4% 69.0± 2.0% 76.0 ± 2.1% 72.6± 2.4% 73.0± 2.2%
25 82.6 ± 2.0% 78.0± 2.4% 85.0 ± 2.5% 82.0± 2.0% 73.2± 2.5%

Franka Kitchen 10 48.4 ± 2.5% 43.0± 3.3% 53.6 ± 2.5% 49.0± 2.5% 48.6± 2.4%
25 59.8 ± 2.5% 54.0± 2.6% 63.2 ± 2.6% 61.3± 2.4% 49.0± 2.3%

Table 2. Ablation study on embodied control with language instruction and video instruction.

Model Size #layer #head #embded
Base 8 16 512
Mini 6 6 192
Micro 4 4 128

Table 3. Hyper-parameters for different
model sizes of EC2. All the models are
implemented based on GPT [48]-like net-
work architecture.

Natural Language Emergent language
“Open the right drawer” [262, 847, 490, 536, 108, 500, 941, 838, 749, 444]
“Grasp in the middle drawer” [356, 69, 108, 259, 72, 616, 500, 896, 623, 433]
“Reach down for stapler” [204, 897, 285, 509, 701, 545, 538, 729, 902, 195]
“Pick up the stapler in the drawer” [535, 67, 108, 661, 84, 701, 776, 500, 377, 454]
“Reach to the plug” [982, 691, 72, 538, 97, 665, 148, 369, 102, 1003]
“Reach to the left drawer” [786, 538, 601, 874, 848, 500, 315, 108, 72, 914]

Table 4. Qualitative examples of emergent language and corresponding natural language. The
word and tokens that have the same semantic meaning are marked with the same color.

2) Can emergent language help the embodied control
tasks with video instruction?

As shown in Table1, EC2 shows an obvious advantage
over the exciting methods and achieves the best success
rate (≈64.8% with 10 demos and ≈74.1% with 25demos)
with video instruction. As marked in blue in Table 1, EC2

has better performance with video instruction than with lan-
guage instruction, which indicates that EC2 learns more
effective information provided by a video demonstration.
In contrast, R3M and BC-Z, which use contrast learning
or regression to force the two modalities of language and
video aligned, have little difference in performance under
language instruction and video instruction.

We also investigate the task performance of EC2 and
baselines with different amounts of demos in policy learn-
ing. In Figure 4, we plot the average success rate of each
method across each demo size. We observe that the perfor-
mance improvement from EC2 is consistent, outperforming
the baselines across every environment and demo size.
Ablation Study: Also, in the data-efficient imitation learn-
ing setting, we ablate the different components of EC2 train-
ing to answer question 3 and 4 and check if each module is
indispensable.

3) Can the joint training of emergent language and nat-
ural language with GPT-Like network help each other?

We conduct ablation studies to compare EC2 and EC2 (-
EC) in language instruction following tasks and compare
EC2 and EC2 (-NL) in video instruction following tasks.
EC2 (-EC) does not use emergent language to pre-train
the language model under EC2 framework, which predicts
the masked trajectories with only the language instruction
(human-labeled caption). EC2 (-NL) does not use natural
language to pre-train the language model under EC2 frame-
work, which predicts the masked trajectories with only the
emergent language. As shown in the left-hand column in

Table 2, without the help of emergent language, the per-
formance decreased significantly, and EC2 (-EC) shows no
obvious advantages to the other methods that learn pre-
trained models by video-language pre-training. Similarly,
as shown in the right-hand column in Table 2, EC2 also out-
performs EC2 (-NL), which demonstrates that the language
pre-training helps the video instruction task with emergent
language. Thus, the above ablation analysis shows that the
joint training of emergent language and natural language
can benefit each other.

4) Can emergent language provide more detailed and ef-
fective guidelines than video captions?

In EC2 (+Cap, -EC), we replace the emergent language
in EC2 with the language caption given by a MARN [45] as
a data augmentation, which is a pre-trained video caption
model. As shown in Table 2, EC2 shows an obvious advan-
tage to EC2 (+Cap, -NL), which demonstrates that emer-
gent language provides more detailed and effective guide-
lines than video captions.

5) What is the relationship between model size, control
performance, and the correlation between emergent lan-
guage and natural language?

We first tested the overall average success rate of EC2

with different model sizes (listed in Table 3) in the down-
stream tasks (Franka Kitchen and MetaWorld). As shown
in Figure 5a and Figure 5b, the larger the size of the model,
the more expressive it is and thus the better its performance.
Then, we perform a linear correlation analysis on the word
embeddings of the emergent language and the word embed-
dings of the matched natural language. We use the square of
the coefficient of determination, denoted R2 as the measure
of predicting the performance of linear regression, which
reflects the proportion of the variation in the dependent vari-
able that is predictable from the independent variable. Con-
sider a linear regression model f(·) which predicts y with
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(c) MetaWorld[video instruction]
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(d) Kitchen[video instruction]

Figure 4. Performance over different demo sizes used in downstream imitation learning. We report the success rate of EC2 and baseline
across different demo sizes. We see that the performance improvement from EC2 is consistent across all demo sizes.
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Figure 5. Ablation on model size and its relationship with the correlation of emergent language and Natural language. We show the ablation
results on model size with 10 demos and 25 demos in downstream policy learning separately.

the input x, the coefficient of determination R is defined as

R2 = 1− SSres
SStot

= 1−
∑
i(yi − f(xi))

2∑
i(yi − ȳ)2

(8)

We evaluat the R2 values of two linear regressions. One
predicts natural language word embeddings from emergent
language, and the other predicts emergent language word
embeddings from natural language. As shown in Figure
5c, the R2 of predicting natural language embeddings from
the emergent language increase along with the model be-
coming larger, which corresponds to better performance. In
contrast, the R2 of predicting emergent language embed-
dings from the natural language is non-monotonous, along
with the model size becoming larger. The reason is that
emergent language captures more information that natural
language does not contain when the model is large enough
and has promising performance. In short, EC2 has the best
performance in embodied control tasks when emergent lan-
guage contains more information than natural language, the
performance is median when emergent language and lan-
guage information are nearly equal, and the performance
is worst when emergent language contains less information
than language information. As shown in Table 4, we also
provide qualitative examples of emergent language and its
corresponding natural language to show that emergent lan-
guage can capture key concepts from video. We find that
the tokens “108” and “500” correspond to “drawer” in nat-
ural language and token “701” corresponds to “stapler.” Ex-
cept for nouns, emergent language can also get the con-

cept of verbs, for example, token “538” corresponds to the
verb “reach” in natural language. The current manual check
analysis of emergent language is just a preliminary attempt,
and more understanding can be promising for future work.

5. Conclusions and Discussions
This paper aims to build the link between perceptual

grounding and symbolic concepts by emergent communi-
cation (EC) language for embodied control. To this end,
we develop a novel Embodied Control framework with the
help of Emergent Communication language (EC2), which
pre-trains a language model via masked trajectory comple-
ment pretext task condition on emergent language or natu-
ral language. The pre-trained language model is utilized to
extract embodied representation from instructions and ob-
servations and is used as a frozen module for downstream
data-efficient policy learning. Extensive experiments show
that EC2 outperforms existing methods in Metaworld and
Franka kitchen benchmarks. We believe that EC2 will serve
as a solid step toward the general decision-making model.
Limitations and future works: more understanding about
emergent language, training EC2 on a larger and more di-
verse dataset, and applications on more practical setup can
be promising directions of future works.
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