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Abstract

Reliable uncertainty from deterministic single-forward
pass models is sought after because conventional methods
of uncertainty quantification are computationally expensive.
We take two complex single-forward-pass uncertainty ap-
proaches, DUQ and SNGP, and examine whether they mainly
rely on a well-regularized feature space. Crucially, without
using their more complex methods for estimating uncertainty,
we find that a single softmax neural net with such a reg-
ularized feature-space, achieved via residual connections
and spectral normalization, outperforms DUQ and SNGP’s
epistemic uncertainty predictions using simple Gaussian Dis-
criminant Analysis post-training as a separate feature-space
density estimator—without fine-tuning on OoD data, fea-
ture ensembling, or input pre-procressing. Our conceptually
simple Deep Deterministic Uncertainty (DDU) baseline can
also be used to disentangle aleatoric and epistemic uncer-
tainty and performs as well as Deep Ensembles, the state-
of-the art for uncertainty prediction, on several OoD bench-
marks (CIFAR-10/100 vs SVHN/Tiny-ImageNet, ImageNet vs
ImageNet-O), active learning settings across different model
architectures, as well as in large scale vision tasks like se-
mantic segmentation, while being computationally cheaper.

1. Introduction

Two types of uncertainty are often of interest in ML: epis-
temic uncertainty, which is inherent to the model, caused
by a lack of training data, and hence reducible with more
data, and aleatoric uncertainty, caused by inherent noise
or ambiguity in data, and hence irreducible with more data
[7]. Disentangling these two is critical for applications such
as active learning [16] or detection of out-of-distribution
(OoD) samples [24]: in active learning, we wish to avoid
inputs with high aleatoric but low epistemic uncertainty, and
in OoD detection, we wish to avoid mistaking ambiguous
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Figure 1. Disentangling aleatoric and epistemic uncertainty on
Dirty-MNIST (iD) and Fashion-MNIST (OoD) (a) requires using
softmax entropy (b) and feature-space density (GMM) (c) with a
well-regularized feature space (ResNet-18+SN vs LeNet & VGG-
16 without smoothness & sensitivity). (b): Softmax entropy cap-
tures aleatoric uncertainty for iD data (Dirty-MNIST), thereby sepa-
rating unambiguous MNIST samples and Ambiguous-MNIST sam-
ples (stacked histogram). However, iD and OoD are confounded:
softmax entropy has arbitrary values for OoD, indistinguishable
from iD. (c): With a well-regularized feature space (DDU with
ResNet-18+SN), iD and OoD densities do not overlap, capturing
epistemic uncertainty. However, without such feature space (LeNet
& VGG-16), feature density suffers from feature collapse: iD and
OoD densities overlap. Generally, feature-space density confounds
unambiguous and ambiguous iD samples as their densities overlap.

in-distribution (iD) examples as OoD. Disentangling uncer-
tainties is particularly challenging for noisy and ambiguous
datasets found in safety-critical applications like autonomous
driving [32] and medical diagnosis [11; 13].

Related Work: Most well-known methods of uncertainty
quantification in deep learning [1; 10; 15; 40; 66] require
multiple forward passes at test time. Amongst these, Deep
Ensembles have generally performed best in uncertainty
prediction [57], but their significant memory and compute
burden at training and test time hinders their adoption in
real-life and mobile applications. Consequently, there has
been an increased interest in uncertainty quantification using
deterministic single forward-pass neural networks which
have a smaller footprint and lower latency. Among these
approaches, [43] uses Mahalanobis distances to quantify
uncertainty by fitting a class-wise Gaussian distribution (with
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shared covariance matrices) on the feature space of a pre-
trained ResNet encoder. They do not consider the structure of
the underlying feature-space however, which might explain
why their competitive results require input perturbations,
the ensembling of OoD metrics over multiple layers, and
fine-tuning on OoD hold-out data.

DUQ & SNGP: Two popular works in single forward-
pass uncertainty, DUQ [65] and SNGP [45], propose
distance-aware output layers, in the form of RBFs (radial
basis functions) or GPs (Gaussian processes), and introduce
additional inductive biases in the feature extractor using
a Jacobian penalty [19] or spectral normalisation [52], re-
spectively, which encourage smoothness and sensitivity in
the latent space. These methods perform well and are al-
most competitive with Deep Ensembles on OoD benchmarks.
However, they require training to be changed substantially,
and introduce additional hyper-parameters due to the spe-
cialised output layers used at training. Furthermore, DUQ
and SNGP cannot disentangle aleatoric and epistemic uncer-
tainty. Particularly, in DUQ, the feature representation of an
ambiguous data point, high on aleatoric uncertainty, will be
in between two centroids, but due to the exponential decay
of the RBF it will seem far from both and thus have uncer-
tainty similar to epistemically uncertain data points that are
far from all centroids. In SNGP, the predictive variance is
computed using a mean-field approximation of the softmax
likelihood, which cannot be disentangled. The variance can
also be computed using MC samples of the softmax likeli-
hood which, in theory, can allow disentangling uncertainties
(see Eq. (1)), but requires modelling the covariance between
the classes, which is not the case in SNGP. We provide a
more extensive review of related work in §A.

Contributions: Firstly, we investigate the question
whether complex methods to estimate uncertainty like in
DUQ and SNGP are necessary beyond feature-space regu-
larization that encourages bi-Lipschitzness. When we use
spectral normalisation like SNGP does, the short answer is an
empirical no. Indeed, with a well-regularized feature space
using spectral normalisation, we find that simply perform-
ing GDA (Gaussian Discriminant Analysis) after training
as feature-space density estimator can reliably capture epis-
temic uncertainty. However, unlike [43], which does not
place any constraints on the feature space, we do not require
training on “OoD” hold-out data, feature ensembling, and
input pre-processing to obtain good performance (see Tab. 1).
This results in a conceptually simpler method. Moreover, we
find that using a separate covariance matrix for each class im-
proves OoD detection performance as compared to a shared
covariance matrix like in [43]. Secondly, we investigate how
to disentangle aleatoric and epistemic uncertainty. DUQ and
SNGP do not address this directly. As we only perform
GDA after training, the original softmax layer is trained
using cross-entropy as a proper scoring rule [17] and can

be temperature-scaled to provide good in-distribution cali-
bration and aleatoric uncertainty. Thus, the combination of
using GDA for epistemic uncertainty and the softmax predic-
tive distribution for aleatoric uncertainty after training with
feature-space regularisation, e.g. residual connections with
spectral normalisation, provides a simple baseline which
we call Deep Deterministic Uncertainty (DDU). DDU out-
performs regular softmax neural networks, as illustrated in
Fig. 1. Furthermore, DDU is competitive with Deep Ensem-
bles [40] and outperforms SNGP and DUQ [45; 65], with
no changes to the model architecture beyond spectral nor-
malisation, in several OoD benchmarks and active learning
settings. Finally, using DeepLab-v3+ [3] on Pascal VOC
2012 [12], we show that DDU improves upon two classic
uncertainty methods: MC Dropout [15] and Deep Ensem-
bles, popularly used on the task of semantic segmentation,
while being significantly faster to compute.

Additional Insights: Beyond the above contributions,
we also provide additional insights on potential pitfalls for
practitioners, which informed the design of DDU. Firstly,
predictive entropy confounds aleatoric and epistemic uncer-
tainty (Fig. 1b). This can be an issue in active learning in par-
ticular. Yet, this issue is often not visible for standard bench-
mark datasets without aleatoric noise. To examine this failure
in more detail, we introduce a new dataset, Dirty-MNIST,
which showcases the issue more clearly than artificially cu-
rated datasets like MNIST or CIFAR-10. Dirty-MNIST is a
modified version of MNIST [41] with additional ambiguous
digits (Ambiguous-MNIST) having multiple plausible labels
and thus higher aleatoric uncertainty (Fig. 1a). Secondly,
we observe that the softmax entropy of a deterministic model
trained with maximum likelihood, while being high for am-
biguous points (i.e., with high aleatoric uncertainty), might
not be consistent for points with high epistemic uncertainty,
i.e. the softmax entropy for an OoD sample might be low,
high or anything in between for different models trained
on the same data (Fig. 1b). Thirdly, we note that feature-
space regularization [45] is crucial for the estimation of
epistemic uncertainty1. Without such regularisation feature-
space density alone might not separate iD from OoD data,
possibly explaining the limited empirical success of previ-
ous approaches which attempt to use feature-space density
[59]. This can be seen in Fig. 1c where the feature-space
density of a VGG-16 or LeNet model are not able to differ-
entiate iD Dirty-MNIST from OoD Fashion-MNIST while a
ResNet-18 with spectral normalization can do so better.

Scope: Our focus is on obtaining a well-regularized fea-
ture space using spectral normalization in model architec-
tures with residual connections, following [45]. Note that
unsupervised methods using contrastive learning [69] might
also obtain such a feature space by training on very large

1[58] argue for softmax confidence and entropy in their paper, yet
feature-space density performs better in their experiments, too.
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datasets, but training on them can be very expensive [63].
We only use GDA for estimating the feature-space density
as it is straight-forward to implement and does not require
performing expectation maximization or variational infer-
ence like other density estimators. Normalizing flows [9] or
other more complex density estimators might provide even
better density estimates, of course. Yet despite its simplicity,
GDA is already sufficient to outperform other more com-
plex approaches and obtain good results. As the amount of
training data available grows and feature extractors improve,
the quality of feature representations might improve as well.
The underlying motiviation of this paper is that simple ap-
proaches will remain more applicable than more complex
ones as our empirical results suggest.

2. Background
We review concepts for quantifying uncertainty.
Epistemic Uncertainty at point x is a quantity which

is high for a previously unseen x, and decreases when x
is added to the training set and the model is updated [33].
This conforms with using mutual information in Bayesian
models and deep ensembles [37] and feature-space density in
deterministic models as surrogates for epistemic uncertainty
[59] as we examine below (see Fig. 2a and §F.8).

Aleatoric Uncertainty at point x is a quantity which is
high for ambiguous or noisy samples [33]. It does not de-
crease with more data (see Fig. 2b). Note that aleatoric
uncertainty is only meaningful in-distribution, as, by defini-
tion, it quantifies the level of ambiguity between the different
classes which might be observed2.

Bayesian Models [48; 55] provide a principled way of
measuring uncertainty. Starting with a prior distribution p(ω)
over model parameters ω, they infer a posterior p(ω|D),
given the training data D. The predictive distribution
p(y|x,D) for a given input x is computed via marginalisa-
tion over the posterior: p(y|x,D) = Eω∼p(ω|D)[p(y|x, ω)].
Its predictive entropy H[Y |x,D] upper-bounds the epistemic
uncertainty, where epistemic uncertainty is quantified as the
mutual information I[Y ;ω|x,D] (expected information gain)
between parameters ω and output y [14; 61]:

H[Y |x,D]︸ ︷︷ ︸
predictive

= I[Y ;ω|x,D]︸ ︷︷ ︸
epistemic

+Ep(ω|D)[H[Y |x, ω]]︸ ︷︷ ︸
aleatoric (for iD x)

. (1)

Predictive uncertainty will be high whenever either epistemic
uncertainty or aleatoric uncertainty is high. However, the
intractability of exact Bayesian inference in deep learning
has led to the development of approximate inference methods
[1; 15; 27; 28]. In practice, however, these methods are either
unable to scale to large datasets and model architectures,

2If the probability of observing x under the data generating distribution
is zero, p(y|x) = p(x,y)

p(x)
, and hence, the entropy as a measure of aleatoric

uncertainty, is not defined.

suffer from low uncertainty quality, or require expensive
Monte-Carlo sampling.

Deep Ensembles [40] average the outputs of an ensemble
of neural networks. Uncertainty is estimated as the entropy
of the averaged softmax outputs. Despite the high compu-
tational overhead at training and test time, Deep Ensembles
along with recent extensions [10; 61; 66] form the state-of-
the-art in uncertainty quantification in deep learning.

Deterministic Models produce a softmax distribution
p(y|x, ω), and commonly either the softmax confidence
maxc p(y = c|x, ω) or the softmax entropy H[Y |x, ω] are
used as a measure of uncertainty [24]. Popular approaches to
improve these metrics include pre-processing of inputs and
post-hoc calibration methods [20; 44], alternative objective
functions [8; 42], and exposure to outliers [25]. However,
these methods are known to suffer from shortcomings like
failing under distribution shift [57], requiring significant
changes to the training setup, or assuming the availability of
OoD samples during training.

Feature-Space Distances [43; 45; 65] and Feature-
Space Density [46; 59] offer a different approach for es-
timating uncertainty in deterministic models. Following
the definition of epistemic uncertainty above, it decreases
when previously unseen samples are added to the training set.
Feature-space distance and density methods realise this by
estimating distance or density, respectively, to training data
in the feature space (see again Fig. 2a). A previously unseen
point with high distance (low density), once added to the
training data, will have low distance (high density). Hence,
they can be used as a proxy for epistemic uncertainty, under
important assumptions about the feature space as detailed
below. None of these methods, however, is competitive with
Deep Ensembles, in uncertainty quantification, potentially
for the reasons discussed next.

Feature Collapse [65] is why distance and density esti-
mation in the feature space may fail to capture epistemic
uncertainty: feature extractors might map the features of
OoD inputs to iD regions in the feature space [64].

Smoothness & Sensitivity can be encouraged to prevent
feature collapse by subjecting the feature extractor fθ, with
parameters θ to a bi-Lipschitz constraint:

KL dI(x1, x2) ≤ dF (fθ(x1), fθ(x2)) ≤ KU dI(x1, x2),

for all inputs, x1 and x2, where dI and dF denote metrics for
the input and feature space respectively, and KL and KU the
lower and upper Lipschitz constants [45]. The lower bound
ensures sensitivity to distances in the input space, and the
upper bound ensures smoothness in the features, preventing
them from becoming too sensitive to input variations, which,
otherwise, can lead to poor generalisation and loss of robust-
ness [65]. Methods of enouraging bi-Lipschitzness include:
i) gradient penalty, by applying a two-sided penalty to the
L2 norm of the Jacobian [19], and ii) spectral normalisation
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Figure 2. Epistemic and aleatoric uncertainty of ResNet-18+SN
models trained on increasingly large subsets of DirtyMNIST. The
feature-space density increases while the softmax entropy stays
roughly the same, consistent with epistemic and aleatoric uncer-
tainty being reducible and irreducible with more data, respectively.
See §F.8 for a discussion on this.

Figure 3. DDU Pseudo-Code

[52] in models with residual connections, like ResNets [22].
[62] provides an in-depth analysis which supports that spec-
tral normalisation leads to bi-Lipschitzness. Compared to
the Jacobian gradient penalty [65], spectral normalisation is
significantly faster and has more stable training dynamics.

3. Deep Deterministic Uncertainty

As introduced in §1, we discuss the primary components
of our proposed DDU in this section.

Ensuring Sensitivity & Smoothness: We ensure sensi-
tivity and smoothness using spectral normalisation in mod-
els with residual connections. In addition, we make minor
changes to the standard residual block to further encourage
sensitivity without sacrificing accuracy (see details in §C.1).

Disentangling Epistemic & Aleatoric Uncertainty: To
quantify epistemic uncertainty, we fit a feature-space density
estimator after training. We use GDA, a GMM q(y, z) with
a single Gaussian component per class, and fit each class
component by computing the empirical mean and covariance,
per class, of the feature vectors z = fθ(x), which are the
outputs of the last convolutional layer of the model computed
on the training samples x. Note that we do not require OoD
data to fit these and unlike [43] we use a separate covariance
matrix for each class. Fitting a GDA on the feature space,
thus requires no further training and only requires a single
forward pass through the training set.

Evaluation: At test time, we estimate the epistemic un-
certainty by evaluating the marginal likelihood of the feature
representation under our density q(z) =

∑
y q(z|y) q(y).

To quantify aleatoric uncertainty for in-distribution samples,

we use the entropy H[Y |x, θ] of the softmax distribution
p(y | x, θ). Note that the softmax distribution thus obtained
can be further calibrated using temperature scaling [20].
Thus, for a given input, a high feature-space density indicates
low epistemic uncertainty (iD), at which point, we can trust
the aleatoric estimate from the softmax entropy. The sam-
ple can then be either unambiguous (low softmax entropy)
or ambiguous (high softmax entropy). Conversely, a low
feature density indicates high epistemic uncertainty (OoD),
and we cannot trust softmax predictions. A simple Python
pseudo-code using a scikit-learn-like API [2] is shown in
Fig. 3. A more detailed algorithm and the corresponding
computational complexity can be found in §C.

Sanity Check: To verify our claims on DDU’s ability
to quantify epistemic and aleatoric uncertainty, we train
a ResNet-18 model with spectral normalisation (ResNet-
18+SN) on increasingly large subsets of DirtyMNIST (1%,
2% and 10% particularly) and plot the feature-space density
as well as the softmax entropy for each of these models
in Fig. 2. With increasing training set size, feature-space
density on the test set increases, following the definition
of epistemic uncertainty, whereas softmax entropy remains
similar, indicative of aleatoric uncertainty.

4. Experiments
We evaluate DDU’s quality of epistemic uncertainty esti-

mation in active learning [4] using MNIST, CIFAR-10 and an
ambiguous version of MNIST (Dirty-MNIST). We also test
DDU on several OoD detection settings including CIFAR-10
vs SVHN/CIFAR-100/Tiny-ImageNet/CIFAR-10-C, CIFAR-
100 vs SVHN/Tiny-ImageNet and ImageNet vs ImageNet-O
dataset pairings, where we outperform other deterministic
single-forward-pass methods and perform on par with deep
ensembles. Finally, we also evaluate DDU on the task of
semantic segmentation on Pascal VOC, comparing with a
deterministic model, MC Dropout (MCDO) [15] and deep
ensembles. In the appendix, we also examine DDU’s perfor-
mance on the real-world QUBIQ challenge in §F.3 and on
the well-known Two Moons toy dataset in §F.6. We elabo-
rate on how DDU can disentangle epistemic and aleatoric
uncertainty, the setting depicted in Fig. 1, in §F.1.1, and the
effect of feature-space regularisation in §F.2.

4.1. Active Learning

We first demonstrate the quality of our uncertainty dis-
entanglement in active learning (AL) [4]. AL aims to train
models in a data-efficient manner. Additional training sam-
ples are iteratively acquired from a large pool of unlabelled
data and labelled with the help of an expert. After each ac-
quisition step, the model is retrained on the newly expanded
training set. This is repeated until the model achieves a de-
sirable accuracy—or when a maximum number of samples
have been acquired.
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Figure 4. Active Learning experiments. Acquired training set size
vs test accuracy. DDU performs on par with Deep Ensembles.

Data-efficient acquisition relies on acquiring labels for the
most informative samples. This can be achieved by select-
ing points with high epistemic uncertainty [16]. Conversely,
repeated acquisition of points with high aleatoric uncertainty
is not informative for the model and such acquisitions lead
to data inefficiency. AL, therefore, makes an excellent appli-
cation for evaluating epistemic uncertainty and the ability of
models to separate different sources of uncertainty. We eval-
uate DDU on three different setups: i) with clean MNIST
samples in the pool set, ii) with clean CIFAR-10 samples
in the pool set, and ii) with Dirty-MNIST, having a 1:60
ratio of MNIST to Ambiguous-MNIST samples, in the pool
set. In the first two setups, we compare 3 baselines: i) a
ResNet-18 with softmax entropy as the acquisition function,
ii) DDU trained using a ResNet-18 with feature density as
acquisition function, and iii) a Deep Ensemble of 3 ResNet-
18s with the predictive entropy (PE) and mutual information
(MI) of the ensemble as the acquisition functions. In the last
setup, in addition to the above 3 approaches, we also use
iv) feature density of a VGG-16 instead of ResNet-18+SN
as an ablation to see if feature density of a model without
inductive biases performs well, v) SNGP and vi) DUQ as
additional baselines. For MNIST and Dirty-MNIST, we
start with an initial training-set size of 20 randomly chosen
MNIST points, and in each iteration, acquire the 5 samples
with highest reported epistemic uncertainty. For each step,
we train the models using Adam [34] for 100 epochs and
choose the one with the best validation set accuracy. We
stop the process when the training set size reaches 300. For
CIFAR-10, we start with 1000 samples and go up to 20000
samples with an acquisition size of 500 samples in each step.

MNIST & CIFAR-10 In Fig. 4(a) and Fig. 4(b), for reg-
ular curated MNIST and CIFAR-10 in the pool set, DDU
clearly outperforms the deterministic softmax baseline and is
competitive with Deep Ensembles. For MNIST, the softmax
baseline reaches 90% test-set accuracy at a training-set size
of 245. DDU reaches 90% accuracy at a training-set size
of 160, whereas Deep Ensemble reaches the same at 185
and 155 training samples with PE and MI as the acquisition
functions respectively. Note that DDU is three times faster
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Figure 5. AUROC vs corruption intensity averaged over all corrup-
tion types in CIFAR-10-C for 4 architectures. More details in §4.2
and more ablations in §D in the appendix.

than a Deep Ensemble, which needs to train three models
independently after every acquisition.

Dirty-MNIST. Real-life datasets often contain observa-
tion noise and ambiguous samples. What happens when the
pool set contains a lot of such noisy samples having high
aleatoric uncertainty? In such cases, it becomes important
for models to identify unseen and informative samples with
high epistemic uncertainty and not with high aleatoric uncer-
tainty. To study this, we construct a pool set with samples
from Dirty-MNIST (see §B). We significantly increase the
proportion of ambiguous samples by using a 1:60 split of
MNIST to Ambiguous-MNIST (a total of 1K MNIST and
60K Ambiguous-MNIST samples). In Fig. 4(c), for Dirty-
MNIST in the pool set, the difference in the performance of
DDU and the deterministic softmax model is stark. While
DDU achieves a test set accuracy of 70% at a training set
size of 240 samples, the accuracy of the softmax baseline
peaks at a mere 50%. In addition, all baselines, including
SNGP, DUQ and the feature density of a VGG-16, which
fail to solely capture epistemic uncertainty, are significantly
outperformed by DDU and the MI baseline of the deep en-
semble. However, note that DDU also performs better than
Deep Ensembles with the PE acquisition function. The dif-
ference gets larger as the training set size grows: DDU’s
feature density and Deep Ensemble’s MI solely capture epis-
temic uncertainty and hence, do not get confounded by iD
ambiguous samples with high aleatoric uncertainty.

4.2. OoD Detection

OoD detection is an application of epistemic uncer-
tainty quantification: if we do not train on OoD data,
we expect OoD data points to have higher epistemic
uncertainty than iD data. We evaluate CIFAR-10 vs
SVHN/CIFAR-100/Tiny-ImageNet/CIFAR-10-C, CIFAR-
100 vs SVHN/Tiny-ImageNet and ImageNet vs ImageNet-O
as iD vs OoD dataset pairs for this experiment [6; 23; 39; 56].
We also evaluate DDU on different architectures: Wide-
ResNet-28-10, Wide-ResNet-50-2, ResNet-50, ResNet-110
and DenseNet-121 [22; 30; 71]. The training setup is de-
scribed in §D.2. In addition to using softmax entropy of a de-
terministic model (Softmax) for both aleatoric and epistemic
uncertainty, we also compare with the following baselines
that do not require training or fine-tuning on OoD data:
• Energy-based model [46]: We use the softmax entropy as

aleatoric uncertainty and the unnormalized softmax den-
sity (the logsumexp of the logits) as epistemic uncertainty
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Table 1. OoD detection performance of different baselines using a Wide-ResNet-28-10 architecture with the CIFAR-10 vs SVHN/CIFAR-
100/Tiny-ImageNet and CIFAR-100 vs SVHN/Tiny-ImageNet dataset pairs averaged over 25 runs. SN: Spectral Normalisation, JP: Jacobian
Penalty. The best deterministic single-forward pass method and the best method overall are in bold for each metric.

Train Dataset Method Penalty Aleatoric Uncertainty Epistemic Uncertainty Accuracy (↑) ECE (↓) AUROC SVHN (↑) AUROC CIFAR-100 (↑) AUROC Tiny-ImageNet (↑)

CIFAR-10

Softmax - Softmax Entropy Softmax Entropy
95.98± 0.02 0.85± 0.02

94.44± 0.43 89.39± 0.06 88.42± 0.05
Energy-based [46] - Softmax Density 94.56± 0.51 88.89± 0.07 88.11± 0.06

DUQ [65] JP Kernel Distance Kernel Distance 94.6± 0.16 1.55± 0.08 93.71± 0.61 85.92± 0.35 86.83± 0.12
SNGP [45] SN Predictive Entropy Predictive Entropy 96.04± 0.09 1.8± 0.1 94.0± 1.3 91.13± 0.15 89.97± 0.19

DDU (ours) SN Softmax Entropy GDA Density 95.97± 0.03 0.85± 0.04 97.86± 0.19 91.34± 0.04 91.07± 0.05

5-Ensemble - Predictive Entropy Predictive Entropy
96.59± 0.02 0.76± 0.03

97.73± 0.31 92.13± 0.02 90.06± 0.03
[40] Mutual Information 97.18± 0.19 91.33± 0.03 90.90± 0.03

Accuracy (↑) ECE (↓) AUROC SVHN (↑) AUROC Tiny-ImageNet (↑)

CIFAR-100

Softmax - Softmax Entropy Softmax Entropy
80.26± 0.06 4.62± 0.06

77.42± 0.57 81.53± 0.05
Energy-based [46] - Softmax Density 78± 0.63 81.33± 0.06

SNGP [45] SN Predictive Entropy Predictive Entropy 80.00± 0.11 4.33± 0.01 85.71± 0.81 78.85± 0.43
DDU (ours) SN Softmax Entropy GMM Density 80.98± 0.06 4.10± 0.08 87.53± 0.62 83.13± 0.06

5-Ensemble - Predictive Entropy Predictive Entropy
82.79± 0.10 3.32± 0.09

79.54± 0.91 82.95± 0.09
[40] Mutual Information 77.00± 1.54 82.82± 0.04

Table 2. OoD detection performance of different baselines using ResNet-50, Wide-ResNet-50-2 and VGG-16 architectures on ImageNet vs
ImageNet-O [26]. Best AUROC scores are marked in bold.

Model Accuracy (↑) ECE (↓) AUROC (↑)
Deterministic 3-Ensemble Deterministic 3-Ensemble Softmax Entropy Energy-based Model DDU 3-Ensemble PE 3-Ensemble MI

ResNet-50 74.8± 0.05 76.01 2.08± 0.11 2.07 51.42± 0.61 55.76± 0.81 71.29± 0.08 60.3 62.43
Wide-ResNet-50-2 76.75± 0.11 77.58 1.18± 0.07 1.22 52.71± 0.23 57.13± 0.4 73.12± 0.19 60.45 64.81

VGG-16 72.48± 0.02 73.54 2.62± 0.11 2.59 50.67± 0.22 52.04± 0.23 54.32± 0.14 58.74 60.56

without regularisation to avoid feature collapse.
• DUQ [65] & SNGP [45]: We compare with the state-of-

the-art deterministic methods for uncertainty quantifica-
tion including DUQ and SNGP. For SNGP, we use the
exact predictive covariance computation and we use the
entropy of the average of the MC softmax samples as un-
certainty. For DUQ, we use the closest kernel distance.
Note that for CIFAR-100, DUQ’s one-vs-all objective did
not converge during training and hence, we do not include
the DUQ baseline for CIFAR-100.

• 5-Ensemble: We use an ensemble of 5 networks and com-
pute the predictive entropy of the ensemble as both epis-
temic and aleatoric uncertainty and mutual information as
epistemic uncertainty.

Results: Table 1 presents the AUROC for Wide-ResNet-
28-10 models on CIFAR-10 vs SVHN/CIFAR-100/Tiny-
ImageNet and CIFAR-100 vs SVHN/Tiny-ImageNet along
with their respective test set accuracy and ECE post temp-
scaling (additional calibration scores in §F.5 and comparison
with more baselines in §F.4). The equivalent results for
other architectures: ResNet-50/110 and DenseNet-121 can
be found in Tab. 5, Tab. 6 and Tab. 7 in the appendix. Note
that for DDU, post-hoc calibration with temperature scaling
[20], is simple as it does not affect the GMM density. We
also plot the AUROC averaged over corruption types vs
corruption intensity for CIFAR-10 vs CIFAR-10-C in Fig. 5,
with AUROC plots per corruption type in Fig. 10, Fig. 11,
Fig. 12 and Fig. 13 of the appendix. Finally, in Tab. 2, we
present AUROC for models trained on ImageNet.

For OoD detection, DDU outperforms all other deter-
ministic single-forward-pass methods, DUQ, SNGP and the
energy-based model approach from [46], on CIFAR-10 vs
SVHN/CIFAR-100/Tiny-ImageNet, CIFAR-10 vs CIFAR-10-
C and CIFAR-100 vs SVHN/Tiny-ImageNet, often performs
on par with state-of-the-art Deep Ensembles—and even per-
forming better in a few cases. This holds true for all the ar-

chitectures we experimented on. Similar observations can be
made on ImageNet vs ImageNet-O as well. Importantly, the
great performance in OoD detection comes without compro-
mising on the single-model test set accuracy in comparison
to other deterministic methods.

Ablations: Additional ablations for the CIFAR-10/100
experiments are detailed in §E: Tab. 8 and 9. These tables
along with observations in Tab. 2, show that the feature den-
sity of a VGG-16 (i.e. without residual connections and spec-
tral normalisation) is unable to beat a VGG-16 ensemble,
whereas a Wide-ResNet-28-10 with spectral normalisation
outperforms its corresponding ensemble in almost all the
cases. This result further validates the importance of having
a regularized feature space on the model to obtain smooth-
ness and sensitivity. Also note that, even without spectral
normalisation, a Wide-ResNet-28 has residual connections
built into its model architecture, which can be a contributing
factor towards good performance as residual connections
make the model sensitive to changes in the input space. Fi-
nally, we also provide an ablation using LDA [43], which
uses a shared covariance matrix over all classes, instead
of GDA with covariance matrices per class. The resulting
AUROC for Wide-ResNet-28-10 trained on CIFAR-10/100
and for Wide-ResNet-50-2 and ResNet-50 trained on Ima-
geNet in Tab. 10 in §E. LDA only outperforms GDA when
using SVHN as an OoD dataset. In all other cases, GDA
obtains significantly higher AUROC, thereby indicating the
advantage of modeling density using individual covariance
matrices per class.

4.3. Semantic Segmentation

In this section, we apply DDU to the task of semantic
segmentation on Pascal VOC 2012 [12], comparing with a
vanilla softmax model, MC Dropout and deep ensembles. Se-
mantic segmentation [47], classifies every pixel of a given to
one of a fixed set of classes. Since different classes can have
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different levels of representation in a segmentation dataset, it
forms a classic example of a problem with class imbalance,
thereby requiring reliable estimates of epistemic uncertainty.
Furthermore, due to the computationally heavy nature of
semantic segmentation, classic uncertainty quantification ap-
proaches like MC Dropout and deep ensemblesare rendered
infeasible in real-world applications.

Pixel-Independent Class-Wise Means and Covari-
ances: As each pixel has a corresponding prediction in
semantic segmentation, it is natural to ask if the Gaussian
means and covariance matrices need to be computed per
pixel. To examine this, in Fig. 9 of §D.3, we plot the L2
distances between feature space means of all pairs of classes
obtained from a DeepLab-v3+ [3] model with a ResNet-101
backbone for two “distant” pixels. We observe that pixels
of the same class are much closer in the feature space than
pixels of different classes, irrespective of their location in the
image. In spirit of a new simple baseline, we thus compute
the Gaussian means and covariances per class, taking each
pixel as a separate data point.

Architecture, Training and Evaluation Metrics: As
mentioned above, we evaluate DDU on Pascal VOC 2012
and compare to a vanilla softmax model, MC Dropout
with 5 forward passes at test time, and a deep ensem-
bles with 3 members. We use DeepLab-v3+ with a
ResNet-101 backbone as the model architecture. Fur-
ther training details are in §D.3. Finally, to evaluate
the uncertainty estimates, we use metrics proposed in
[53]: p(accurate|certain), p(uncertainty|inaccurate) and
PAVPU. p(accurate|certain) computes the probability of
the model being accurate given that it is confident. Sim-
ilarly, p(uncertainty|inaccurate) measures probability of
the model being uncertain given that it is inaccurate and
PAV PU computes the probability of the model being con-
fident on accurate predictions and uncertain on inaccurate
ones. Ideally, high values for these metrics indicate better
uncertainty estimates in segmentation. Furthermore, note
that these metrics can be computed at different thresholds of
uncertainty (defining if a model is certain or not).

Results and Discussion: In Fig. 7, we present the above
3 metrics for all segmentation baselines evaluated on the Pas-
cal VOC validation set. We also report the val set accuracy
and runtime of a single forward pass in Tab. 3. Finally, we
visualise uncertainty estimates from each baseline in Fig. 6.
Firstly, from Tab. 3, it is clear that DDU has the runtime of a
deterministic model which is significantly faster than both
MC Dropout and deep ensembles. Also note that DDU’s
mIoU is the same as that of the vanilla softmax model. Sec-
ondly, from Fig. 7, we see that DDU consistently performs
better on all 3 evaluation metrics compared to the other
baselines. Finally, Fig. 6 qualitatively validates that DDU’s
feature-space density captures epistemic uncertainty while
the softmax entropy captures aleatoric uncertainty. For DDU,

(a) Accuracy (b) MCD PE (c) MCD MI (d) En PE (e) En MI (f) Entropy (g) Density

Figure 6. Visualisation of uncertainty baselines on four PASCAL
VOC validation samples (rows). Columns: (a) shows pixel-wise
accuracy; (b), (c) predictive entropy (PE) and mutual information
(MI) obtained for MC Dropout (MCD); (d), (e) for deep ensembles;
(f) per-pixel softmax entropy, the aleatoric estimate of DDU; and
(g) feature density, the epistemic component of DDU. For all but
(g): the brighter, the more uncertain, whereas DDU’s density (g)
captures certainty: hence, the brighter, the more certain.
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Figure 7. p(accurate|certain), p(uncertain|inaccurate) and
PAVPU evaluated on PASCAL VOC validation set. DDU out-
performs all other baselines.

Table 3. Pascal VOC val set mIoU and runtime in milliseconds
averaged over 10 forward passes. For MC Dropout, we perform 5
stochastic forward passes.

Baseline Softmax MC Dropout Deep Ensemble DDU

mIoU 78.53 78.61 78.47 78.53
Runtime (ms) 275.48± 1.91 1576.75± 1.56 875.87± 0.79 263.83± 2.79

for the first two samples (first two rows, Fig. 6g), the epis-
temic uncertainty is not high and only aleatoric uncertainty
is captured along edges of objects. However, for the last
sample (4th row, Fig. 6g), the epistemic uncertainty is high
for a relatively large patch on the image which is inaccu-
rately predicted by the model as well. Note that only DDU’s
feature density is significantly lower for that entire region,
whereas softmax entropy does not capture high uncertainty
there and is only high along the edges. These observations
are in line with [33]: aleatoric uncertainty is high on edges
of objects as they correspond to regions of high ambiguity
and noise; on the other hand, epistemic uncertainty is high
for regions of the image which are previously unseen.

5. Additional Insights
We conclude with a discussion on potential pitfalls of

predictive entropy in general and softmax entropy of deter-
ministic models in particular. Proofs for all statements are
provided in §G.

Potential Pitfalls of Predictive Entropy: Conceptually,
predictive entropy confounds epistemic and aleatoric uncer-
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tainty. Since ensembling can also be interpreted as Bayesian
Model Averaging [21; 68], with each ensemble member ap-
proximating a sample from a posterior, eq. (1) can be applied
to ensembles to disentangle epistemic and aleatoric uncer-
tainty. Both mutual information I[Y ;ω |x,D] and predictive
entropy H[Y | x,D] could be used to detect OoD samples.
However, previous empirical findings show predictive en-
tropy outperforming mutual information [50]. Indeed, much
of the recent literature only focuses on predictive entropy for
OoD detection (see §A.1). We explain these findings using
the following observation:

Observation 5.1. If we know that either aleatoric or epis-
temic uncertainty is low for a sample, predictive entropy is a
good measure of the uncertainty type which is high.

Thus, predictive entropy, as an upper-bound of mutual
information, can separate iD and OoD data better when
datasets are curated and have low aleatoric uncertainty. How-
ever, as seen in eq. (1), predictive entropy can be high for
both iD ambiguous samples (high aleatoric) as well as OoD
samples (high epistemic) (see Fig. 15) and might not be
an effective measure for OoD detection when used with
datasets that are not curated with ambiguous samples, like
Dirty-MNIST, as seen in our active learning results.

Potential Pitfalls of Softmax Entropy: The softmax en-
tropy for deterministic models trained with maximum likeli-
hood can be inconsistent. In fact, the mechanism underlying
the estimation of Deep Ensemble epistemic uncertainty re-
quires it to be so:

Proposition 5.2. Let x1 and x2 be points such that x1 has
higher epistemic uncertainty than x2 under the ensemble:
I[Y1;ω |x1,D] > I[Y2;ω |x2,D]+δ, δ ≥ 0. Further assume
both have similar predictive entropy |H[Y1 |x1,D]−H[Y2 |
x2,D]| ≤ ε, ε ≥ 0. Then, there exist sets of ensemble
members Ω with p(Ω | D) > 0, such that for all softmax
models ω ∈ Ω the softmax entropy of x1 is lower than the
softmax entropy of x2: H[Y1 |x1, ω] < H[Y2 |x2, ω]−(δ−ε).

If a sample is assigned higher epistemic uncertainty (in
the form of mutual information) by a Deep Ensemble than
another sample, it will necessarily be assigned lower softmax
entropy by at least one of the ensemble’s members. As a
result, a priori, we cannot know whether a softmax model
preserves the order or not, and the empirical observation
that the mutual information of an ensemble can quantify
epistemic uncertainty well implies that the softmax entropy
of a deterministic model might not. We see this in Fig. 1b,
15 and §G.1.3 where softmax entropy for OoD samples
can be high, low or anywhere in between. While not all
model architectures might behave like this, when the mutual
information of a Deep Ensemble works well empirically,
Proposition 5.2 holds.

Objective Mismatch: The predictive probability in-
duced by a feature-density estimator will generally not be

well-calibrated as there is an objective mismatch. This was
overlooked in previous research on uncertainty quantification
for deterministic models [22; 43; 45; 59; 65]. Specifically, a
mixture model q(y, z) =

∑
y q(z | y) q(y), using one com-

ponent per class, cannot be optimal for both feature-space
density and predictive distribution estimation as there is an
objective mismatch [54, Ex. 4.20, p. 145]:

Proposition 5.3. For an input x, let z = fθ(x) denote its
feature representation in a feature extractor fθ with parame-
ters θ. Then the following hold:
1. A discriminative classifier p(y | z), e.g. a softmax layer,

is well-calibrated in its predictions when it maximises the
conditional log-likelihood log p(y | z);

2. A feature-space density estimator q(z) is optimal when it
maximises the marginalised log-likelihood log q(z);

3. A mixture model q(y, z) =
∑
y q(z | y) q(y) might not

maximise both objectives, conditional log-likelihood and
marginalised log-likelihood, at the same time. In the
specific instance that a GMM with one component per
class does maximise both, the resulting model must be a
GDA (but the opposite does not hold).

Hence, importantly, DDU uses both a discriminative clas-
sifier (softmax layer) to capture aleatoric uncertainty for iD
samples and a separate feature-density estimator to capture
epistemic uncertainty even on a model trained using condi-
tional log-likelihood, i.e. the usual cross-entropy objective.
Figure 17 and §G.2.3 provide additional intuitions.

6. Conclusion

Deep Deterministic Uncertainty (DDU) can outperform
state-of-the-art deterministic single-pass uncertainty meth-
ods in active learning and OoD detection by fitting a GDA
for feature-space density estimation after training a model
with residual connections and spectral normalization [43; 45]
while performing as well as deep ensembles in several set-
tings. Hence, DDU provides a very simple method to obtain
good epistemic and aleatoric uncertainty estimates and might
be taken into consideration as an alternative to deep ensem-
bles without requiring the complexities or computational cost
of the current state-of-the-art. Reliable uncertainty quantifi-
cation is an important requirement to make deep neural nets
safe for deployment. Thus, we hope our work will contribute
to increasing safety, reliability and trust in AI.
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