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Abstract

Deep neural networks (DNNs) have enabled astound-
ing progress in several vision-based problems. Despite
showing high predictive accuracy, recently, several works
have revealed that they tend to provide overconfident pre-
dictions and thus are poorly calibrated. The majority of
the works addressing the miscalibration of DNNs fall un-
der the scope of classification and consider only in-domain
predictions. However, there is little to no progress in study-
ing the calibration of DNN-based object detection models,
which are central to many vision-based safety-critical ap-
plications. In this paper, inspired by the train-time calibra-
tion methods, we propose a novel auxiliary loss formulation
that explicitly aims to align the class confidence of bound-
ing boxes with the accurateness of predictions (i.e. preci-
sion). Since the original formulation of our loss depends
on the counts of true positives and false positives in a mini-
batch, we develop a differentiable proxy of our loss that can
be used during training with other application-specific loss
functions. We perform extensive experiments on challeng-
ing in-domain and out-domain scenarios with six bench-
mark datasets including MS-COCO, Cityscapes, Sim10k,
and BDD100k. Our results reveal that our train-time loss
surpasses strong calibration baselines in reducing calibra-
tion error for both in and out-domain scenarios. Our source
code and pre-trained models are available at https://
github.com/akhtarvision/bpc_calibration

1. Introduction
Deep neural networks (DNNs) have shown remarkable

results in various mainstream computer vision tasks, in-
cluding image classification [5, 10, 33], object detection
[29, 36, 39], and semantic segmentation [2, 34]. However,
some recent works [9,26] show that these deep models have
the tendency to provide overconfident predictions. This
greatly limits the overall trust in their predictions, especially
when they are part of the decision-making system in safety-
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Figure 1. Comparison in terms of Detection Expected Calibra-
tion Error (D-ECE) on in-domain Cityscapes (CS) and out-domain
FoggyCS datasets. (a) Detection model trained with our proposed
BPC loss provides the lowest D-ECE (lower is better). (b) Post-
hoc and train-time calibration methods for classification: MDCA
[11] and MbLS [25] are sub-optimal for object detection. In con-
trast, BPC loss better calibrates in-domain and out-domain detec-
tions.

critical applications [6, 8, 32]. For instance, a decision sys-
tem in an AI-powered healthcare diagnostic application can
safely reject predictions with low confidence, however, if
it mistakenly skips reviewing an incorrect prediction with
high confidence, it can lead to serious consequences.

An important underlying reason behind the miscalibra-
tion of DNNs is training with zero-entropy supervision sig-
nal which makes them overconfident, and thus inadvertently
miscalibrated. There have been few attempts towards im-
proving the model calibration. A prominent technique is
based on a post-processing step that transforms the out-
puts of a trained model with parameter(s) learned on a
held-out validation set [9, 14, 15, 19, 28]. Although sim-
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ple to implement, these methods are architecture and data-
dependent [25], and further requires a separate held-out val-
idation set which is not readily available in many real-world
applications. An alternative approach is a train-time cal-
ibration method which tends to involve all model param-
eters during training. Existing train-time calibration meth-
ods [11,18,22,25] propose an auxiliary loss term that can be
used in conjunction with an application-specific loss func-
tion (e.g., Cross Entropy or Focal loss [26]). Recently, [11]
propose a differentiable auxiliary loss formulation to cali-
brate the class confidence of both the predicted label along
with non-predicted labels.

Almost all work towards improving model calibration
target the task of classification [9, 11, 20, 22, 25]. However,
the calibration of object detection models has not been ac-
tively explored. Similar to classification models, object de-
tection models also occupy an important position in many
safety-critical applications. For instance, they form an in-
tegral part of the perception component of self-driving ve-
hicles. Furthermore, the majority of efforts tackling model
calibration focus on calibrating in-domain predictions. A
deployed deep learning-based model can encounter sam-
ples from a distribution that is radically different from the
training distribution. Therefore, a real-world model should
be well-calibrated for both in-domain and out-domain pre-
dictions. So, in essence, well-calibrated object detectors,
particularly under distribution shifts, not only contribute to
algorithmic advancements but are of great importance to
many vision-based safety-critical applications.

In this paper, we study the calibration of object detection
models for both in-domain and out-domain predictions. We
observe that the recent state-of-the-art object detectors are
rather miscalibrated when compared to their predictive ac-
curacy (Fig. 1). To this end, inspired by the train-time cal-
ibration approaches [11, 18, 25], we propose a novel train-
time auxiliary loss formulation (Fig. 2), which explicitly at-
tempts to bridge the model’s precision with the predicted
class confidence (BPC). It leverages the count of true posi-
tives and false positives in a minibatch, which are then em-
ployed to construct a penalty for miscalibrated predictions.
We develop a differentiable proxy to the actual loss formu-
lation that is based on counts. Our loss function is designed
to be used with other application-specific loss functions.
We perform extensive experiments on both in-domain and
out-domain scenarios, including the large-scale MS-COCO
benchmark. Results reveal that our train-time auxiliary loss
is capable of significantly improving the calibration of a
state-of-the-art vision-transformer based object detector un-
der both in-domain and out-domain scenarios.

2. Related Work
Most of the work for calibrating DNNs can be catego-

rized as: post-hoc and train-time methods. Post-hoc meth-

ods require hold-out validation set and involve a few param-
eters, whereas train-time methods do not require validation
data and involve all model parameters. We briefly discuss
these methods and other works below.
Post-hoc methods: A simple and classic approach to im-
proving model calibration is temperature scaling (TS) [9],
which is an extension of Platt scaling [28] from binary to
multi-class settings. TS uses a parameter to modulate the
logits of a trained model, whereby this parameter is esti-
mated using hold-out data. This lowers the predicted con-
fidence to achieve calibration. A more general form of TS
is matrix scaling for the transformation of logits. This ma-
trix is learned in a similar way using hold-out validation set.
Besides involving limited parameters, the majority of post-
hoc methods are limited to calibrating in-domain predic-
tions [27]. Further, these post-hoc calibration methods are
prone to performing poorly for dense prediction tasks [11].
To improve post-hoc calibration under out-domain scenar-
ios, [37] transforms the validation set prior to performing
the post-hoc approach. In [4], a regression model is used to
predict temperature parameter. Post-hoc calibration meth-
ods are simple and effective, however, they require hold-out
validation data, and are dependent on architecture [25].
Train-time calibration methods: Models trained with
zero-entropy supervision tend to give over-confident predic-
tions. An example is negative log-likelihood (NLL), which
is a widely-used task-specific loss. A model trained with
NLL provides predictions that deviate from the accuracy,
leaving the model poorly calibrated [9]. Train-time cali-
bration methods are typically based on auxiliary loss func-
tions, which are used in-tandem with task-specific losses.
In [22], an auxiliary loss term DCA is proposed to calibrate
the model. It is combined with a task-specific loss to pe-
nalize when it reduces but the accuracy remains unchanged.
Likewise, [20] proposed an auxiliary loss function that is
based on a reproducing kernel in a Hilbert space [7]. [18]
calibrated uncertainty based on the relationship between ac-
curacy and uncertainty. Recently in [11], proposed a loss
known as the multi-class difference of confidence and ac-
curacy which aims to calibrate the predicted confidence of
all classes. Building on the label smoothing (LS) work
[35], [25], introduced a margin constraint logit distances to
achieve implicit model calibration.
Other methods: Model calibration with OOD detection in
[12] suggested that the ReLU activation function causes the
model to provide overconfident predictions for input sam-
ples that lie away from the training samples. To circum-
vent this, a model is forced to output low scores for sam-
ples distant from training data by leveraging data augmen-
tation using adversarial training. In [17], OOD inputs are
detected with spectral analysis over early layers in convo-
lutional neural networks (CNNs), thereby achieving model
calibration.
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Figure 2. Main architecture: Our BPC loss function is integrated with object detection architecture and the detector predicts well-calibrated
probabilities for accurate predictions (shown in Green), while lowering the probabilities of inaccurate prediction (shown in dashed Red).
On the other hand, an uncalibrated model predicts scores, lower for accurate predictions and higher for inaccurate predictions. Blue color
shows the ground truth boxes present for corresponding detections. Best viewed in color.

All post-hoc and train-time losses target the calibration
of classification models, and there is almost no attention
given to the calibration of object detection models. To
this end, we explore the space of calibrating modern DNN-
based object detectors. We propose a new train-time cal-
ibration method based on a new auxiliary loss function
(BPC). It is differentiable, operates over mini-batches, and
effectively calibrates modern object detectors for in-domain
and out-domain detections.

3. Method

3.1. What is calibration?

A model is well-calibrated when the predicted confi-
dence is aligned with the likelihood of the sample being
correct. For example, a prediction of a calibrated model
with confidence s aligns with the occurrence of a sample
with the same s. A model is overconfident when it satisfies
the condition of correctness with < s%, and underconfident
when > s%. Many recent works addressing model calibra-
tion target the task of classification. In the following, we
briefly define calibration for classification and object detec-
tion.
Classification: Given a dataset D defined with the joint
distribution D(X ,Y) such that N number of images be-
longing to C ground truth classes are available. Let D =
{(xn, yn)

N
n=1}, where xn ∈ X ∈ RH×W×d (an input im-

age with height H , width W , and number of channels d).
For each image, we have a corresponding ground truth class
label yn ∈ Y = {1, 2, ..., C}. Let Gcls be a classification
model that predicts a label ȳ with confidence score s̄. Fol-
lowing [9], we define a perfect classification calibration as:
P(ȳ = y|s̄ = s) = s, s.t., s ∈ [0, 1]. According to this
expression, accuracy and confidence must align for all con-
fidence levels.
Object Detection: For object detection, the localization of
an object is an integral component along with the class la-
bel. Therefore, bounding box (b) annotations are also avail-

able with corresponding class labels. Specifically, for each
object, let b ∈ R4 and y correspond to its class label.
Given the object detector Gdet, model predicts a bounding
box b̄ and label ȳ with confidence score s̄. Following [21],
we can define the perfect calibration in object detection as:
P(K = 1|s̄ = s) = s, ∀s ∈ [0, 1] 1. Where K = 1
denotes an accurate detection in which both the class pre-
diction matches with the ground truth class and the IoU (be-
tween the predicted and the ground truth box) is greater than
a certain threshold i.e. 1[IoU(b̄,b) ≥ ρ]1[ȳ = y].

3.2. Measuring Calibration

Classification: Expected calibration error (ECE) is a
widely used metric to quantify the miscalibration of a clas-
sification model. It measures the expected deviation of ac-
curacy from the confidence for all confidence levels [9].

Es̄

[
|P(ȳ = y|s̄ = s)− s|

]
(1)

As the confidence score is a continuous random variable,
the confidence levels are divided into L equally-spaced
bins. The approximation of ECE is computed as:

ECE =

L∑
l=1

|B(l)|
|D|

|acc(l)− conf(l)| (2)

where |D| is the total number of samples, B(l) is the set of
samples in the lth bin. Further, acc(l) and conf(l) denote
the average accuracy and average confidence over samples
in the lth bin, respectively.
Object detection: Similar to ECE for classification, we can
define the detection expected calibration error (D-ECE) as
the expected deviation of precision from the confidence for
all confidence levels [21]:

Es̄

[
|P(K = 1|s̄ = s)− s|

]
(3)

1Note that, this definition of calibration for object detectors is extend-
able to include box properties.
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Figure 3. Left: We divide the confidence and precision space into
four groups for categorizing accurate and inaccurate predictions
over the minibatch according to their predicting confidence. Right:
Compared to baseline, our BPC loss function has increased the
joint count of accurate/confident and inaccurate/not-confident de-
tections, while at the same time, it has decreased the joint count of
accurate/not-confident and inaccurate/confident detections. Fur-
ther, when compared to the baseline, the ratio between the latter
and the former (defined in Eq. (9)) is smaller.

As confidence is a continuous variable, similar to eq.(2),
we can approximate D-ECE:

D-ECE =

L∑
l=1

|B(l)|
|D|

|prec(l)− conf(l)| (4)

where prec(l) denotes the precision in lth bin. Different
from Eq. (2), here, B(l) is the set of object instances in lth

bin and |D| is the total number of object instances.

3.3. BPC: Train-time Calibration Loss for Detection

Motivation: DNNs-based object detectors are trained with
the objective to predict with high confidence, leaving them
miscalibrated for both in-domain and out-of-domain detec-
tions. The rationale behind this behavior is the lack of di-
rect supervision for the model to promote higher confidence
for accurate predictions and lower confidence for inaccu-
rate predictions. Motivated by this observation, we leverage
the statistics associated with high-scoring and low-scoring
box predictions to calibrate the detection model. We utilize
the true positives and false positives to span the precision
and confidence space in order to maximize the probability
scores for accurate predictions and minimize the same for
inaccurate predictions. Specifically, we discretize the confi-
dence and precision space into four partitions for categoriz-
ing the accurate and inaccurate detections (Fig. 3). This lets
us develop a simple auxiliary objective, which attempts to
distribute the detections according to their respective confi-
dences.
Formulation: We propose a train-time method for cali-
brating object detectors, at the core of which is a simple

auxiliary loss function. It is differentiable, operates on
minibatches, and is formulated to be used with other task-
specific detection losses.

Inspired by the train-time calibration loss for classifica-
tion [18], we formulate a loss function specific to object
detection. We divide the confidence and precision space
into four partitions and categorize the true positive (TP) and
false positive (FP) detections over a minibatch. The four
partitions for TP and FP are: (1) accurate and confident
(AC) (2) accurate and not confident (AN) (3) inaccurate and
confident (IC) and (4) inaccurate and not confident (IN). Let
tAC , tAN , tIC and tIN represent the number of detections in
AC, AN, IC, and IN, respectively. In principle, we need ac-
curate detections to be more confident and inaccurate ones
to be less confident, so we define the following objective
that should be maximized:

PC =
tAC + tIN

tAC + tIN + tAN + tIC
(5)

In object detection, the obtained predictions are either
accurate or inaccurate. Given the predicted class label,
bounding boxes, 1 as an indicator function, and th is the
threshold on score, we define the following:

tAC =
∑
i

1[IoU(b̄i,bi) ≥ ρ]1[ȳi = yi] | s̄i ≥ th (6)

tAN =
∑
i

1[IoU(b̄i,bi) ≥ ρ]1[ȳi = yi] | s̄i < th (7)

tIC & tIN : The remaining detections after populating tAC

and tAN are false positives (inaccurate). Similar to Eq. (6)
and Eq. (7), we categorize them based on their confidence
scores.

In our loss formulation, we consider precision since it in-
cludes true positives and false positives, for which we have
confidence scores. Whereas false negatives cannot be con-
sidered as they do not have confidence scores because of no
detections. Since Eq. (5) is not differentiable owing to the
indicator functions for tAC , tAN , tIC and tIN , we formu-
late its differentiable version to approximate these quanti-
ties. Let tAC , tAN , tIC and tIN be the approximations to
tAC , tAN , tIC and tIN , respectively. We express the differ-
entiable formulation as:

tAC =
∑

i∈
(
Ki=1 &
s̄i≥th

) s̄i ⊙ tanh(s̄i)

tAN =
∑

i∈
(
Ki=1 &
s̄i<th

) s̄i ⊙ (1− tanh(s̄i))
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tIC =
∑

i∈
(
Ki=0 &
s̄i≥th

)(1− s̄i)⊙ tanh(s̄i)

tIN =
∑

i∈
(
Ki=0 &
s̄i<th

)(1− s̄i)⊙ (1− tanh(s̄i))

This is based on the rationale that when a detection is
accurate, the confidence score satisfies to s̄ → 1, and oth-
erwise s̄ → 0. Where tanh denotes the hyperbolic tangent
function that modulates the penalization to the confidence
score. The tanh function tapers off the confidence values
in cases where the prediction is accurate so emphasize less
on easy cases (well-calibrated) and focus more on the hard
cases (not well-calibrated). Now we define the differen-
tiable surrogate approximation to our auxiliary loss func-
tion:

LBPC = − log

(
tAC + tIN

tAC + tIN + tAN + tIC

)
(8)

This above relation Eq.(8) can be simplified as to mini-
mize the following:

LBPC = log

(
1 +

tAN + tIC
tAC + tIN

)
(9)

We note that, the calibration loss LBPC is model-
agnostic and differentiable. and can be integrated with task
specific losses of modern object detection methods. Let
Ldet be the object detection loss that contains classification
(e.g. Focal Loss) and localization (e.g. Generalized IoU &
L1) losses, we can add our LBPC to it and obtain the total
loss as:

Ltotal = Ldet + LBPC (10)

Since accurate predictions should have high confidence
scores, our train-time loss attempts to align higher accuracy
with higher confidence scores and vice versa. As shown in
Fig. 3, compared to baseline, it increases the joint count
of accurate/confident and inaccurate/not-confident detec-
tions, while at the same time, it decreases the joint count of
accurate/not-confident and inaccurate/confident detections.
Further, when compared to the baseline, the ratio between
the latter and the former (defined in Eq. (9)) is decreased.

4. Experiments & Results
Datasets: For both in-domain and out-domain scenar-
ios, we perform experiments on various object detection
datasets, including large-scale ones. MS-COCO [24]
contains 118K images for training as train2017, 41K as
test2017, and 5K images as val2017, that are used for eval-
uation. It consists of 80 object categories in real world
images. CorCOCO is a corrupted version of MS-COCO
val2017 dataset for evaluations in out-domain scenarios. It
incorporates random corruptions out of specified settings
in [13], with arbitrary severity levels. Cityscapes [3] is an
urban driving scene dataset consisting of 8 categories: per-
son, rider, car, truck, bus, train, motorbike, and bicycle. It
contains 2975 training images and 500 validation images
used for evaluation. Foggy Cityscapes [30] consists of im-
ages simulating foggy weather on Cityscapes, and its val-
idation set with severe level of fog is used for evaluation
for out-domain scenario. Sim10k [16] is a dataset of syn-
thetic images containing car category. It contains 10K im-
ages from which we split 8K as training set and 1K is used
for evaluation. BDD100k [38] consists of 70K training im-
ages, 20K test images and 10K validation images. We only
consider daylight subset of validation set for the evaluation
of out-domain scenario which counts to 5.2K images. This
dataset contains class categories similar to Cityscapes.
Datasets (post-hoc): We use validation sets based on three
in-domain scenarios for temperature scaling as a post-hoc
method. We opt Object365 [31] validation dataset in case
of MS-COCO with similar categories, subset of BDD100k
train set for Cityscapes and for Sim10k, its validation split.
Implementation Details: We use a SoTA detector
Deformable-DETR (D-DETR) as a baseline and integrate
our loss function with it. D-DETR uses focal loss [23] for
classification and generalized IOU & L1 losses [1] for lo-
calization. Default settings are used and more details can be
seen in [39]. In addition to the comparison of our proposed
train-time loss with post-hoc method [9], we also com-
pare calibration performance with recent calibration losses,
MDCA [11] and MbLS [25]. D-DETR is trained with re-
spective train-time losses and in-domain datasets.
Evaluation: For both in-domain and out-domain, we report
detection expected calibration error (D-ECE) [21] as object
detection calibration measure along with mean average pre-
cision of detectors.

4.1. Results

We have performed extensive experiments with post-hoc
method and recent train-time losses over various in-domain
and out-domain scenarios. For post-hoc method, we need
validation set and for temperature scaling (TS) we optimize
calibration parameter T . We compare all of these meth-
ods with our proposed loss function, specifically designed
for object detectors. Our results show significant improve-
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`````````̀Methods
Scenarios In-Domain (COCO) Out-Domain (CorCOCO)

D-ECE ↓ AP box mAP@0.5 D-ECE ↓ AP box mAP@0.5
Baseline [39] 12.8 44.0 62.9 10.8 23.9 35.8
TS (post-hoc) [9] 14.2 44.0 62.9 12.3 23.9 35.8
MDCA [11] 12.2 44.0 62.9 11.1 23.5 35.3
MbLS [25] 15.7 44.4 63.4 12.4 23.5 35.3
BPC (Ours) 10.3 43.7 62.8 9.4 23.2 34.9

Table 1. Calibration performance
on COCO in-domain and out-domain
scenarios. Results show that our pro-
posed BPC improves calibration of
object detection as compared to base-
line, other train time losses and post-
hoc methods. AP box and mAP@0.5
are also reported in the table.

`````````̀Methods
Scenarios In-Domain (Cityscapes) Out-Domain (Foggy Cityscapes) Out-Domain (BDD100k)

D-ECE ↓ AP box mAP@0.5 D-ECE ↓ AP box mAP@0.5 D-ECE ↓ AP box mAP@0.5
Baseline [39] 13.8 26.8 49.5 19.5 17.3 29.3 11.7 10.2 21.9
TS (post-hoc) [9] 12.6 26.8 49.5 14.6 17.3 29.3 24.5 10.2 21.9
MDCA [11] 13.4 27.5 49.5 17.1 17.7 30.3 14.2 10.7 22.7
MbLS [25] 12.1 27.3 49.7 20.0 17.1 29.1 11.6 10.5 22.7
BPC (Ours) 9.9 26.8 48.7 12.5 17.7 30.2 10.6 11.0 23.6

Table 2. Calibration results with baseline, train-time losses and post-hoc methods are reported. BPC shows improvement in detection
calibration for all the scenarios of in-domain (Cityscapes) and out-domain (Foggy Cityscapes & BDD100k). AP box and mAP@0.5 are
also reported for each scenario.

6 8 10 12 14 16

D-ECE

In-Domain (COCO) Out-Domain (CorCOCO)

Figure 4. Our BPC loss reduces D-ECE for MS-COCO in-domain
and Cor-COCO out-domain. We note that the classification cali-
bration losses are sub-optimal for detection calibration and BPC
loss improves calibration over post-hoc and train-time losses.

ment over calibration scores (lower the better), while hav-
ing comparable performance in detection accuracy.

Real and Corrupted domains: To see the effectiveness
of our loss, we perform experiments with a large-scale
benchmark dataset, MS-COCO. We show our results for
in-domain and out-domain scenarios, note that a corrupted
version of the MS-COCO (CorCOCO) validation set is used
for out-domain evaluation. In Tab. 1, the post-hoc based
TS method fails to improve calibration in both domains,
that usually considered to be a good performer in the in-
domain. Results show train time losses that are designed
for classification-based model calibration, are also not ideal
for the calibration of object detectors. We report D-ECE,
and our proposed loss function shows improvement in cal-
ibration scores for both in-domain (→COCO, 2.5%↓) and
out-domain (→CorCOCO, 1.4%↓) scenarios from the base-

line (Fig. 4). In comparison with MbLS, our loss improves
calibration scores of 5.4%↓ and 3.0%↓ for in-domain and
out-domain respectively.
Weather domains: We consider weather shift scenario for
evaluation in both domains. For in-domain Cityscapes (CS)
and out-domain Foggy CS, we see in Tab. 2 our loss shows
improvement over post-hoc, for both in-domain (→CS,
2.7%↓) and out-domain (→Foggy CS, 2.1%↓). Also, we
show improvement as compared to train-time losses, no-
tably (→Foggy CS, 7.5%↓) over MbLS.
Scene domains: To have CS as in-domain in scene shift,
BDD100k is evaluated as an out-domain scenario. Both be-
long to urban driving scenes but there is a large scene de-
viation among them. We show results in this scenario in
Tab. 2 and find that TS performs the worst, followed by
classification-based train time losses (Fig. 5). We outper-
form TS in out-domain (→BDD100k, 13.9%↓) and the re-
cent MDCA (→BDD100k, 3.6%↓) approach.
Synthetic and Real domains: Sim10k is a synthetic
dataset and considered as in-domain, while BDD100k as
a daylight subset is considered as out-domain. We ex-
tract the car category from the BDD100k evaluation set
and report the results. Our loss shows improved calibration
scores for in-domain (→Sim10k, 3.9%↓) and out-domain
(→BDD100k, 2.5%↓) scenarios over the MDCA loss (Fig.
6). Also we show calibration improvement of 16.4%↓ and
10.5%↓ over MbLS for in-domain and out-domain respec-
tively (Tab. 3).
Qualitative Figures: We show qualitative detection results
in Fig. 7. Detector trained with our loss forces the accurate
predictions to be more confident whereas inaccurate predic-
tions to be less confident.
Reliability Diagrams: We show reliability diagrams to see
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`````````̀Methods
Scenarios InDomain (Sim10k) OutDomain (BDD100k)

D-ECE ↓ AP box mAP@0.5 D-ECE ↓ AP box mAP@0.5
Baseline [39] 10.3 65.9 90.7 7.3 23.5 46.6
TS (post-hoc) [9] 15.7 65.9 90.7 10.5 23.5 46.6
MDCA [11] 10.0 64.8 90.3 8.8 22.7 45.7
MbLS [25] 22.5 63.8 90.5 16.8 23.4 47.4
BPC (Ours) 6.1 65.4 90.5 6.3 23.4 45.6

Table 3. Calibration performance
with our proposed BPC loss is
improved over baseline, train-time
losses and post-hoc methods for both
in-domain (Sim10k) and out-domain
(BDD100k). Car class is considered
in this scenario for evaluations. AP
box and mAP@0.5 are also reported.

6 8 10 12 14 16 18 20 22 24 26

D-ECE

In-Domain (CS) Out-Domain (BDD100k)

Figure 5. After integrating our BPC loss the calibration perfor-
mance is improved in Cityscapes (CS) and CS to BDD100k.

Method In-Domain

D-ECE ↓ AP box mAP@0.5
BPC (th=0.4) 9.7 50.2 80.5
BPC (th=0.5) 9.1 50.1 80.2
BPC (th=0.6) 11.2 50.9 81.4

Table 4. Impact of probability thresholds on BPC loss. We per-
form experiments using train and test subsets of Sim10k train set
for ablation study.

Method In-Domain

D-ECE ↓ AP box mAP@0.5
BPC (BS=1) 10.5 50.3 79.6
BPC (BS=2) 9.1 50.1 80.2
BPC (BS=3) 8.9 48.6 78.7
BPC (BS=4) 10.2 47.3 78.3

Table 5. Impact of batch sizes on BPC loss. We observe little
degradation in detection accuracy by varying batch size (BS) and
observe calibration performance is not much sensitive.

the behaviour of calibration in Fig. 8. A perfect calibration
is achieved if the confidence is exactly same as precision.

4.2. Ablation & Analysis

We perform ablation studies on score threshold, batch
sizes and random initialization. For this purpose, we select
the subsets of Sim10k training set as train and validation to
empirically find score threshold hyper-parameter. With sim-
ilar data splits, we show impact of batch sizes and random

4 6 8 10 12 14 16 18 20 22 24

D-ECE

In-Domain (Sim10k) Out-Domain (BDD100k)

Figure 6. Our BPC loss reduces D-ECE in Sim10k and BDD100k
as in-domain and out-domain scenarios, respectively.

weight initialization on our loss.
Score Threshold: We study the impact of score thresh-
old that is used for penalizing the probabilities of instances
present in the batch. Varying the score threshold shows
some degradation in detection performance for in-domain
but calibration still stands out the best and we find our ap-
proach is not much sensitive to it. We empirically find in
Tab. 4 that th = 0.5 improves calibration.
Batch Size: We observe in Tab. 5 the impact of batch sizes
on our proposed loss function. We see that increasing batch
size has little effect on the detection accuracy and calibra-
tion performance is not sensitive for given scenario. To get
the best for both metrics and without sacrificing the drop in
detection performance, we opt for batch size 2 for all exper-
iments.
Random Weight Initialization: Impact of different seeds
with calibration loss is studied by setting different initializa-
tion points for experiments. This shows that calibration is
not much influenced by random initialization (Tab. 6). We

Method In-Domain

D-ECE ↓ AP box mAP@0.5
BPC (seed=30) 9.0 49.2 79.7
BPC (seed=42) 9.1 50.1 80.2
BPC (seed=60) 8.6 51.0 80.5

Table 6. Impact of different seeds on BPC loss. We observe chang-
ing seeds for initialization has little effect on calibration perfor-
mance.
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Figure 7. Baseline [39] vs. BPC (Ours): Qualitative results on MS-COCO dataset (In-Domain). Detector trained with our loss forces the
accurate predictions to be more confident whereas inaccurate predictions to be less confident. Detection threshold is set to 0.3. Green boxes
are accurate predictions with respective confidence scores. Red (dashed) boxes are inaccurate predictions with corresponding scores. Blue
shows the ground truth boxes present for corresponding detections.
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Figure 8. Reliability Diagrams: MS-COCO (In-Domain) and CorCOCO (Out-Domain). Top: Baseline [39] trained as D-DETR and
Bottom: D-DETR trained with our proposed BPC loss.

set seed 42 as default in our experiments.

5. Conclusion

In this paper, we presented a new train-time calibration
method for object detection which is based on an auxil-
iary loss function (BPC). It utilizes true positive and false
positive statistics to maximize the confidence scores for ac-

curate predictions and minimize scores for inaccurate pre-
dictions. We perform extensive experiments on several in-
domain and out-domain scenarios, including large-scale de-
tection dataset, to show effectiveness of our loss function for
calibrating object detectors. Results show that our method
outperforms several train-time calibration methods in terms
of improving calibration of both in-domain and out-domain
predictions while also preserving the detection accuracy.
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