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Abstract

Existing Temporal Action Detection (TAD) methods typ-
ically take a pre-processing step in converting an input
varying-length video into a fixed-length snippet represen-
tation sequence, before temporal boundary estimation and
action classification. This pre-processing step would tem-
porally downsample the video, reducing the inference res-
olution and hampering the detection performance in the
original temporal resolution. In essence, this is due to a
temporal quantization error introduced during resolution
downsampling and recovery. This could negatively impact
the TAD performance, but is largely ignored by existing
methods. To address this problem, in this work we intro-
duce a novel model-agnostic post-processing method with-
out model redesign and retraining. Specifically, we model
the start and end points of action instances with a Gaus-
sian distribution for enabling temporal boundary inference
at a sub-snippet level. We further introduce an efficient
Taylor-expansion based approximation, dubbed as Gaus-
sian Approximated Post-processing (GAP). Extensive ex-
periments demonstrate that our GAP can consistently im-
prove a wide variety of pre-trained off-the-shelf TAD mod-
els on the challenging ActivityNet (+0.2%∼0.7% in aver-
age mAP) and THUMOS (+0.2%∼0.5% in average mAP)
benchmarks. Such performance gains are already signif-
icant and highly comparable to those achieved by novel
model designs. Also, GAP can be integrated with model
training for further performance gain. Importantly, GAP
enables lower temporal resolutions for more efficient in-
ference, facilitating low-resource application. The code is
available at https://github.com/sauradip/GAP

1. Introduction
The objective of Temporal action detection (TAD) is to

identify both the temporal interval (i.e., start and end points)
and the class label of all action instances in an untrimmed
video [3, 7]. Given a test video, existing TAD methods

Figure 1. A typical pipeline for temporal action detection. (a) For
efficiency and model design ease, temporal resolution reduction
is often applied during pre-processing. This causes model infer-
ence at lower (coarse) temporal resolutions. (b) After bringing the
prediction results back to the original temporal resolution during
inference, quantization error will be introduced inevitably.

typically generate a set of action instance candidates via
proposal generation based on regressing predefined anchor
boxes [4, 6, 13, 23] or directly predicting the start and end
times of proposals [2,9,10,15,25–27] and global segmenta-
tion masking [14]. To facilitate deep model design and im-
prove computational efficiency, most TAD methods would
pre-process a varying-length video into a fixed-length snip-
pet sequence by first extracting frame-level visual features
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Figure 2. Conventional snippet-level TAD inference along with
our proposed sub-snippet-level post-processing.

with a frozen video encoders and subsequently sampling a
smaller number of feature points (i.e., snippet) evenly (see
Fig. 1(a)). As a result, a TAD model performs the infer-
ence at lower temporal resolutions. This introduces a tem-
poral quantization error that could hamper the model per-
formance. For instance, when decreasing video temporal
resolution from 400 to 25, the performance of BMN [9] de-
grades significantly from 34.0% to 28.1% in mAP on Ac-
tivityNet. Despite the obvious connection between the er-
ror and performance degradation, this problem is largely ig-
nored by existing methods.

In this work, we investigate the temporal quantization
error problem from a post-processing perspective. Specif-
ically, we introduce a model-agnostic post-processing ap-
proach for improving the detection performance of exist-
ing off-the-shelf TAD models without model retraining. To
maximize the applicability, we consider the TAD inference
as a black-box process. Concretely, taking the predictions
by any model, we formulate the start and end points of ac-
tion instances with a Gaussian distribution in a continuous
snippet temporal resolution. We account for the distribution
information of temporal boundaries via Taylor-expansion
based approximation. This enables TAD inference at sub-
snippet precision (Fig. 2), creating the possibility of allevi-
ating the temporal quantization error. We name our method
as Gaussian Approximated Post-processing (GAP).

We summarize the contributions as follows. (I) We iden-
tify the previously neglected harming effect of temporal res-
olution reduction during the pre-processing step in tempo-
ral action detection. (II) For the first time, we investigate
the resulting temporal quantization error problem from a
model generic post-processing perspective. This is realized
by modeling the action boundaries with a Gaussian distri-
bution along with an efficient Taylor-expansion based ap-
proximation. (III) Extensive experiments show that a wide
range of TAD models [2,9,10,15,25–27] can be seamlessly

benefited from our proposed GAP method without algorith-
mic modification and model retraining, achieving the best
single model accuracy on THUMOS and ActivityNet. De-
spite this simplicity, the performance improvement obtained
from GAP can match those achieved by designing novel
models [5]. At the cost of model retraining, our GAP can
be integrated with existing TAD models for achieving fur-
ther gain. Further, our GAP favorably enables lower tem-
poral resolutions for higher inference efficiency with little
performance degradation. Crucially, GAP can be applied
generally in a variety of learning settings (e.g., supervised,
semi-supervised, zero-shot, few-shot).

2. Related Works
Temporal action detection Inspired by object detection in
static images [17], R-C3D [23] uses anchor boxes by fol-
lowing the design of proposal generation and classifica-
tion. With a similar model design, TURN [6] aggregates lo-
cal features to represent snippet-level features for temporal
boundary regression and classification. SSN [32] decom-
poses an action instance into three stages (starting, course,
and ending) and employs structured temporal pyramid pool-
ing to generate proposals. BSN [10] predicts the start, end
and actionness at each temporal location and generates pro-
posals with high start and end probabilities. The actionness
was further improved in BMN [9] via additionally gener-
ating a boundary-matching confidence map for improved
proposal generation. GTAN [13] improves the proposal fea-
ture pooling procedure with a learnable Gaussian kernel for
weighted averaging. G-TAD [27] learns semantic and tem-
poral context via graph convolutional networks for more ac-
curate proposal generation. BSN++ [20] further extends
BMN with a complementary boundary generator to cap-
ture rich context. CSA [19] enriches the proposal temporal
context via attention transfer. VSGN [31] improves short-
action localization using a cross-scale multi-level pyramidal
architecture. Recently, Actionformer [29] and React [18]
proposed a purely DETR based design for temporal action
localization at multiple scales. Mostly, existing TAD mod-
els suffer from temporal quantization error as the actions
are detected in the reduced temporal space. We present a
model-agnostic post-processing strategy for generally tack-
ling this problem without model redesign and retraining at
a negligible cost.
Temporal boundary refinement methods can designed
particularly for improving proposal localization. but still
at the snippet level [8, 11, 16, 21, 28]. However, they still
perform at the snippet level, and not solve the temporal
quantization error problem as we focus on here. Specif-
ically, PGCN [28] modeled the intra-action proposals us-
ing graph convolution networks to refine the boundaries.
PBRNet [11] refined the anchor proposals using a two-
stage refinement architecture with a complicated loss de-
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sign. Recent focus has been shifted to anchor-free pro-
posal refinement [8, 16, 21] where coarse action proposals
are refined using local and global features to obtain fine-
grained action proposals. However, the refinement mod-
ules are very design specific and cannot be easily adapted
to any existing approaches. AFSD [8] used a pyramidal
network to generate coarse action proposals and then re-
fined them with boundary pooling based contrastive learn-
ing. Very recently, [14] developed a lightweight transformer
based proposal-free model with boundary refinement. Of-
ten, large model size and complicated model/loss design are
involved in each of these previous methods. In contrast,
we take a completely different perspective (model-agnostic
post-processing) and solve uniquely the temporal quantiza-
tion error problem. Crucially, our method can be seam-
lessly integrated into prior temporal boundary refinement
techniques without complex model redesign.

This work is inspired by [30] tackling human pose es-
timation in images, a totally different problem compared
to more complex TAD we study here. Technically, we
make non-trivial contributions by investigating both post-
processing and model integration. Also, the temporal
boundaries come with start /end pair form, rather than indi-
vidual human joint keypoints. In the literature, human pose
estimation and TAD are two independent research fields
with sparse connections. However, at high level they could
share generic challenges such as prediction post-processing
as we study here. Importantly, post-processing is signifi-
cantly understudied yet critical to TAD, as we reveal for the
first time.

3. Method
We denote an untrimmed video as X = {xn}lvn=1

including a total of lv frames. Ground-truth annotation
of a training video Xi has Mi action instances Ψi =
{(ψj , ξj , yj)}Mi

j=1 where ψj /ξj denote the start/end time,
and yj is the action category. During both training and in-
ference, any video V is typically pre-processed into a uni-
fied representation format by first applying a pre-trained,
frozen video encoder (e.g., TSN [22]) and then sampling
equidistant temporal points for a fixed number of (e.g., 100)
times. Each sampled point is called a snippet representing
a short sequence of consecutive video frames. Obviously,
this pre-processing is a temporal downsampling procedure,
resulting in TAD at low temporal resolution as:

P = ϕ(Fv) = {si, ei}
Np

i=1, (1)

where si and ei are the start and end time of i-th predicted
action instance, Np specifies the number of action predic-
tions per video, and Fv denotes the downsampled snippet
feature. To generate the final temporal boundaries, the ac-
tion predictions P need to be temporally upsampled linearly
back to the original temporal resolution.

This temporal downsampling and upsampling process
introduces temporal quantization errors negative to model
performance. To address this problem, we propose a model-
agnostic Gaussian Approximated Post-processing (GAP)
method as detailed below.

3.1. Temporal Boundary Calibration

GAP aims to calibrate the start and end points of a given
action boundary prediction. Our key idea is to explore the
per-snippet score distribution structure of the predicted pro-
posals P to infer the underlying maximum activation for
both the start and end points. Specifically, we assume the
predicted score distribution follows a univariate Gaussian
distribution. This is conceptually similar with existing TAD
methods [9,27] using the overlap ratio over anchors against
the annotated action intervals to create the ground-truth
learning objective. Given a predicted boundary point at a
discrete snippet temporal location x ∈ [1, 2, · · · , T ] with
T the total number of snippets per video, we formulate the
temporal boundary distribution as:

P (x;µ) =
exp

(
− (x−µ)2

2σ2

)
σ
√
2π

, (2)

where µ refers to the underlying boundary point at sub-
snippet resolution and σ refers to the standard deviation.

In order to reduce the approximation difficulty, we use
logarithm to transform the original exponential form P to
a quadratic form G to facilitate inference while keeping the
original maximum activation location as:

G(x;µ) = ln(P ) = −1

2
ln(2π)− ln(σ)− (x− µ)2

2σ2
(3)

Our objective is to reason the value µ which refers to the
underlying boundary point at sub-snippet resolution.

As an extreme point in a curve, it is known that the first
derivative at the location µ meets the condition:

D′
(x)

∣∣
x=µ

= (∂G∂x )
∣∣
x=µ

= − (x−µ)
σ2

∣∣∣
x=µ

= 0 (4)

To explore this condition, we adopt the Taylor’s theorem.
Formally, we approximate the activation G(µ) by a Taylor
series up to the quadratic term, evaluated at the maximal
activation x of the predicted snippet distribution as

G(µ) = G(x) +D
′
(x)(µ− x) +

1

2
(µ− x)2D

′′
(x) (5)

where D′′
is the second derivative (i.e., Hessian) of G eval-

uated at x, formally defined as:

D
′′
(x) =

∂D′
(x)

∂x
= − 1

σ2
(6)
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Figure 3. Overview of the proposed Gaussian Approximated Post-processing (GAP) method. Given a test video, an existing TAD
model generates 1-D temporal score distribution of candidate foreground action instances. With our GAP, (a) we first regulate the temporal
distribution (Eq (11)) by smoothing the score curve, followed by (b) detecting the boundary (i.e., start/end points) and distributional
refinement using a Gaussian kernel to obtain more accurate prediction at the sub-pixel precision. (c) We finally recover the original
temporal resolution by multiplying the video-duration with the refined proposals.

The intuition is that, x is typically close to the underlying
unseen optimal prediction so that the approximation could
be more accurate. Combining Eq. (4), Eq. (5), Eq. (6)
together, we obtain the refined prediction as:

µ = x−
(
(D

′′
(x)

)−1
D

′
(x), (7)

where D
′′
(x) and D

′
(x) can be estimated efficiently from

the given score distribution. Finally, we use µ to predict the
start and end points in the original video space.

Discussion Our GAP is efficient computationally as it
only needs to compute the first and second derivative of
predicted boundary points. Existing TAD approaches can
be readily benefited without model redesign and retraining.

3.1.1 Temporal distribution smoothing

Often, the temporal boundary predicted by a TAD model
does not follow good Gaussian shape. As shown in Fig. 4,
the temporal prediction usually comes with multiple peaks.
To avoid potential negative effect, we first smooth the tem-
poral distribution h using a Gaussian kernel K with the
same variation as: h′ = K ∗h where ∗ denotes the convolu-
tion operation. To keep the original magnitude, we further
scale h′ linearly as:

h′ =
h′ −min(h′)

max(h′)−min(h′)
∗max(h) (8)

Figure 4. Illustration of temporal distribution smoothing oper-
ation along the conflicting action boundary snippets.

where max() and min() return the maximum and mini-
mum value. We validate that this step is useful (Table 3),
with the resulting visual effect demonstrated in Fig 4.

3.1.2 Summary

Our GAP can be generally integrated with existing bound-
ary regression based TAD models without model redesign
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and retraining (Fig 5(a)). At test time, we take as input the
predicted snippet prediction predicted by any model such
as BMN, and output more accurate start and end points per
prediction in the original video space. The pipeline of us-
ing GAP is summarized in Fig. 3. Totally three steps are
involved: (a) Temporal distribution smoothing (Eq. (11));
(b) Action boundary calibration by Taylor expansion at sub-
snippet precision (Eq. (2)-(7)); (c) Temporal resolution re-
covery linearly to the original video length.

3.2. Integration with Existing Model Training

When model retraining is allowed, our GAP can also be
integrated with existing TAD training without altering de-
sign nor adding learnable parameters (refer to Fig 5(b)).
The only change is to applying GAP on the intermediate
coarser predictions by prior methods (e.g., AFSD [8] and
RTDNet [21]). While retraining a model with predicted out-
puts could bring good margin, our post processing mode is
more generally useful with little extra cost.

Figure 5. Integrating GAP during (a) post-processing the existing
TAD predictions in inference, or (b) model training when applied
on intermediate coarse predictions.

3.2.1 Ground-truth calibration

As model inference, the ground-truth for training is also
affected by temporal resolution reduction. Specifically,
during pre-processing by evenly sampling temporal points
from the whole raw video length, the ground-truth start/end
snippet locations need to be transformed accordingly. For-
mally, we denote the ground-truth of a video as g = Ψg =

{(ŝj , êj , yj)}Mi
j=1 including the start and end annotations of

each action instance. The temporal resolution reduction is
defined as:

g′ = (s′, e′) =
g

λ
= (

ŝ

λ
,
ê

λ
), (9)

where λ is the downsampling parameter conditioned on the
temporal sampling ratio and video duration. Convention-

Figure 6. Illustration of quantization error in the standard
ground-truth (GT) generation: Obtaining the start/end points with
floor based snippet quantization. As a result, an error (indicated by
red marker) is introduced. Other quantization (e.g., ceiling, round-
ing) share the same problem.

ally, in the downsampling step, we often quantise g′:

g′′ = (s′′, e′′) = quantize(g′) = quantize(
ŝ

λ
,
ê

λ
), (10)

where quantize() specifies a quantization function (e.g.,
including floor, ceil and round). Noted that, g′′ is a scalar
term which represents an individual start/end point. Next,
the start/end snippet distribution centred at the quantized lo-
cation g′′ can be synthesized via:

P (x; g′′) =
1

σ
√
2π
exp

(
−(x− g′′)2

2σ2

)
, (11)

where x denotes a point in the temporal distribution and σ
denotes a fixed spatial variance. This is applied separately
on both the ground-truth start and end points. Nonetheless,
such start/end snippet distributions generated are clearly in-
accurate due to the quantization error, as illustrated in Fig 6.
This may cause sub-optimal supervision signals and de-
graded performance. To address this issue, we instead place
the start/end centre at the original non-quantized location
g′ as it represents the accurate ground-truth location. After-
wards, we still apply Eq (11) with g′′ replacing by g′. We
will evaluate the effect of ground-truth calibration (Table 6).

4. Experiments
Datasets We conduct extensive experiments on two major
TAD benchmarks. (1) ActivityNet-v1.3 [3] provides 19,994
videos from 200 action classes. We adopt the standard set-
ting to split all the videos into training, validation and test-
ing subsets in a ratio of 2:1:1. (2) THUMOS14 [7] offers
200 validation videos and 213 testing videos from 20 action
categories with labeled temporal boundary and class label.
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Table 1. Evaluating the generic benefits of our GAP method on improving state-of-the-art TAD models on the ActivityNetv1.3 and
THUMOS14 datasets. Empty results are due to the unavailability of open-source code.

Category Method
ActivityNet THUMOS14

mAP mAP
0.5 0.75 0.95 Avg 0.3 0.5 0.7 Avg

Anchor-based

MUSES [12] 50.0 34.9 6.5 34.0 68.9 56.9 31.0 53.4
MUSES [12] + GAP 50.3 35.5 6.9 34.3 69.3 57.8 31.9 53.8

PBRNet [11] 53.9 34.9 8.9 35.0 58.5 51.3 29.5 -
PBRNet [11] + GAP 54.4 35.4 9.2 35.2 59.2 51.9 30.0 -

Anchor-Free

BMN [9] 50.1 34.8 8.3 33.9 56.0 38.8 20.5 38.5
BMN [9] + GAP 50.5 35.2 8.6 34.3 56.6 39.4 21.0 38.9

GTAD [24] 50.4 34.6 9.0 34.1 54.5 40.2 23.4 39.3
GTAD [24] + GAP 50.8 34.9 9.2 34.4 55.0 40.5 23.8 39.6

DCAN [5] 51.8 35.9 9.4 35.4 68.2 54.1 32.6 -
DCAN [5] + GAP 52.4 36.4 9.6 35.8 68.6 54.6 33.0 -

RTDNet [21] 47.2 30.7 8.6 30.8 68.3 51.9 23.7 -
RTDNet [21] + GAP 47.7 31.1 8.8 31.2 68.8 52.3 24.2 -

AFSD [8] 52.4 35.3 6.5 34.4 67.3 55.5 31.1 52.0
AFSD [8] + GAP 53.0 35.9 7.1 34.8 68.0 56.1 31.5 52.5
ActionFormer [8] 53.5 36.2 8.2 35.6 82.1 71.0 43.9 66.8

ActionFormer [8] + GAP 53.9 36.4 8.5 36.0 82.3 71.4 44.2 66.9
React [8] - - - - 69.2 57.1 35.6 55.0

React [8] + GAP - - - - 69.5 57.3 35.7 55.2

Proposal-Free
TAGS [14] 56.3 36.8 9.6 36.5 68.6 57.0 31.8 52.8

TAGS [14] + GAP 56.7 37.2 9.8 36.7 69.1 57.4 32.0 53.0

Implementation details We have adopted all the original
training and inference details of existing TAD methods. For
re-training AFSD [8] and RTDNet [21], we have used the
reported hyperparameters in the respective papers. All the
training has been performed on an Intel i9-7920X CPU with
two Nvidia RTX 2080 Ti GPU. We used the same feature
encoders as the original papers. During inference, all the
full-resolution proposals are passed into SoftNMS for final
output similar to [9].

4.1. Improving State-of-the-Art Methods

We evaluate the effect of our GAP on top TAD perform-
ers across all the anchor-based, anchor-free and proposal-
free methods (MUSES [12], BMN [9], AFSD [8] and TAGS
[14]) on ActivityNet and THUMOS dataset.
Results on ActivityNet From Table 1 we make the fol-
lowing observations: (1) The performance for anchor-based
approaches [11, 12] is improved by at max 0.3% in avg
mAP and by a constant gain of 0.3% to 0.5% in mAP@IOU
0.5. In particular, GAP can further improve over previous
offset-based boundary refinement like PBRNet [11]. (2)
When applying GAP on anchor-free approaches, the per-
formance gain is in the range from 0.2% to 0.4%. No-
ticeably, AFSD [8] is benefited by an impressive improve-
ment of 0.6% in mAP@IOU0.5 and 0.4% in avg mAP. This
gain is already similar to that (∼ 0.4%) of AFSD’s com-
plex learnable boundary refinement component. GAP is

also effective for multi-scale DETR based approaches like
ActionFormer [29] with similar margins achieved on Activ-
ityNet. This gain is consistent with those for anchor-free
based models. (3) With very different masking based ar-
chitecture design in TAGS [14], GAP can still consistently
yield an improvement of 0.2% in avg mAP. This further val-
idates the model-agnostic advantage of our method.
Results on THUMOS14 Overall, similar conclusions can
be drawn on THUMOS. All the models with our proposed
GAP post-processing achieve the best results, often by a
margin of 0.2∼0.5% in avg mAP. There is a noticeable dif-
ference that the improvement by GAP is more significant
than on ActivityNet, indicating the more severe quantiza-
tion error on THUMOS due to longer videos.
Discussion We note that while TAD performance is sat-
urating and a very challenging metric (average mAP over
IoU thresholds from 0.5 to 0.95 for ActivityNet and from
0.3 to 0.7 for THUMOS) is applied, GAP can still push the
performance at the comparable magnitude as recent state-
of-the-art model innovation [5]. This is encouraging and
meaningful, except for neglectable cost added and no model
retraining. Additional results on other TAD settings is pro-
vided in the Supplementary.

4.2. Ablation Studies

(i) Input temporal resolution We examined the impact of
snippet temporal resolution/size, considering that it is an
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Figure 7. (a) False positive profile of BMN. (b) BMN with GAP on ActivityNet. (c) Proposal overlap analysis on various video lengths.
We use top up-to 10G predictions per video, where G is the number of ground-truth action instances.

Table 2. Effect of temporal size on the ActivityNet using BMN [9]
model.

Method Temporal
Resolution

mAP
0.5 0.75 0.95 Avg

BMN [9] 25 44.7 27.9 7.0 28.1
BMN+GAP 25 45.5 28.4 7.3 28.5

BMN 100 50.1 34.8 8.3 33.9
BMN+GAP 100 50.5 35.2 8.6 34.3

BMN 400 50.9 34.9 8.1 34.0
BMN+GAP 400 51.1 35.0 8.2 34.1

Table 3. Effect of temporal smoothing on ActivityNet

Method Smoothing mAP
0.5 Avg

BMN [9] - 50.1 33.9
BMN +GAP ✗ 50.3 34.0
BMN +GAP ✓ 50.5 34.3

important efficiency factor. We used BMN [9] as the base-
line TAD model in the standard training and testing set-
ting. From Table 2 we have a couple of observations: (a)
When reducing the input temporal resolution, as expected
the model performance consistently degrades whilst the in-
ference cost drops. (b) With the support of GAP, the model
performance loss can be effectively mitigated, especially
at very small input resolution. This facilitates the deploy-
ment of TAD models on low-resource devices as desired in
emerging embedded AI.
(ii) Effect of temporal smoothing We evaluated the effect
of temporal smoothing. From the results in Table 3, it can
be observed that this step is useful and necessary otherwise
the original prediction scores are less compatible with our
GAP.
(iii) Error sensitivity analysis We compare our GAP (with
BMN backbone) with original BMN [9] (anchor-free) via
false positive analysis [1]. We sort the predictions by the
scores and take the top-scoring predictions per video. Two
major errors of TAD are considered: (1) Localization error,

Table 4. Speed analysis of existing TAD method w/ our GAP on a
NVIDIA RTX 2080 Ti GPU

Method Inference
Time Speed

AFSD [8] 0.29 sec 1931 FPS
AFSD + GAP 0.31 sec 1792 FPS

which is defined as when a proposal/mask is predicted as
foreground, has a minimum tIoU of 0.1 but does not meet
the tIoU threshold. (2) Background error, which happens
when a proposal/mask is predicted as foreground but its
tIoU with ground truth instance is smaller than 0.1. In this
test, we use ActivityNet. We observe in Fig. 7(a,b) that
GAP has the most true positive samples at every amount of
predictions. The proportion of localization error with GAP
is also notably smaller, which is the most critical metric for
improving average mAP [1]. Also based on various video
lengths [1], we estimated the standard deviation of all the
proposal overlap with GT for both BMN and BMN with
GAP variant. From Fig 7(c), it is interesting to note that our
GAP indeed improves the overlap in challenging short and
medium length videos and also BMN has a significant stan-
dard deviation in shorter-action instances. This explains the
gain of GAP refinement over existing BMN which is caused
due to the quantization error.
(iv) Complexity We tested the inference efficiency impact
by our method in AFSD at input size of 100 snippets for
ActivityNet on a machine with one i9-7920X CPU and one
RTX 2080 GTX GPU. From Table 4 it can be observed that
the running speed is reduced from 1931 FPS to 1792 FPS in
the low-efficient python environment, i.e., a drop of 7.2%.
There is a minor affordable increase from post-processing.
Other programming language (e.g., C/C++) based software
can further reduce the overhead addition.
(v) Ground-truth calibration We tested the effect of our
ground-truth calibration. We considered both cases with
and without GAP post-processing. We observed from Ta-
ble 5 that our ground-truth calibration brings positive per-
formance margin consistently. In particular, it contributes
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Table 5. Effect of ground-truth calibration on ActivityNet. TAD
model: BMN [9] w/ GAP.

Ground-truth Post-processing mAP
0.5 Avg

W/O Calibration W/O GAP 50.1 33.9
W/ Calibration W/O GAP 50.2 34.0

W/O Calibration W/ GAP 50.5 34.2
W/ Calibration W/ GAP 50.5 34.3

Table 6. Effect of ground-truth quantization on ActivityNet. TAD
model: BMN [9] w/ GAP.

Quantization Type mAP
0.5 0.75 0.95 Avg

Ceiling 50.2 34.9 8.2 34.0
Rounding 50.6 35.1 8.4 34.2

Floor 50.5 35.2 8.6 34.3

Table 7. Results of integrating GAP in training and inference on
ActivityNet.

Method GAP FLOPS mAP
Train Test 0.5 Avg

RTDNet [21]
✗ ✗

85.7
47.2 30.8

✓ ✗ 47.8 31.4
✓ ✓ 47.9 31.5

AFSD [8]
✗ ✗

157.1
52.4 34.4

✓ ✗ 53.2 35.0
✓ ✓ 53.4 35.1

consistently a gain of around 0.1% in avg mAP in both
cases particularly for the stricter IOU metrics. This is rea-
sonable since such fine-grained tuning matters most to more
demanding metrics.
(vi) Quantization function We evaluated the quantiza-
tion function in ground-truth calibration (Eq (10)). Com-
mon quantization options include floor, ceiling and
rounding. From Table 6 we observed that rounding
and floor are similarly effective, whilst ceiling gives
the worst performance with a drop of 0.3% in avg mAP.

4.3. Integrating GAP with model training

Other than post-processing, our GAP can also be inte-
grated into the training of existing TAD models. We ex-
perimented AFSD [8] and RTDNet [21] by applying GAP
to their intermediate coarse start/end points during training.
Table 7 shows that GAP can bring in more significant gains
of 0.7%∼1.0% in IOU@0.5 mAP without adding extra pa-
rameters nor loss design complexity. This is also clearly re-
flected in the feature visualization as shown in Fig 8, where
the previously ambiguous boundaries between action fore-
ground and background can be well separated. This sug-

gests more promising benefit of our GAP when model re-
training is allowed. We also observed additional gain when
integrating GAP during both training and post-processing,
indicating flexible usage of our proposed GAP in existing
TAD models.

Figure 8. T-SNE visualization of the feature representation of a
random ActivityNet val video (a) without and (b) with GAP as-
sisted training. As seen from the encircled region that the original
TAD model suffers from the ambiguous boundaries between ac-
tion foreground and background. This can be well resolved once
GAP is integrated during training.

5. Limitations
Although GAP enjoys the flexibility of being a plug-and-

play module it comes with a few limitations. While be-
ing model agnostic and simple, it does not have high gain
when the temporal resolution is large (Table 2), e.g., greater
than 400 snippets. This is because, at high temporal resolu-
tions there is no much quantization error due to more dura-
tion per instance, and post-processing is hence less needed.
Nonetheless, our GAP still gives a gain of 0.1% in avg mAP,
which is a meaningful boost considering that the metric is
very strict and the model performance is saturating. The
snippet duration issue can only be solved if the snippet sam-
pling procedure is automated based on the quantized error,
which will be a good research direction for future research.

6. Conclusion
For the first time we systematically investigated largely

ignored yet significant problem of temporal quantization er-
ror for temporal action detection in untrimmed videos. We
not only revealed the genuine significance of this problem,
but also presented a novel Gaussian Aware Post-processing
(GAP) for more accurate model inference. Serving as a
ready-to-use plug-in, existing state-of-the-art TAD models
can be seamlessly benefited without any algorithmic adap-
tation at a neglectable cost. We validated the performance
benefits of GAP over a wide variety of contemporary mod-
els on two challenging datasets. When model re-training is
allowed, more significant performance gain can be achieved
without complex model redesign and change.
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