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Abstract

Optical flow estimation is a fundamental functionality in
computer vision. An event-based camera, which asyn-
chronously detects sparse intensity changes, is an ideal
device for realizing low-latency estimation of the optical
flow owing to its low-latency sensing mechanism. An
existing method using local plane fitting of events could
utilize the sparsity to realize incremental updates for
low-latency estimation; however, its output is merely a
normal component of the full optical flow. An alterna-
tive approach using a frame-based deep neural network
could estimate the full flow; however, its intensive non-
incremental dense operation prohibits the low-latency
estimation. We propose tangentially elongated Gaussian
(TEG) belief propagation (BP) that realizes incremental
full-flow estimation. We model the probability of full flow
as the joint distribution of TEGs from the normal flow
measurements, such that the marginal of this distribution
with correct prior equals the full flow. We formulate the
marginalization using a message-passing based on the
BP to realize efficient incremental updates using sparse
measurements. In addition to the theoretical justification,
we evaluate the effectiveness of the TEGBP in real-world
datasets; it outperforms SOTA incremental quasi-full flow
method by a large margin. (The code is available at
https://github.com/DensoITLab/tegbp/).

1. Introduction

Optical flow estimation, which computes the correspon-
dence of pixels in different time measurements, is a fun-
damental building block of computer vision. One needs to
estimate the flow at low latency in many practical appli-
cations, such as autonomous driving cars, unmanned aerial
vehicles, and factory automation robots. Most of the ex-
isting optical flow algorithm utilizes dense video frames; it
computes the flow by searching the similar intensity pat-
tern [15, 29]. Recently, methods using deep neural net-
work (DNN) [29] demonstrate impressive accuracy at the
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Figure 1. Overview of the proposed TEGBP. We model a belief
about the full flow from a normal flow measurement using TEG
(RGB ellipse). The mean of the marginal distribution of each TEG
with an appropriate prior equals the full flow (magenta arrow). The
marginal (magenta ellipse) is computed incrementally using local
message passing (RGB arrows) based on BP.

cost of higher-computational cost. Either model-based or
DNN-based, the frame-based algorithm needs to compute
the entire pixel for every frame, even when there are subtle
changes or no changes at all. This dense operation makes it
difficult to realize low-latency estimation, especially on the
resource-constrained edge device.

The event-based camera is a bio-inspired vision sen-
sor, which asynchronously detects intensity change on each
pixel. Thanks to the novel sensing mechanism, the camera
equips favorable characteristics for optical flow estimation,
such as high dynamic range (HDR), blur-free measurement,
and, most importantly, sparse low-latency data acquisition.
Many researchers have explored the way to utilize sparsity
to realize efficient low-latency estimation; one extends the
well-known Lucas-Kanade algorithm [7], and the other ex-
ploits the local planer shape of the spatiotemporal event
streams [6]. These methods could utilize the sparsity for
efficient incremental processing; however, the optical flow
computed in this way (e.g., by plane fitting) is the normal
flow, which is a normal component of full flow and often
different from them1 we want to obtain. The normal flow
is the component of the full flow perpendicular to the edge
(i.e., parallel to the intensity gradient). Some work tried to
recover the full flow from the normal flow [2]; however, it
does not precisely equal the full flow (refer to Sec. 2). There
exist methods that could estimate full flow, such as a varia-

1full flow is usually simply called optical flow or flow, yet, we use full
flow when we want to highlight the difference with the normal flow.
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tional method [5], a multi-scale extension of contrast max-
imization [25], or a frame-based DNN [14]. However, they
need to apply non-incremental dense operation for all the
pixels of the event frame (dense representation constructed
from sparse events) for every frame, which prohibits the
low-latency estimation on the edge device.

Our research goal is to realize an incremental full flow
algorithm from sparse normal flow measurements. To this
end, we propose Tangentially Elongated Gaussian (TEG)
Belief Propagation (BP). We compute the full flow using
the normal flow measurements, which can be observed di-
rectly from an event camera or computed cheaply using an
existing algorithm2. Notice that given a single measurement
of normal flow, there are infinite possibilities for the full
flow along the tangential direction of the normal flow. We
model this uncertainty using the TEG, Gaussian distribu-
tion, which has a large variance along the tangential direc-
tion of the normal flow. The probability density of full flow
on each pixel is given as the marginals of the joint distribu-
tion of TEG data factor and some prior factor on a sparse
graph (Fig. 1, Sec. 3.3.2). We leverage the sparse graph
to formulate the incremental full flow estimation algorithm
using message-passing based on BP [9]. We evaluate the ef-
fectiveness of the TEGBP on real-world data captured from
aerial drones and automobiles. TEGBP outperforms SOTA
incremental method [2] by a large margin.

2. Related work
This section reviews the related literature on optical flow

estimation using sparse event signals.

2.1. Incremental Algorithm for Normal Flow

Lucas-Kanade based method The traditional frame-
based Lucas-Kanade method finds the flow by aligning the
small patch of intensity between consecutive frames using
its spatial gradient and temporal change. The event-based
counterpart [7] uses the integration of events to approxi-
mate them for each incoming event. This approach real-
ized highly efficient estimation by utilizing the sparsity of
input events. However, it can only estimate the normal flow,
which is the component of the full flow perpendicular to the
edge (i.e., parallel to the intensity gradient) [11].

Plane fitting based method When an edge undergoes
liner motion, triggered events generate a time surface,
which can be locally approximated by a plane in a spa-
tiotemporal space. The local plane fitting method [3, 6, 17,
19] computes the optical flow by fitting the plane to the
sparse event points. However, the flow obtained by plane
fitting is also the normal component of the full flow.

2We consider the normal flow as measurement and discuss algorithms
to process the sparse measurement of normal flow to estimate the full flow.

Recently, a method for computing the quasi-full flow has
been proposed [2]; it estimates the full flow by considering
the average normal flow in multiple resolutions. It incre-
mentally updates the average and selects the flow with the
largest average norm from the multiple resolutions. It ex-
pects the flow to have the largest norm to correspond to the
full flow. The average operation induces bias on the esti-
mated flow; therefore, it equals the full flow on the very
limited scene where the true motion in the window is or-
thogonal to the edge direction (refer to Sec.5 in their paper).
We’ll also experimentally compare this point in Sec. 4.3.

In summary, current sparse incremental algorithms are
limited to normal flow.

2.2. Dense Algorithm for Full Flow

Variational method A variational optimization-based ap-
proach realizes the full flow estimation by incorporating
intensity frame obtained either by the event/frame hybrid
camera [22] or by simultaneously estimating image inten-
sity [5]. It could estimate full flow; however, it requires ad-
ditional intensity observation or intensive dense optimiza-
tion to recover the intensity frame.

Contrast maximization method Contrast maximization
(CMax) [12, 27] computes the underlying motion (optical
flow) of events stream by finding their alignment. It com-
putes the alignment by maximizing the focus score (e.g.,
variance) of an image generated by warping the events
(IWE) using the optical flow parameter. The original algo-
rithm can not be used to estimate pixel-wise flow because
it tends to converge to the degenerated solution (e.g., warps
all events to a single point) [24, 35]. Recently, a hierarchi-
cal CMax approach avoiding the degenerated solution for
pixel-wise estimation has been proposed [25]. Although
this approach works well even in the practical scenario, it is
not incremental; it must recompute the IWE for each sliding
time window by using all events in the patch for every hi-
erarchical scale (this involves intensive iteration by itself),
making it difficult to operate in real-time.

DNN based method Frame-based DNN is often utilized
to compute the full flow [14, 31, 32, 34]. Recently, a frame-
based high-accuracy model called RAFT [29] has been im-
ported into the event-based vision literature showing the
SOTA performance for the dense flow estimation [14].
These methods can not consume sparse events directly; the
sparse input must be converted into dense frame represen-
tation. The dense convolution is computationally expensive
because it needs to operate for all pixels, even when there
are subtle changes or no changes at all, making it difficult
to operate at a higher rate on the edge device.

In summary, some dense algorithms could estimate full
flow; however, it compromises the event’s sparse asyn-
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chronous nature, and their non-incremental dense operation
prohibits them from realizing low-latency processing.

2.3. Sparse Asynchronous Computing Architecture

Events are asynchronously triggered only from limited
pixels which detect intensity changes. Several techniques
have been developed for efficient processing of the sparse
signals on CPUs by taking advantage of the highly opti-
mized cache mechanism [16,28]. Besides, sparse data-flow
architectures [8, 9], which differ from prevalent Neuman-
type computing architectures, are gaining attention for
sparse signal processing. For example, bundle adjustment
has been solved on the novel architecture using an algo-
rithm based on Gaussian BP [21]. Our goal is to establish
the incremental full flow estimation algorithm by taking ad-
vantage of the sparsity of events, which is expected to run
efficiently on CPUs or emerging data-flow processors.

3. Proposed method

3.1. Preliminary

3.1.1 Normal flow

The normal flow v⊥
i ∈ R2 on pixel i is a normal component

of full flow vi ∈ R2, which we want to estimate. One can
not decide the full flow uniquely from the normal flow, and
there are infinitely many possibilities along the line perpen-
dicular to the normal flow (Fig. 3 left). There are several
options for obtaining the normal flow; some event-based
cameras, such as CeleX-V [26] directly observe it, or it can
be cheaply computed from the sparse events (Sec. 2.1).

The moving edge in 3D space triggers events; we can
compute the normal flow by finding the local plane on the
triggered events. In this study, we adopt a naive least-
squares fitting of the plane using events in a small spa-
tiotemporal window. An erroneous normal flow may sig-
nificantly deteriorate the full flow accuracy, especially on
highly textured regions such as leaves on trees. One can im-
prove the results by utilizing an advanced noise removal al-
gorithm [4] or by adopting more sophisticated normal flow
estimation methods, such as small neural networks.

3.1.2 Belief propagation

Factor graphs geometrically represent the structure of
probabilistic problems. A factor graph G = (V, F,E) is
composed of a set of variable nodes V = {vi}i=1:Nv

, a
set of factor nodes F = {fs}s=1:Nf

and a set of edges
E. Each factor node fs represents a probabilistic constraint
fs(Vs) between a subset of variables Vs ⊂ V . The factor-
ization of the variables is explicitly represented in the graph
by connecting factor nodes with the variable nodes they de-
pend on. Probabilistically, these factors are the independent

Figure 2. Processing pipeline. Observation set at t is represented
as V ⊥

t where the normal flow is sparsely assigned. The TEGBP
incrementally update its estimation about full flow Vt+1 using pre-
vious estimation Vt and new observation v⊥

i,t+1.

terms that make up the joint distribution:

p(V ) =

Nf∏
s=1

fs(Vs). (1)

Belief propagation (BP) is a generic distributed algo-
rithm for computing the marginal distribution of a set
of variables from their joint distribution. The marginal
for a single variable vi is computed by the integral
over all the other variables. BP computed the marginals
asynchronously using message-passing between connected
nodes on the graph. It is substantially more efficient by
leveraging the topology of the sparse graph than naive in-
tegration of the entire graph (which involves giant matrix
inversion). Refer to the seminal work of [9] for more detail
about the derivation, condition for convergence guarantee,
and discussion about the stability.

3.2. Problem formulation

Given measurements of normal flow V ⊥
t on the the pixel

grid where each normal flow is assigned to the correspond-
ing pixels (within time interval [t − τ, t]), we want to es-
timate the posterior distribution of the corresponding full
flow p(Vt | V ⊥

t ). Once the posterior distribution of full
flow is obtained, the actual full flow output is given by the
maximum a posteriori (MAP) estimate as:

V̂t = argmax
Vt

p(Vt | V ⊥
t ). (2)

Our goal is to formulate an incremental full flow esti-
mation algorithm using sparse observations of local normal
flows (Fig. 2). Solving the argmax of the joint distribu-
tion of Vt for every incoming normal flow measurement is
infeasible both in terms of memory and computational per-
spective; therefore, we want to formulate f as an incremen-
tal sparse update function, i.e., new observation interacts
sparsely with the previous results p(Vt | V ⊥

t ) as follows:

f : [p(Vt | V ⊥
t ), p(v⊥

i,t+1)] 7→ p(Vt+1 | V ⊥
t+1). (3)
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Figure 3. The relation of normal flow, full flow, and TEG. There
are infinitely possible candidates for full flows given a normal flow
(left). TEG models this uncertainty using Gaussian having large
variance along the tangential direction of the normal flow (right).

In the following section, we’ll derive TEGBP, an algorithm
based on BP for incremental full flow estimation.

3.3. Tangentially Elongated Gaussian BP

3.3.1 Tangentially Elongated Gaussian

The true full flow vi exists somewhere along the line per-
pendicular to the normal flow v⊥

i (Fig. 3 left). In other
words, we are uncertain about the full flow from the single
normal flow measurement. We model this uncertainty using
tangentially elongated Gaussian (TEG), A Gaussian distri-
bution having large variance along the tangential direction
of the observed normal flow (Fig. 3 right). We defined the
precision matrix of TEG as follows:

Λteg = R(θ)ΛmR(θ)⊤, (4)

where R(θ) is 2D rotation matrix parameterized by the rota-
tion angle θ of the normal flow where θ = arctan(v⊥y /v

⊥
x ),

and Λm = diag(1/σ2
r , 1/σ

2
t ). In principle, σt = ∞ and

σr = 0 correspond to the constraint of the full flow from
a single noiseless normal flow measurement. In this case,
one could parameterize the observation with a 1D projec-
tion of full flow (normal flow), and the uncertainty of the
projected vector length is parameterized as normal variance,
σr. In other words, this corresponds to the case when we are
equally uncertain along the tangential direction. In a real-
world scenario, the probability of full flow along the tangen-
tial direction is not uniform but highly concentrated around
the normal flow (Supp-D). The knowledge about the prob-
ability density of full flow is a vital clue to recovering the
accurate full flow from the inherently ill-posed observation
of sparse normal flow; however, the 1D parameterization
can not incorporate this vital information. Therefore, we
propose to utilize 2D Gaussian (TEG) by incorporating ad-
ditional parameters, i.e., finite σt. The 2D parameterization
is crucial for estimating the accurate full flow from sparse
and noisy measurements, and our TEG (2D) includes the
1D parameterization as a special case when σt = ∞.

Corner pixel When the naive least-square planer fitting is
adopted, the quality for the normal flow estimation might be
low; we adjust σt, σr depending on the quality. We use lower
precision Λm depending on the mean square error between
observed events and the estimated plane. Our BP algorithm
automatically incorporates this confidence to estimate accu-
rate flow even at the corner point.
Remark: If full flow observation is available at the corner
(e.g., by corner tracking), TEGBP could utilize the reliable
information by TEG with smaller σt to improve accuracy.

3.3.2 Marginalization of TEG with Valid Prior

As we saw earlier, the full flow estimation from the normal
flow is inherently an ill-pose without some prior knowledge
about the consistency with other pixels (when σt = ∞ and
σr = 0). Without a valid prior, there are infinitely many
possibilities along the line perpendicular to the normal flow;
any point on the line has the same likelihood when σt = ∞.
To obtain a correct solution, we need the correct prior. Our
algorithms could incorporate any prior, e.g., simple uniform
smoothness (e.g., total variation), an application-specific
knowledge such as flow converges to the vanishing-point
in an automotive scenario, or they could be learned using
neural networks. In this study, we adopt uniform smooth-
ness for simplicity. The important fact is that the mean of
the marginal distribution of TEGs having σt = ∞ and the
correct prior equals the correct full flow, and this still ap-
proximately holds when σt is moderately large (Sec. B.1).

Example. To see this, let’s consider the case of Fig. 1.
We assume the corner having an edge angle of θ1 + π

2 ,
and θ3 + π

2 moves linearly with uniform velocity (all pix-
els have the same velocity) toward the direction of θ0, i.e.,
v̂ = [cos θ0, sin θ0]

⊤. The correct prior in this situa-
tion is uniform (infinitely strong smoothness prior, σp =
0.0). In this scenario, we’ll observed v⊥

1 = v⊥
2 =

[cos(θ1− θ0) cos θ1, cos(θ1− θ0) sin θ1]⊤,v⊥
3 = [cos(θ3−

θ0) cos θ3, cos(θ3 − θ0) sin θ3]
⊤.

The joint distribution of full flow V := {v1,v2,v3} from
normal flow measurements and the prior is given as:

p(V ) =N (v1;v
⊥
1 ,Σθ1)N (v2;v

⊥
2 ,Σθ2)N (v3;v

⊥
3 ,Σθ3)

N ([v1;v2];σ
2
pI)N ([v2;v3];σ

2
pI). (5)

Marginalizing for v2, p(v2) =
∫
p(V )dv1dv3 and

putting σt = ∞ and σr = 0, we’ll get p(v2) =
N

(
v2; [cos θ0, sin θ0]

⊤, diag(0, 0)
)
; the MAP of this

marginal equals to the true flow v̂.

One can also visually verify this result by consider-
ing the intersection of the lines of the major axis of
the TEG. Notice that the marginal is equal to the full
flow even when an average of the normal flow, such
as employed in [2], differs from the full flow. In the
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Figure 4. 2D factor graph of TEGBP. The topology changes
dynamically depending on the active set At. The measurement
node and the active variable node on the same pixel are connected
by measurement factor node, and each neighbor active variable
node is connected via prior factor node.

above case, the average normal flow (v = [(2 cos(θ1 −
θ0) cos θ1+cos(θ3−θ0) cos θ3)/3, (2 cos(θ1−θ0) sin θ1+
cos(θ3 − θ0) sin θ3)/3]

⊤) is different from the true flow
([cos θ0, sin θ0]⊤). This is a steak difference from the exist-
ing incremental sparse method using an average of normal
flow and is a key to realizing a significant accuracy boost
over the technique.

3.3.3 Factor Graph of Full Flow

Now we construct the sparse factor graph for full flow using
the TEG. The joint of Eq. (2) can be factorized using Bayes
theorem as follows:

V̂t = argmax
Vt

p(V ⊥
t | Vt)p(Vt). (6)

Assuming independence of observations and dependence
between neighboring-pixel variables, Eq. (6) is further fac-
torized to the measurement factor ψ and the prior factor ϕ
defined on a sparse graph on the image grid (Fig. 4) as:

p(V ) =
∏

n∈At

ψ(vn)
∏

(i,j)∈Et

ϕ(vi,vj), (7)

where At is the set of active nodes corresponding normal
flow measurements V ⊥

t , and Et is the set of edges between
active neighbor nodes. The measurements factor ψ is de-
fines as TEG (refer to Sec. 3.3.1):

ψ(vn) = N−1
(
·;ηn, Λ

teg
n

)
, (8)

where ηn = Λ
teg
n v⊥

n . In this study, we assume the flow is
smooth; therefore, use the following prior factor ϕ:

ϕ

([
vi

vj

])
= N−1 (·;0, Λp) , (9)

where Λp = J⊤p diag(1/σ2
p , 1/σ

2
p )Jp and the jacobian

Jp =
[−1 0 1 0

0 −1 0 1

]
for computing the difference between the

neighbor nodes.

Table 1. Basic experimental setup.

Parameter ESIM DVS MVSEC DSEC

Window size r [pix] 5 5 3 5
∆tpf [ms] 40 40 40 40

Active duration τ [ms] 50 50 100 100
Prior std σp [pix] 0.1 1 0.5 1

Tangential std σt [pix] 10 10 10 10
Radial std σr [pix] 3 3 3 3

Num. of layers L 5 5 5 5
Batch size Nb 100 100 1000 1000

To model the outlier that can not be expressed as a Gaus-
sian (quadratic cost), we employed the Huber cost both for
measurement and prior factors. We adopted the technique
of [1, 9] to maintain the Gaussian form.

3.3.4 TEGBP

Equipped with the sparse probabilistic graph, we now for-
malize the incremental message-passing algorithm base on
BP (Sec. 3.1.2) for the marginalization of the graph to esti-
mate the full flow (Fig. 5). As the graph of active nodes is
loopy, GBP needs to store a belief at each variable node for
iterative belief update.

Message-passing is asynchronously triggered upon a
space observation of normal flow. The measurement factor
sends a message to the connected variable node and updates
its belief with messages that have been sent from the active
node as follows:

ηb
i =

∑
j∈Ci∩At

ηj→i, Λb
i =

∑
j∈Ci∩At

Λj→i (10)

where b(vi) = N−1(·;ηb
i , Λ

b
i ) is the belief on node i,

µj→i = N−1(·;ηj→i, Λj→i) is the message from node j
to node i, and Ci is the 4-neighbors connected node j. After
that, the variable node sends the following message about
its updated beliefs to its neighbors:

ηj→i = −Λp
01(Λ

p
11 + Λb

j − Λj→i)
−1(ηb

j − ηj→i) (11)

Λj→i = Λ
p
00 − Λ

p
01(Λ

p
11 + Λb

j − Λj→i)
−1Λ

p
10, (12)

where, Λp
αβ is a 2× 2 sub-matrix of Λp indexed by α and β.

For a single normal flow measurement, the belief is propa-
gated for K hops, which are repeated for Nitr times (Fig. 5
correspond to K = 2).

Note that our BP algorithm is guaranteed to converge to
the correct MAP solution with sufficient iteration because
all the belief is realized as a Gaussian (there is no guarantee
for a variance because the graph is loopy) [30].

Coarse-to-fine message-passing scheme [10] is adopted
to speed up the convergence. The measurement factor of
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Figure 5. A schematic showing a single iteration of TEGBP. (a) When a single normal flow has been measured, the message from the
measurement factor is sent to the variable node as TEG, (b) the node updates its belief using the message received from the neighbor active
nodes. (c) The nodes broadcast the updated belief to the neighbor, and (d) the neighbor nodes update their beliefs. (a)-(d) is repeated until
convergence. To prevent the blowup of the message communication, it is stopped after K hops.

Figure 6. The result on ESIM-bricks. The estimated full flow
from ARMS and TEGBP are compared with ground-truth flow in-
dicated by the red arrow. They use the same normal flow measure-
ment (left). TEGBP succeeds while ARMS fails.

Figure 7. The results on DVS-stripes. The histograms of the
flow (vx) of ARMS and TEGBP are compared. The two red lines
indicate the GT flow of the two stripes (the upper stripes have a
smaller norm). The result from ARMS are shifted from the GT
flow, especially on the area of upper stripes (smaller norm) On the
contrary, our TEGBP successfully estimates individual flows.

the coarser layer l is computed as the sum of active mea-
surement factor messages in a 2 × 2 block of finer layer
l − 1. The BP is executed coarse-to-fine; the coarse layer
(message) estimation is copied to the finer layer as the ini-
tial guess at the start of the message passing on the finer
layer (Supp-C.1). The short paths in the course graph im-
prove efficiency for capturing long-range interactions and
speed up convergence.

4. Experiment
We conducted experiments to compare the accuracy of

TEGBP with the state-of-the-art incremental flow estima-
tion algorithm called aperture-robust multi-scale flow es-
timation (ARMS) [2]. Both algorithms are incremental
that could asynchronously estimate flow from sparse normal

flow measurement. We used the same normal flow measure-
ment for both algorithms for a fair comparison.

4.1. Experimental setting

4.1.1 Normal flow measurement

We utilize the simple plane fitting to compute the nor-
mal flow measurements that serve as inputs to TEGBP and
ARMS. We first apply noise removal for the raw events
using a refractory filter [17] of 40 ms duration. Then us-
ing the filtered events, we performed plane fitting for each
event within a small spatiotemporal window of the size
r × r × ∆tpf. During the plane fitting, we removed the
outlier using the criteria proposed in [2]; we applied this
process three times. We summarize the normal flow com-
putation parameters in Tab. 1 (top).

4.1.2 Full flow estimation

Both TEGBP and ARMS use the same sparse normal flow
measurement, and could be run asynchronously at the rate
of normal flow; however, we processNb observation at once
for computational efficiency on MATLAB [18] (interactive
numerical computing environment) we used to compare the
accuracy. The specific parameters for the (quasi) full flow
computation are summarized in Tab. 1 (bottom).

In TEGBP, the message should be propagated to all con-
nected nodes, and the process needs to be repeated until
convergence; however, we found a small number of hops
(K=2) and single iterations (Nitr=1) works well in practice.

4.2. ESIM-bricks

In this experiment, we compare the accuracy on a scene
where the motion and edges are not perpendicular to the
image edge. We synthesized the event stream by observ-
ing the image of bricks from a translating camera. We used
ESIM [23] library for this simulation, which could synthe-
size the realistic noisy event stream from the event camera
moving around the predefined 3D environment. We com-
pute the normal flow and use the same measurements for
both methods. Fig. 6 shows the result. We observe the drift
in ARMS due to the average operation. TEGBP correctly
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Table 2. The quantitative results on MVSEC. The flow is evaluated on the ground truth intervals.

indoor flying1 indoor flying2 indoor flying3 outdoor day1
AEE ↓ % Out ↓ AEE ↓ % Out ↓ AEE ↓ % Out ↓ AEE ↓ % Out ↓

Norm 2.30 24.5 3.61 42.9 3.13 36.3 3.44 43.0
ARMS [2] 1.71 12.7 2.67 26.6 2.28 21.6 2.64 25.7
Ours 1.14 6.25 1.87 16.4 1.54 11.8 1.46 11.1

Figure 8. The qualitative results on MVSEC. See the color wheel on the bottom left for the color encoding.

estimated the full flow from the normal flow measurement
directed at a different angle from the full flow.

4.3. DVS-stirpes

In this experiment, we compare the accuracy on a scene
where some region includes different flows. We used a
scene from [19] where two stripes translating at different
speeds are observed from a dynamic vision sensor (DVS).
Fig. 7 shows the result. We observed a significant shift in
the ARMS’s estimation when motions of different speeds
are adjacent. ARMS determines the flow by selecting the
scale having the maximum average norm in the window (it
falsely picks the large norm in the slow region). In contrast,
the TEGBP correctly estimates individual motion.

4.4. MVSEC

We quantitatively compare with ARMS in practical
robotic scenarios. We used outdoor scenes captured by au-
tomobiles and indoor scenes captured by aerial drones from
the Multi-vehicle Stereo Event Camera (MVSEC) dataset
[33]. This dataset includes ground truth (GT) optical flow
computed as the motion filed from the camera motion and
scene depth. We evaluate the accuracy using the average

endpoint error (AEE) and the percentage of pixels with end-
point error greater than 3 pixels (denoted by % Out). Both
are measured on pixels where valid GT exists, and the plane
fitting has been successful. We output flows asynchronously
in batches with both methods and evaluate them at regular
intervals (20Hz of GT rate). Tab. 2 and Fig. 8 show the
quantitative and qualitative results. ARMS improves the
normal flow, while TEGBP improves more. In contrast to
the naive averaging in ARMS, our TEGBP properly models
the distribution of flows using TEG and prior.

4.5. DSEC

We compare the performance of TEGBP and ARMS on
more diverse scenarios using more high-resolution input.
To this end, we use the DSEC [13], a recently released
dataset in automobile scenarios containing high-resolution
event data of 480×640 captured from the vehicle that under-
goes more diverse motion. It is designed for dense optical
flow estimation, and the GT of the test sequence is hidden
for leaderboard evaluation. Therefore we use their train se-
quence to compare sparse AEE error with ARMS.

Tab. 3 and Fig. 9 shows the quantitative and qualitative
results. Similar to the MVSEC experiments, TEGBP sig-
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Table 3. The quantitative results on DSEC. The flow is evaluated on the ground truth intervals.

thun 00 a zurich city 01 a zurich city 02 a zurich city 08 a zurich city 11 a
AEE ↓ % Out ↓ AEE ↓ % Out ↓ AEE ↓ % Out ↓ AEE ↓ % Out ↓ AEE ↓ % Out ↓

Norm 7.09 68.7 8.26 37.9 12.8 86.8 8.42 73.3 5.90 63.4
ARMS [2] 5.31 60.0 6.32 23.8 8.98 78.7 6.22 64.4 4.57 51.4
Ours 4.26 45.5 5.61 23.2 8.70 72.6 5.08 49.5 3.27 32.2

Figure 9. The qualitative results on DSEC.

nificantly boosts accuracy over AMRS.

5. Conclusion

We proposed TEGBP, a novel incremental full flow es-
timation algorithm for asynchronous event data. The pro-
posed algorithm is backed up by the probabilistic model,
which guarantees equality to the full flow when a valid prior
is provided. It realizes efficient event-wise incremental up-
dates based on the BP, where the MAP solution obtained by
the local update is guaranteed to match the correct one. We
demonstrate the effectiveness of the proposed method on a
practical real-world dataset showing a significant boost in
accuracy over the existing incremental algorithm.

There is still much room for improvement in accuracy
compared to the recent machine learning-based method (al-
though it is computationally intensive). We suspect the gap
mainly comes from the noise in the normal flow and poor
prior. Toward the ultimate goal of realizing low-latency and
high-accuracy full flow estimation in real-time on an edge
device, we expect the gap to be closed by incorporating a
more robust normal flow and application-specific prior.

5.1. Future work

Robust normal flow estimation As discussed in the ex-
periment section, some scenes include strongly erroneous
flow, e.g., normal flow from leaves on the tree. These mea-
surement errors significantly degrade the accuracy. We ex-
pect the tiny CNN (e.g., input size of 7×7) trained to regress

the normal flow from noisy input will improve the accuracy
without sacrificing the computational efficiency.

Application specific prior Even if the perfect normal
flow is obtained, we cannot expect good accuracy without
good prior (Sec. 3.3.2). The uniform smoothness prior we
adopted may not optimal in many practical scenarios. The
discontinuous depth region does not conform to the prior.
Even if the planer object undergoes linear motion, we won’t
observe uniform flow when it is not perpendicular to the op-
tical axis. We can utilize a better prior for a specific appli-
cation to boost accuracy. For example, one may utilize a
vanishing point for automotive applications (assuming the
yaw rate is known from the vehicle sensor) similar to [20].
We left these explorations for future work.

Optimized implementation Our algorithm is very effi-
cient in principle, requiring lower FLOPS, and the entire
process can be asynchronously parallelized. The normal
flow could be cheaply obtained, e.g., directly from a cam-
era or computed by the lightweight plane fitting (compu-
tation of normal flow is outside this study’s scope). The
core of our algorithm, message passing of (4), is also very
cheap, requiring the communication of 6-dim vectors with
neighbors. Therefore, an optimized CPU implementation or
adaptation of processors supporting the sparse computation
could realize low-energy, low-latency optical flow estima-
tion in the edge device. We left the wall clock time and
energy consumption evaluation as future work.
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