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Figure 1. Applications of our method: (a) Cross-dataset multimodal generation (ImageNet and GLIDE [21]) using two off-the-shelf
diffusion models. We bring in new novel classes to a predefined background. We consider five rare classes from the ImageNet classes, and
three different text prompts as shown in the figure. For GLIDE [21], we create a new text prompt by adding an extra sentence utilizing
“and a {} in the photo”. For GLIDE [21], we sample five images and show the results having the maximum value of CLIP [24] correlation
value to the text prompt. (b) Multimodal Face generation with three modalities (hair segmentation map, skin segmentation map, and text).
(c) Multimodal Generation with two modalities. The text prompt for (b) and (c) is a user-defined text prompt with multiple attributes.

Abstract

Generating photos satisfying multiple constraints finds
broad utility in the content creation industry. A key hur-
dle to accomplishing this task is the need for paired data
consisting of all modalities (i.e., constraints) and their cor-
responding output. Moreover, existing methods need re-
training using paired data across all modalities to intro-
duce a new condition. This paper proposes a solution to this

problem based on denoising diffusion probabilistic models
(DDPMs). Our motivation for choosing diffusion models
over other generative models comes from the flexible in-
ternal structure of diffusion models. Since each sampling
step in the DDPM follows a Gaussian distribution, we show
that there exists a closed-form solution for generating an
image given various constraints. Our method can unite
multiple diffusion models trained on multiple sub-tasks and
conquer the combined task through our proposed sampling
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strategy. We also introduce a novel reliability parame-
ter that allows using different off-the-shelf diffusion mod-
els trained across various datasets during sampling time
alone to guide it to the desired outcome satisfying multi-
ple constraints. We perform experiments on various stan-
dard multimodal tasks to demonstrate the effectiveness of
our approach. More details can be found at: https://nithin-
gk.github.io/projectpages/Multidiff

1. Introduction

Today’s entertainment industry is rapidly investing in
content creation tasks [12, 22]. Studios and companies
working on games or animated movies find various applica-
tions of photos/videos satisfying multiple characteristics (or
constraints) simultaneously. However, creating such photos
is time-consuming and requires a lot of manual labor. This
era of content creation has led to some exciting and valuable
works like Stable Diffusion [28], Dall.E-2 [26], Imagen [29]
and multiple other works that can create photorealistic im-
ages using text prompts. All of these methods belong to the
broad field of conditional image generation [25, 33]. This
process is equivalent to sampling a point from the multi-
dimensional space P(z|z) and can be mathematically ex-
pressed as:

2~ P(2)z), (1)
where Z denotes the image to be generated based on a condi-
tion x. The task of image synthesis becomes more restricted
when the number of conditions increases, but it also hap-
pens according to the user’s expectations. Several previous
works have attempted to solve the conditional generation
problem using generative models, such as VAEs [18,25] and
Generative Adversarial Networks (GANs) [7, 34]. How-
ever, most of these methods use only one constraint. In
terms of image generation quality, the GAN-based meth-
ods outperform VAE-based counterparts. Furthermore, dif-
ferent strategies for conditioning GANs have been pro-
posed in the literature. Among them, the text conditional
GANs [3,27,41,45] embed conditional feature into the fea-
tures from the initial layer through adaptive normalization
scheme. For the case of image-level conditions such as a
sketches or semantic labels, the conditional image is also
the input to the discriminator and is embedded with an adap-
tive normalization scheme [22,31,40,42]. Hence, a GAN-
based method for multimodal generation has multiple archi-
tectural constraints [ 1]

A major challenge in training generative models for mul-
timodal image synthesis is the need for paired data con-
taining multiple modalities [12, 32, 44]. This is one of the
main reasons why most existing models restrict themselves
to one or two modalities [32, 44]. Few works use more
than two domain variant modalities for multimodal gener-
ation [ 1,45]. These methods can perform high-resolution

Exisitng methods Ours

inference

Figure 2. An illustration of the difference between the existing
multimodal generation approaches [45] and the proposed ap-
proach. Existing multimodal methods require training on paired
data across all modalities. In contrast, we present two ways that
can be used for training: (1) Train with data pairs belonging to dif-
ferent modalities one at a time, and (2) Train only for the additional
modalities using a separate diffusion model in case existing mod-
els are available for the remaining modalities. During sampling,
we forward pass for each conditioning strategy independently and
combine their corresponding outputs, hence preserving the differ-
ent conditions.

image synthesis and require training with paired data across
different domains to achieve good results. But to increase
the number of modalities, the models need to be retrained;
thus they do not scale easily. Recently, Shi et al. [32] pro-
posed a weakly supervised VAE-based multimodal genera-
tion method without paired data from all modalities. The
model performs well when trained with sparse data. How-
ever, if we need to increase the number of modalities, the
model needs to be retrained; therefore, it is not scalable.
Scalable multimodal generation is an area that has not been
properly explored because of the difficulty in obtaining the
large amounts of data needed to train models for the gener-
ative process.

Recently diffusion models have outperformed other gen-
erative models in the task of image generation [5, 9]. This
is due to the ability of diffusion models to perform exact
sampling from very complex distributions [33]. A unique
quality of the diffusion models compared to other genera-
tive processes is that the model performs generation through
a tractable Markovian process, which happens over many
time steps. The output at each timestep is easily accessible.
Therefore, the model is more flexible than other generative
models, and this form of generation allows manipulation of
images by adjusting latents [, 5,23]. Various techniques
have used this interesting property of diffusion models for
low-level vision tasks such as image editing [1, 1 7], im-
age inpainting [20], image super-resolution [4], and image
restoration problems [16].

In this paper, we exploit this flexible property of the de-
noising diffusion probabilistic models and use it to design
a solution to multimodal image generation problems with-

6071



— o S EE E o - -

+  Moddlity Pretrained DDPM ouput YV 1
1 (i.e., condition) (-
! o
1 'Thiswmnnﬁs_wm_.q DDPM 1 1 E
1 Text — Img. g
| /-\_\\ | I |
1 1 H
1
! [
1 DDPM (Y
1 Face — Img. ) I .
1 % ;
1 ¥
I,
\ DDPM o
! - Hair —» Img. I
1 (I
1| Hair Semantic Map (Y
! B LT
1 DDPM 1 g
1 Sketch — Img. 1 1 |
1 1 ] 1
‘ - OEE O O O O O S S O O O - ’ I
(a)

out explicitly retraining the network with paired data across
all modalities. Figure 2 depicts the comparison between
existing methods and our proposed method. Current ap-
proaches face a major challenge: the inability to combine
models trained across different datasets during inference
time [9, 19]. In contrast, our work allows users flexibility
during training and can also use off-the-shelf models for
multi-conditioning, providing greater flexibility when us-
ing diffusion models for multimodal synthesis task. Figure
1 visualizes some applications of our proposed approach.
As shown in Figure 1-(a), we use two open-source mod-
els [5,21] for generic scene creation. Using these two mod-
els, we can bring new novel categories into an image (e.g.
Otterhound: the rarest breed of dog). We also illustrate the
results showing multimodal face generation, where we use
a model trained to utilize different modalities from differ-
ent datasets. As it can be seen in 1-(b) and (c), our work
can leverage models trained across different datasets and
combine them for multi-conditional synthesis during sam-
pling. We evaluate the performance of our method for the
task of multimodal synthesis using the only existing mul-
timodal dataset [45] for face generation where we condi-
tion based on semantic labels and text attributes. We also
evaluate our method based on the quality of generic scene
generation.

The main contributions of this paper are summarized as
follows:

* We propose a diffusion-based solution for image gen-
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Figure 3. An illustration of our proposed approach. During training, we use diffusion models trained across multiple datasets (we can
either train a single model that supports multiple different conditional strategies one at a time or multiple models). During Inference, we
sample using the proposed approach and condition them using different modalities at the same time.

eration under the presence of multimodal priors.

* We tackle the problem of need for paired data for mul-
timodal synthesis by deriving upon the flexible prop-
erty of diffusion models.

 Unlike existing methods, our method is easily scalable
and can be incorporated with off-the-shelf models to
add additional constraints.

2. Related Work

In this section, we describe the existing works on Condi-
tional Image generation using GANs and multimodal image
generation using GANs

2.1. Conditional Image Generation

The earliest methods for conditional image generation
are based on non-parametric models [46]. However, these
models often result in unrealistic images. On the other hand,
deep learning-based generative models produce faster and
better-quality images. Within deep learning based tech-
niques, multiple methods have been proposed in literature
for performing conditional image generation, where the im-
ages are generated conditioned on different kinds of in-
put data. have proposed methods where images are gen-
erated based on a text prompts [27]. [22] et. al proposed a
method for conditioning semantic label inputs based on a
spatially-adaptive normalization scheme. [31,40] Multiple
conditional GAN-based techniques also tackle the problem
where the conditioning happens from image-level seman-
tics like thermal image [13,42].
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2.2. Multimodal Image generation

Recently multimodal image synthesis has gained signifi-
cant attention [11,32,37,38,44,45,48], where these method
attempts to learn the posterior distribution of an image when
conditioned on the prior joint distribution of all the differ-
ent modalities. The approaches [32, 37, 38, 44, 48] follow
a variational auto-encoder-based solution, where all the in-
put modalities are first processed through their respective
encoders to obtain the mean and variance of the underly-
ing Gaussian distributions which are combined using the
product of experts in the latent space. Finally, the image
is generated by sampling using the new posterior mean and
variance. Some methods using GANs for multimodal image
synthesis have also gained recent attention. Huang etal [1 1]
perform multimodal image synthesis using introduces a new
Local-Global Adaptive Instance normalization to combine
the modalities. Huang et al [1 1] also use the product of ex-
perts theory to combine encoded feature vectors and use a
feature decoder to obtain the final output. TediGAN [45]
uses a StyleGAN [15] based framework where the differ-
ent visual-linguistic modalities are combined in the feature
space and decoded to obtain the final output. TediGAN al-
lows user-defined image manipulation according to the in-
put of other modalities.

3. Proposed Method

3.1. Langevian score based sampling from a diffu-
sion process

An alternate interpretation of denoising diffusion prob-
abilistic models is denoising score-based approach [36],
where the sampling during inference is performed using
stochastic gradient langevian dynamics [43]. Here a net-
work is used to compute the score representing the gradient
of likelihood of the data. The sampling during the reverse
timestep can be represented by [36]:

Zi—1

——— (21— Biso (20, 2, 1)) + oim, ()
V15 '
where n = N (0, I), z; is the sample at timestep ¢ and z is
the condition. The score value sy(+) is given by,
ee(zta x, t)
sg(z¢,t) = Vi log P(z¢|x) = ———,
9( t ) g ( t| ) m

where €y is the output from the denoising network.

3)

3.2. Multimodal conditioning using diffusion mod-
els

In regular conditional denoising diffusion models [30],
the input image (i.e., the condition) is concatenated with the
sampled noise when passing through the network. When
multiple modalities are present, the trivial solution of find-
ing the conditional distribution is by concatenating all the
N modalities with the noisy image. However, if we want to
improve the functionality of the trained network by adding

a new modality, the whole model needs to be retrained with
all N 4+ 1 modalities. Instead, we propose an alternative
way to achieve this goal. Let (z,x;) denote a point in the
space of the images of a particular domain and p(z|x;) de-
note the distribution of the predicted image z based on the
modality z;. Let X = {z1,, 23, ..xy}. Let the distribution
of the image conditioned on all modalities be denoted by
P(z|X) and the distribution of the image conditioning on
the individual modalities be P(z|z;). Assuming that all the

modalities are statistically independent,
N N
P(z) [[izy Pzl2:)
P(z;|z) = KP =
Py L1 Ploile) = K

[T, P(2)

P(=|X) = ,
“
where K is a term which is independent from z;. Assum-
ing the individual distributions P(z|z;) and P(z) follow
a Gaussian distribution, the distribution P(z|X) will also
follow a Gaussian distribution. Please note that here we
consider a graphical model starting from z; and pointing
towards z. The “explaining away” effect does not happen
since x; are independent inputs. Now, let’s assume that N
diffusion models are trained to generate samples from the
distributions P(z|z;) conditioned on each modality x; sep-
arately. We have N modalities from where the uncondi-
tional distribution could be computed. However, how good
each model can model the unconditional distribution is not
certain, hence we utilize the generalized product of experts
rule [2] to compute the effective unconditional density as

N
P(z) =[] P (zl9), (5)
=1

where a; is the conﬁdencezfactor of each individual distri-
bution with a null condition to modelling the overall un-
conditional density. To preserve the effective variance so
that the reverse diffusion process still holds, we set the con-
straint vazl a; = 1. As mentioned in Section 3.1, we can
use stochastic gradient Langvein sampling based sampling
to sample from the conditional distribution P(z|X) . Please
note that we are imposing an assumption that the diffusion
process for each of the individual modalities have the same
variance schedule (a more generalized derivation when the
variance schedules are not equal is provided in the supple-
mentary document). Hence the score-based derivations are
valid and the effective diffusion process has the same vari-
ance schedule
th IOg(Zt|X) =

N N
a; Hi:l P5i(zt xi) )
vm%Q P (4]0)) | _
L1 T 1Y, P (2419)
N
> (vmlogP& (zlz:) = > a;V.,logPs, (zt|¢>>) (6)

i=1 i
where d0; denotes the parameters of the individual distribu-

tion densities and ¢ denotes the null condition. b;; denotes
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the confidence of a paramteric model to estimate the uncon-
ditional density of another model. Hence the effective score
when conditioned on all the modalities can be represented
in terms of scores of the individual conditional distribution
as well as the score of the unconditional model. Hence the

effective score s, is given by:
€c

NI
Za’lel Ztvd)v +
N

Z(EZ Zg, Tiyt Za’jej 2, ¢, )a @)
i=1
where €g(z¢, z;,t) denotes the output prediction of the in-
dividual conditional networks and eg(z;, t) is the prediction
of the unconditional network. After computing the effective
score, sampling could be performed using equation by,

1 B 5
Vi (Zt MGC) + oin, (8)
where 7 ~ A/(0,I). An additional parameter for stringer
conditions can be incorporated to (7) using Generalized
product of experts [2] (proof in supplementary). Hence giv-
ing importance to some modalities over the others by partial
weighting to the scores estimated by each modality as fol-
lows:

Se =

€. = eg(zt, X, t)

Zi—1

Wi €4 Ztaffza

HMz

N N
)= O wi—1)) ajeiz, 6,t).
i=1 j=1

swi 21 (9)
Recently Ho er al. [10] proposed a method for sampling
from a particular conditional distribution without the need
of an explicit classifier as used by previous methods [5].
According to this method, given a model trained for mod-
eling a conditional distribution p(z|c), and with the same
model trained for an modelling an unconditional distribu-
tion p(z), The effective score for generating samples could
be obtained using,
é(zt,c,t) = (1 +w) - €(z,0,t) —w - €(z,t),  (10)
where w is a scalar. By comparing equations (9) and (10),
we can see that equation (10), is the case of multimodal
conditioning using diffusion models with all modalities be-
ing the same.

4. Experiments

In this section we describe in detail the experiments per-
formed and reason out the choice on experimental setup.
We consider different multimodal settings for our network
and evaluate the performance quantitatively for and multi-
modal image generation on the CelebA and FFHQ datasets.
For multimodal image semantics to face generation, we
choose networks that can perform semantic labels to face
generation retrain them for scratch for the different scenar-

ios considered. As detailed in earlier sections, one major
challenge of multimodal image generation is the lack of
paired data across all modalities. To extend existing ap-
proaches for the case of multimodal generation, two ap-
proaches could be followed. The first is to take a model
trained for a particular conditioning modality and finetune
it for another modality. In the second approach, the training
corpus becomes the combination of the datasets with indi-
vidual modalities and different iterations could model train-
ing sees a different modality and its corresponding image.
We re-train the exisitng methods with both these settings
and compare the performance on multimodal face genera-
tion. We also evaluate the performance of our method with
existing compositional models.

4.1. Multimodal Face Generation

To create a criteria to quantitatively evaluate the exist-
ing works and our method for multimodal generation, we
follow the works [44] where complementary information
comes from semantic labels of different portions of the
same image. To make the problem even more generic, dur-
ing training we choose the semantic labels for different re-
gions from different datasets. For multimodal semantics to
face generation, we use the CelebA-HQ dataset [14] and
the FFHQ dataset [15]. We choose the semantic labels of
hair from the CelebA dataset and the semantic labels of
skin from the FFHQ dataset for the training process. The
semantic labels for the skin and the hair are obtained using
the face parser released by Zheng et al. [49]. For training
our dataset, we choose 27,000 images from the CelebA-HQ
dataset and 27,000 images from the FFHQ dataset, and train
the corresponding individual diffusion models with these
semantic labels as well as attributes. We test our method us-
ing 3,000 images chosen from the CelebA-HQ dataset and
3,000 images from the FFHQ dataset. During evaluations,
we utilize the semantic labels of hair as well as skin from the
same image to illustrate how well our method is able to gen-
eralize. As for the evaluations metrics we choose the FID
score [8] and the LPIPS score [47] to evaluate the sample
diversity and quality of facial images generated. To evalu-
ate the structural similarity of the produced result with the
actual image we use the SSIM score. Finally to see how
close the input semantic labels are to the ones produced by
our method, we obtain the parsed masks of the generated
images and compute the mean intersection over union over
all classes (mloU) and F1 precision scores of the semantic
images obtained from the reconstructed image and the input
semantic image and report the mean for all testing images.
We set the value of a; = 1/N and w; = 1 for all the exper-
iments. Here N denotes the number of modalities used. For
training the sketch to face model, we utilized Canny egde
detector [6] to extract the edges. For text to face generation,
we utilize the FFHQ dataset and trained a model based on
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Figure 4. Qualitative results for cross dataset multimodal generation (ImageNet and CompGen [19]) using two off-the-shelf diffusion

models.

SPADE [22] PIX2PIXHD [42]
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Table 1. Quantitative results for multimodal semantic labels
to face generation on CelebA dataset. The combined training
based strategy and fine-tuning based training strategy are shown
in the corresponding sections. (1)/ ({) represents higher/ lower
the metric lower the metrics, the better respectively.

A
INADE [40]

|  Type | Method | FID, LPIPS| SSIMt mloUt F17
SPADE [22] 13191 0638 0316  0.605 0.694

OASIS [31] 118.67 0.624 0318 0579 0.663

Fine-Tuning | PIX2PIXHD [42] | 153.19 0.611 0282 0.716 0.819
INADE [40] 12543 0632 0279 0881 0.932

SPADE [22] 89.29 0523 0376  0.890 0.936

OASIS [31] 7120 0571 0323 0792  0.870

Combined | PIX2PIXHD [42] | 7332 0512 0373 0872 0925
INADE [40] 5427 0552 0332 0887 0.933

TediGAN [45] | 69.51 0.4823 0417  0.834 0905

OURS 2609 0519 0416 0911 0.948

the extracted face embeddings using FARL [49]. The reader
is referred to the supplementary material for more details on
the implementation of the individual multimodal face gen-
eration sub-parts.

4.2. Generic Scenes Generation

To show that our method is generalized and could com-
bine existing works to make their generation process more
powerful, we use the text-to-image generation-based diffu-

DDPM [9]
Figure 5. Qualitative comparisons for semantic to face generation. In this case, a single model is trained by alternating different input
datasets across different iterations. During Inference time all the modalities are taken from a single dataset and the proposed sampling
technique is used.

TediGAN [45] OURS

sion model released by GLIDE and an ImageNet class con-
ditional generation model. We perform a combined multi-
modal generation task where we choose the GLIDE model
to decide the background in the image and use the Imagenet
model to bring specific objects to the image. During evalu-
ations, we generate images using text prompts that contain
a scene information as well as an ImageNet object using
an and conditioning. We generate 500 such images for all
methods and evaluate how close the images are to the text
prompts using the average clip distance between the image
embeddings and the embeddings of the input text prompt.
We make use of nonreference quality metrics NIQE to eval-
uate the method. We also present the accuracy using the
state-of-the-art Imagenet classifier [39] to detect whether
the class is present in the image. We set w; = 5 for all
the experiments.

4.3. Analysis and Discussion

Semantic label to face generation. The quantitative re-
sults for semantic face generation on the FFHQ and CelebA
datasets can be found in Tables 2 and 1, respectively. As the
choice of comparison methods, we use the current state-of-
the-art method for semantic face generation TediGAN [45]
and several recently introduced semantic to face generation
methods [22,31,40,42]. The fine-tuning-based multimodal
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Figure 6. The role of reliability factor for multimodal genera-
tion. The text is ”A mountain”. ImageNet class is “Lion”. Here,a
denotes the factor at which the unconditional model for text is
weighed. w.,w; denotes weights for diffusion model generating
based on class and text, respectively.

| Type | Method | FID, LPIPS| SSIMf MioUt FI1 |
SPADE 9177  0.624 0340  0.649 0.728

OASIS 9994  0.634 0320 0.625 0.704

Fine-Tuning | PIX2PIXHD | 22385 0670 0265 0.666 0.775
INADE 13411 0656 0274  0.869 0.922

SPADE 7573 0545 0373 0.876  0.921

OASIS 7557 0593 0331 0786  0.863

Combined | PIX2PIXHD | 13830 0560 0363  0.840 0.898
INADE 4740 0574 0334 0862 0910

TediGAN [45] | 12527 0.545 0409 0813  0.887

OURS 3360 0542 0421 0919 0950

Table 2. Quantitative results for multimodal semantic labels to
face generation on FFHQ dataset

generation and the combined unpaired training-based re-
sults are shown separately. TediGAN [45] has been trained
with paired data across all modalities since it supports such
a provision. From Tables 2, and 1 we can see that all the
methods fail to produce reasonable results when trained in
the finetuning-based strategies. This can be seen in the high
FID scores, low SSIM, and parsed mask accuracy metrics.
The alternating training strategy produces reasonably good
results, and improve all the evaluation metrics improve. But
training this way introduces dataset-specific bias because of
which the quality of the existing semantic-to-face genera-
tion techniques deteriorates when used on an independent
test set during testing.

Generic Scenes Generation. Table 3 shows the quantita-
tive comparison for the proposed method. As we can see,
the accuracy of the object being in the image is low for

Text —————— Class
‘weighing factor

Figure 7. Interpolation across multiple modalities. Here, {class
—Text} denotes to where the unconditional model comes from.

Method | Modality | NIQE(}) Clip() Acc(1)
GLIDE [21] Uni 6.64 0.317 0.3
CompGen [19] Uni 5.71 0.282 224
Ours Multimodal 5.34 0.286 87.0

Table 3. Comparison for generic scenes creation. Here we con-
sider three different reliability values {0,0.5,1} and report the
best possible value.Acc denotes ImageNet classification accuracy

GLIDE [21] because it focuses on regions on the text which
are more easier to generate. One could always make the
case that the text model fails because of its weak robustness
to doctored text prompts. Hence we perform a compari-
son with compositional unimodal generation [19] against
a multimodal scenario where we utilize information across
datasets. This analysis can be seen in Table 3. we eval-
uate the performances on 500 generated images using the
CLIP score, NIQE score and ImageNet classification accu-
racy. As can be seen multimodal generation has its advan-
tages that it can introduce new novel classes to the image
hence being more accurate and can generate realistic im-
ages leading to better metrics.

How to choose a good reliability factor? When we have
multiple models trained on different datasets, and condi-
tioning needs to be applied based on both of these models.
There exist two scenarios. In the case of independent at-
tributes like a face semantic mask and hair semantic map,
the reliability factors doesn’t affect the composite image
since each attribute could be added without affecting the
others performance. The next possible case is of non inde-
pendent attributes, where a blend of both images is a pos-
sible solution like in 6, here the reliability factor depends
on how much of each image is desired by the user. For an
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Figure 8. A visualization of generated images with combined con-
ditional generation (uni-modal) with ours (multi-modal).

Semantics | Modality | FID ~ SSIM | mloU  FI

Face Uni 27.66 0.373 | 0.842 0.907
Face+Hair Uni 61.62 0.376 | 0.872 0.922
Ours Multi 26.09 0.416 | 0.911 0.948

Table 4. Analyzing advantage of the proposed sampling method
over normal training and regular sampling techniques.
illustration, we refer the reader to Figure 6. Here we utilize
the GLIDE model and the ImageNet generation model [5].
We utilize 100 steps of deterministic DDIM [35] with same
random initial noise for all settings. The vertical values
to the left denotes increasing reliability factor for the text
model. When reliability factor equals to zero, the top most
row, the class model is used as the unconditional model and
bottom row shows the case when the text model is used as
the unconditional model. Since the text model has more
generation capability, we can see that it creates much bet-
ter naturalistic series of images compared to the ImageNet
generation model [5] which cannot to create artistic scenes.
Why is a reliable score better than a direct solution? One
straightforward solution to the case of multi-modal genera-
tion is to use equation (10) and consider the most powerful
model as the unconditional model. But this scenario is a
subset of our reliable mean solution. As one can imagine,
this formulation puts a strict bias towards the space of data
points of one of the models over the other. Whereas using
a reliable mean, this specific bias can be negated and more
user defined control is possible. For example, as seen in
Fig 6, one can obtain a user defined mix of how much each
modality should be mixed using the reiable mean. More-
over, In Fig 7, row 2, we can see that distorted cherry
blossoms are created when the ImageNet class conditional
model is treated as the stronger model. The text model used
is a very powerful model [21]. Hence it is able to model
class specific points accurately and a mix of the uncondi-
tional densities of both the models can perform valid inter-
poaltions between both modalities.

5. Ablation studies

To show the effectiveness of the proposed multimodal
strategy over a normal method trained unimodally, we re-

train a diffusion model that can take one or more condi-
tioning simultaneously. We analyze the FID score and the
SSIM scores on the images and their corresponding ground
truths, and the F1 score and mloU score between the orig-
inal parsed maps vs the reconstructed parsed maps. We
perform ablation over three different scenarios: with using
one modality when both conditioning modality is given at
a time and our proposed sampling strategy. As we can see
from Table 4, there is a significant boost to the performance
using the specified sampling strategy. This shows that the
multimodal sampling strategy enforces stronger condition-
ing and produces better-quality results. Figure 8 shows the
results corresponding to the combined conditioning strategy
and our proposed method. As can be seen from this fig-
ure8, when regular diffusion-based inference time sampling
is performed from a model trained with different modalities
across different datasets, the sampling procedure generates
unrealistic results. In contrast, we are able to generate much
more realistic results.

6. Limitations and Future scope

One limitation of our method is that the dimension of the
latent space modelled by the diffusion models is required to
be the same. If the number of channels differ for the latent
variable z;, then this method cannot be utilized. This is the
reason why we could not utilize stable diffusion model [28]
for our experiments. Another scenario when our model can
fail is when one model is asked to create a sample that
could be easily generated and the other model is asked for a
harder class. Thirdly, if contradictory information is given
as input across modalities, our method fails to produce the
desired output. More visual results corresponding to this
condition are given in the supplementary document. This
problem can be easily alleviated by using different reliabil-
ity weights to the different conditioning modalities and giv-
ing more weight to the most desired conditioning modality
as can be seen from Fig. 6.

7. Conclusion

In this paper, we propose one of the first methods that
can perform multimodal generation using individual models
trained for multiple sub-tasks. The multimodal generation
is enabled by a newly proposed formulation utilizing a gen-
eralized product of experts. We introduce a new reliability
parameter that allows user-defined control while perform-
ing multimodal mixing of correlated modalities. We briefly
discuss the design choices of the reliability parameter for
different applications. The proposed sampling significantly
boosts the performance of multimodal modal generation
using diffusion models compared to the sampling using a
unimodal network. We show results on various multimodal
tasks with trained as well as publically available off-
the-shelf models to show the effectiveness of our method.
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