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Abstract

Micro-expression recognition is one of the most chal-
lenging topics in affective computing. It aims to recog-
nize tiny facial movements difficult for humans to per-
ceive in a brief period, i.e., 0.25 to 0.5 seconds. Re-
cent advances in pre-training deep Bidirectional Trans-
formers (BERT) have significantly improved self-supervised
learning tasks in computer vision. However, the standard
BERT in vision problems is designed to learn only from
full images or videos, and the architecture cannot accu-
rately detect details of facial micro-expressions. This pa-
per presents Micron-BERT (µ-BERT), a novel approach to
facial micro-expression recognition. The proposed method
can automatically capture these movements in an unsu-
pervised manner based on two key ideas. First, we em-
ploy Diagonal Micro-Attention (DMA) to detect tiny dif-
ferences between two frames. Second, we introduce a
new Patch of Interest (PoI) module to localize and high-
light micro-expression interest regions and simultaneously
reduce noisy backgrounds and distractions. By incorpo-
rating these components into an end-to-end deep network,
the proposed µ-BERT significantly outperforms all previ-
ous work in various micro-expression tasks. µ-BERT can
be trained on a large-scale unlabeled dataset, i.e., up to
8 million images, and achieves high accuracy on new un-
seen facial micro-expression datasets. Empirical experi-
ments show µ-BERT consistently outperforms state-of-the-
art performance on four micro-expression benchmarks, in-
cluding SAMM, CASME II, SMIC, and CASME3, by sig-
nificant margins. Code will be available at https://
github.com/uark-cviu/Micron-BERT

1. Introduction

Facial expressions are a complex mixture of conscious
reactions directed toward given stimuli. They involve ex-
periential, behavioral, and physiological elements. Be-
cause they are crucial to understanding human reactions,
this topic has been widely studied in various application do-
mains [5]. In general, facial expression problems can be
classified into two main categories, macro-expression, and

Figure 1. Given two frames from a high-speed video, the proposed
µ-BERT method can localize and highlight the regions of micro-
movements. Best viewed in color.

micro-expression. The main differences between the two
are facial expression intensities, and duration [2]. In partic-
ular, macro-expressions happen spontaneously, cover large
movement areas in a given face, e.g., mouth, eyes, cheeks,
and typically last from 0.5 to 4 seconds. Humans can
usually recognize these expressions. By contrast, micro-
expressions are involuntary occurrences, have low inten-
sity, and last between 5 milliseconds and half a second. In-
deed, micro-expressions are challenging to identify and are
mostly detectable only by experts. Micro-expression under-
standing is essential in numerous applications, primarily lie
detection, which is crucial in criminal analysis.

Micro-expression identification requires both semantics
and micro-movement analysis. Since they are difficult to
observe through human eyes, a high-speed camera, usu-
ally with 200 frames per second (FPS) [6, 15, 51], is typi-
cally used to capture the required video frames. Previous
work [11] tried to understand this micro information using
MagNet [29] to amplify small motions between two frames,
e.g., onset and apex frames. However, these methods still
have limitations in terms of accuracy and robustness. In
summary, the contributions of this work are four-fold:

• A novel Facial Micro-expression Recognition (MER)
via Pre-training of Deep Bidirectional Transformers
approach (Micron-BERT or µ-BERT) is presented to
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tackle the problem in a self-supervised learning man-
ner. The proposed method aims to identify and localize
micro-movements in faces accurately.

• As detecting the tiny moment changes in faces is an
essential input to the MER module, a new Diagonal
Micro Attention (DMA) mechanism is proposed to pre-
cisely identify small movements in faces between two
consecutive video frames.

• A new Patch of Interest (POI) module is introduced
to efficiently spot facial regions containing the micro-
expressions. Far apart from prior methods, it is trained
in an unsupervised manner without using any facial la-
bels, such as facial bounding boxes or landmarks.

• The proposed µ-BERT framework is designed in a
self-supervised learning manner and trained in an end-
to-end deep network. Indeed, it consistently achieves
State-of-the-Art (SOTA) results in various standard
micro-expression benchmarks, including CASME II
[50], CASME3 [14], SAMM [6] and SMIC [15]. It
achieves high recognition accuracy on new unseen
subjects of various gender, age, and ethnicity.

2. Related Work
Generally, prior studies in micro-expression can be di-

vided into two categories, including micro-expression spot-
ting (MES) and micro-expression recognition.
Micro-Expression Spotting (MES). The goal of MES is
to determine the specific instant during which a micro-
expression occurs. Li et al. [16] adopted a spatial-channel
attention network to detect micro-expression action units.
Tran et al. [39] attempted to standardize with the SMIC-E
database and an evaluation protocol. MESNet [43] intro-
duced a CNN-based approach with a (2+1)D convolutional
network, a clip proposal, and a classifier.
Micro-Expression Recognition (MER). The goal of MER
tasks is to classify the facial micro-expressions in a video.
Ling et al. [11] present a new way of learning facial graph
representations, allowing these small movements to be seen.
Kumar and Bhanu [31] exploited connections between land-
mark points and their optical flow patch and achieved im-
provements over state-of-the-art (SOTA) methods for both
the CASME II and SAMM. Liu et al. [21] presented a
new method using transfer learning achieved an accuracy
of 84.27% on a composite of three datasets. Wang et al.
[45] presented an Eulerian-motion magnification-based ap-
proach that highlights these small movements.
Other Work. Other research, while not necessarily on
MES or MER, is relevant to our approach. An advance in
video motion magnification is shown in [29], outperforming
the SOTA methods in multiple areas. This learning-based
model can extract filters from data directly rather than rely
on ones designed by hand, like the state-of-the-art method.

3. BERT Revisited

3.1. BERT in Vision Problems

Transformers and deep learning have significantly im-
proved results for many tasks in computer vision [1,7,9,22,
23, 26, 27, 30, 40, 41]. Worth mentioning is Vision Trans-
former (ViT) [7], one of the first research efforts at the
intersection of Transformers and computer vision. Unlike
the traditional CNN network, ViT splits an image into a
sequence of patches and applies the Transformers-based
framework directly. Inspired by the success of BERT in
Natural Language Processing (NLP), Bidirectional Encoder
representation from Image Transformers (BEiT) [1] is pre-
sented as a self-supervised learning framework in computer
vision. In particular, image patches are tokenized using
DALL-E [32] to the visual tokens. These tokens are then
randomly masked before feeding into the transformer back-
bone. The training objective is to recover the original visual
tokens from the corrupted patches. These methods [1, 38]
have marked a remarkable improvement compared to super-
vised learning methods by leveraging large-scale unlabelled
datasets, e.g., ImageNet-1K, ImagNet-21K [33], to discover
semantic information.

3.2. Limitations of BERT in Vision Problems

One limitation of using BERT in vision problems is the
tokenization step. In the NLP field, a token has precisely
one word mapped into it. In vision problems, however,
many possible images or patches can share the same token
as long as they have the same content. Therefore, designing
a BERT model to mask a token and train a prediction model
in the missing contexts in computer vision is more chal-
lenging than NLP. In addition, the tokenizer, i.e., DALL-
E [32], is not robust enough to map similar contexts to a
token. It yields noise in the tokenization process and affects
the overall training performance. He et al., [9] presented a
Masked Auto Encoder (MAE) that utilizes the BERT frame-
work. Instead of tokenizing images, it eliminates patches of
an image via a random masking strategy and reconstructs
the context of these masked patches to the original content.
Although this method can avoid using the tokenizer, it only
considers the context inside an image. Thus, it does not ap-
ply to micro-expression, which requires understanding se-
mantic information from consecutive video frames. In this
paper, µ-BERT is presented to address these limitations.

4. The Proposed µ-BERT Approach

µ-BERT is designed to model micro-changes of facial
texture across temporal dimensions, which is hard to ob-
serve by unaided human eyes via a reconstruction pro-
cess. The proposed µ-BERT architecture, shown in Fig-
ure 2, consists of five main blocks: a µ-Encoder, Patch
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Figure 2. An overview of the proposed µ-BERT approach to facial micro-expression recognition.

of Interest (PoI), Blockwise Swapping, Diagonal Micro At-
tention (DMA), and a µ-Decoder. Given input images It
and It+δ , the role of the µ-Encoder is to represent It and
It+δ into latent vectors. Then, Patch of Interest (PoI) con-
strains µ-BERT to look into facial regions containing micro-
expressions rather than unrelated regions such as the back-
ground. Blockwise Swapping and Diagonal Micro Atten-
tion (DMA) allow the model to focus on facial regions
that primarily consist of micro differences between frames.
Finally, µ-Decoder reconstructs the output signal back to
the determined one. Compared to prior works, µ-BERT
can adaptively focus on changes in facial regions while ig-
noring the ones in the background and effectively recog-
nizes micro-expressions even when face movements occur.
Moreover, µ-BERT can also alleviate the dependency on the
accuracy of alignment approaches in pre-processing step.

4.1. Non-overlapping Patches Representation

In µ-BERT, an input frame It ∈ RH×W×C is divided
into a set of several non-overlapping patches Pt as Eqn. (1).

Pt = {pit}
Np−1
i=0 |Pt| = HW/(ps2) (1)

where H,W,C are the height, width, and number of chan-
nels, respectively. Each patch pit has a resolution of ps×ps.
In our experiments, H = W = 224, C = 3, and ps = 8.

4.2. µ-Encoder

Each patch pi ∈ Pt is linearly projected into a latent
vector of dimension d denoted as zit ∈ R1×d, with additive
fixed positional encoding [42]. Then, an image It can be
represented as in Eqn. (2).

Zt = concat
[
z0t , z

1
t , . . . z

Np−1
t

]
∈ RNp×d

zit = α(pit) + e(i)
(2)

where α and e are the projection embedding network and
positional embedding, respectively. Let µ-Encoder, denoted
as E , be a stack of continuous blocks. Each block consists

Figure 3. Builing block of Encoder and Decoder. Each block
includes Multi-Head Attention (MHA) and Layer Normalization.

of alternating layers of Multi Head Attention (MHA) and
Multi-Layer Perceptron (MLP), as illustrated in Figure 3.
The Layer Norm (LN) is employed to the input signal be-
fore feeding to MHA and MLP layers, as in Eqn. (3).

x′
l = xl−1 + MHA(LN(xl−1))

xl = x′
l + MLP(LN(x′

l))

x0 = Zt, 1 ≤ l ≤ Le

(3)

where Le is the number of blocks in E . Given Zt, The out-
put latent vector Pt is represented as in Eqn. (4).

Pt = E(Zt) Pt ∈ RNp×d (4)

4.3. µ-Decoder

The proposed auto-encoder is designed symmetrically.
It means that the decoder part denoted as D, has a similar
architecture to the encoder E . Given a latent vector Pt, the
decoded signal Qt is represented as in Eqn. (5).

Qt = D(Pt) Qt ∈ RNp×d (5)

We add one more Linear layer to interpolate Qt to an in-
termediate signal yt before reshaping it into the image size.

Qt ∈ RNp×d linear−−−→ yt ∈ RNp×ps×ps×C (6)

yt ∈ RNp×ps×ps×C reshape−−−−→ y′
t ∈ RH×W×C

4.4. Blockwise Swapping

Given two frames It and It+δ , we realize the fact that:

lim
δ→0

s(pit, p
i
t+δ) = 1 (7)
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Figure 4. Blockwise Swapping. For each triplet, we present the
It (left), the It+δ (middle) and the It/s (right). The yellow blocks
in It/s represent swapped patches from It+δ that are randomly
swapped into It. Best viewed in color.

where pit is the ith-patch at frame t. s denotes a function to
measure the similarity between pit and pit+δ where a higher
score indicates higher similarity and 0 ≤ s(pit, p

i
t+δ) ≤ 1.

Given a patch correlation as in Eqn. (7), we propose
a Blockwise Swapping mechanism to (1) firstly randomly
swap two corresponding blocks pit and pit+δ between two
frames to create a swapped image It/s, and then (2) en-
force the model to spot these changes and reconstruct It
from It/s. By doing so, the model is further strengthened in
recognizing and restoring the swapped patches. As a result,
the learned model can be enhanced by the capability to no-
tice small differences between frames. Moreover, as shown
in Eqn. (7), shorter time δ causing larger similarity between
It from It/s can further help to enhance the robustness on
spotting these differences. The detail of this strategy is de-
scribed in Algorithm 1 and Figure 4.

4.5. Diagonal Micro Attention (DMA)

As a result of Blockwise Swapping, the image patches
Pt/s from It/s consists of two types, i.e. pjt/s from Pt

of It and pit/s from Pt+δ of It+δ . Then, the next stage
is to learn how to reconstruct Pt from Pt/s. Since pit/s
includes all changes between It and It/s, more emphasis
is placed on pit/s during reconstruction process. Theoreti-
cally, the ground truth of the index of pit/s in Pt/s can be
utilized to enforce the model focusing on these swapped
patches. However, adopting this information may reduce
the learning capability to spot these microchanges. There-
fore, a novel attention mechanism named Diagonal Micro-
Attention (DMA) is presented to enforce the network au-
tomatically focusing on swapped patches pit/s and equip it
with the ability to precisely spot and identify all changes
between images. Notice that these changes may include
patches in the background. The following section intro-
duces a solution to constrain the learned network focusing
on only meaningful facial regions. The details of DMA are
presented in Figure 5. Formally, we construct an attention
map Â between Pt+δ and Pt/s where the diag(Â) illus-
trates correlations between two corresponding patches pit+δ

Figure 5. Diagonal Micro-Attention (DMA) module. Diagonal
values from the attention map between Pt/s and Pt+δ are used to
rank the importance of each patch in the swapped image.

and pit/s. From the observation that Â(i, i) > Â(j, j) for

all pit/s ∈ Pt+δ and pjt/s ∈ Pt, diag(Â) can be effectively
adopted as weights indicating important features. Full op-
erations of DMA are presented in Eqn. (8) and Eqn. (9).

Â = softmax
(
Q(Pt+δ)⊗K(Pt/s)

T
)
,

Np∑
j=0

Â(i, j) = 1 (8)

Pdma = diag(Â)× V (Pt/s) (9)

where × denotes the Element-wise multiplication operator.

4.6. Patch of Interest (POI)

In Section 4.5, Diagonal Micro-Attention has been in-
troduced to weigh the importance of swapped patches auto-
matically. These swapped patches are randomly produced
via Blockwise Swapping, as in Algorithm 1. In theory, the
ideal case is when all swapped patches are located within
the facial region only so that the deep network can learn
the micro-movements from the facial parts solely and not
be distracted by the background. In practice, however, we

Algorithm 1 Blockwise Swapping
Input: Pt,Pt+δ image patches (Np = h×w); rs: swapping
ratio (default: 0.5); min bs: minimum block size (default: 16);
min ar: minimum aspect ratio (default: 0.3)
Output: Swapped image patches Pt/s

Pt/s ← Pt; Np ← |Pt|
c← 0
while c ≤ rs ×Np do

bs← rnd(min bs, rs ×Np − c)
ar ← rnd(min ar, 1/min ar)
m,n←

√
bs · ar,

√
bs/ar

p, q ← rnd(0, h−m), rnd(0, w − n)
∀i ∈ [p, p+m), j ∈ [q, q + n) :

k ← i× w + j
Pt/s(k)← Pt+δ(k)

c← c+m× n
end while
return Pt/s
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Figure 6. Patch of Interest (POI) module. The Pt and Pt+δ/c

are sequence of patch features of It+δ and its random cropped ver-
sion. pCT

t+δ and pCT
t+δ/c are their corresponding contextual features.

can only identify which parts are selected in the Block-
wise Swapping algorithm if the facial regions are available.
Thus, the Patch of Interest (POI) is introduced to automati-
cally explore the salient regions and ignore the background
patches in an image. Apart from prior methods, the pro-
posed POI leverages the characteristic of self-attention and
can be achieved through self-learning without facial labels,
such as facial bounding boxes or segmentation masks. The
idea of the POI module is illustrated in Figure 6. Thanks
to POI, a capability of automatically focusing on facial re-
gions is further equipped to the learned model, making it
more robust against facial movements.

The POI relies on the contextual agreement between the
frame It+δ and Crop(It+δ). Motivated by the BERT frame-
work, we add a Contextual Token zCT to the beginning of
the sequence of patches, as in Eqn. (2), to learn the contex-
tual information in the image. The deeper this token passes
through the Transformer blocks, the more information is ac-
cumulated from zit ∈ Pt. As a result, zCT becomes a place-
holder to store the information extracted from other patches
in the sequence and present the contextual information of
the image. Let pCT

t+δ and pCT
t+δ/c be the contextual features

of frame It+δ and its cropped version Crop(It+δ) respec-
tively. The agreement loss is then defined as in Eqn. (10).

Lagg = H(pCT
t+δ, p

CT
t+δ/c) (10)

where H is the function that enforces pCT
t+δ to be similar to

pCT
t+δ/crop so that the model can discover the salient patches.

The POI can be extracted from the attention map A at the
last attention layer of encoder E . In particular, we measure:

St+δ = A [0, :] =
[
s0t+δ, s

1
t+δ, . . . s

Np−1

t+δ

]
(11)

where
∑Np−1

i=0 sit+δ = 1. The higher the score sit+δ , the
richer the patch contains contextual information. Now, Eqn.
(9) can be reformulated as in Eqn. (12).

W = diag(Â)× St+δ

Pdma = W× V (Pt/s)
(12)

4.7. Loss Functions

The proposed µ-BERT deep network is optimized using
the proposed loss function as in Eqn. (13).

L = γ × Lr + β × Lagg (13)

where γ and β are the weights for each loss.
Reconstruction Loss. The output of the decoder y′

t is re-
constructed to the original image It using the Mean Square
Error (MSE) function.

Lr = MSE(y′
t, It) (14)

Contextual Agreement Loss. MSE is also used to enforce
the similarity of contextual features of It+δ/crop and It+δ

Lagg = MSE(pCT
t+δ, p

CT
t+δ/crop) (15)

5. Experimental Results
5.1. Datasets and Protocols

CASME II [50]. With a 200 fps sampling rate and a facial
resolution of 280 × 340, CASME II provides 247 micro-
expression samples from 26 subjects of the same ethnicity.
Labels include apex frames, action units, and emotions.
SAMM [6]. Also, using a 200 fps frame rate and a facial
resolution of 400 × 400, SAMM consists of 159 samples
from 32 participants and 13 ethnicities. The samples all
have emotions, apex frames, and action unit labels.
SMIC [15]. SIMC is made up of 164 samples. Lacking
apex frame and action unit labels, the samples span 16 par-
ticipants of 3 ethnicities. The recordings are taken with a
resolution of 640× 480 at 100 fps.
CASME3 [14]. Officially known as CAS(ME)3 provides
1,109 labeled micro-expressions and 3,490 labeled macro-
expressions. This dataset has roughly 80 hours of footage
with a resolution of 1280× 720.

5.2. Micro-Expression Self-Training

We use all raw frames from CASME3 for self-training
except frames of test set. It is important to note that we
do not use labels or meta information such as onset, offset,
and apex index frames nor labeled emotions. In total, we
construct an unlabelled dataset of 8M frames. The images
are resized to 224 × 224. Then, each image is divided into
patches of 8 × 8, yielding Np = 784 patches. The tem-
poral index δ is selected randomly between a lower bound
of 5 and an upper bound of 11, experimentally. The swap-
ping ratio rs is selected as 50% of the number of patches
being swapped from It+δ to It. Each patch is projected
to a latent space of d = 512 dimensions before being fed
into the encoder and decoder. For the encoder and decoder,
we keep the same d for all vectors and similar configura-
tions, i.e., Le = Ld = 4. µ-BERT is implemented easily in
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Figure 7. We demonstrate how µ-BERT perceives the tiny differences between two frames. The first two rows are onset and apex input
frames. The third and fourth rows are the results of RAFT and MagNet, respectively. The rest of the rows are our µ-BERT results.

Pytorch framework and trained by 32 × A100 GPUs (40G
each). The learning rate is set to 0.0001 initially and then
reduced to zero gradually under ConsineLinear [24] policy.
The batch size is set to 64/GPU. The model is optimized
by AdamW [25] for 100 epochs. The training is completed
within three days.

5.3. Micro-Expression Recognition
We leverage the pretrained µ-BERT as an initial weight

and take the encoder E and DMA module of µ-BERT as
the MER backbone. The input of MER is the onset and
apex frames which correspond to It and It+δ respectively.
In Eqn. (8), Pdma are the features representing the micro
changes and movements between onset and apex frames.
They can be effectively adopted for recognizing micro-
expressions. We adopt the standard metrics and protocols
of MER2019 challenge [34] with the unweighted F1 score
UF1 = 1

C

∑C−1
i=0

2×TPi

TPi+FPi+FNi
and accuracy UAR =

1
C

∑C−1
i=0

TPi

Ni
, where C is the number of MEs, Ni is the

total number of ith ME in the dataset. Leave-one-out cross-
validation (LOOCV) scheme is used for evaluation.

5.4. Results

Our proposed µ-BERT shows a significant improve-
ment over prior methods and baselines, as shown in Ta-
ble 1 on the CASME3. Tested using 3, 4, and 7 emotion

classes, µ-BERT achieves double-digit gains over the com-
pared methods in each category. In the case of 3 emotion
classes, µ-BERT achieved a 56.04% UF1 score and 61.25%
UAR, compared to RCN-A’s [49] 39.28% UF1 and 38.93%
UAR. For 4 emotion classes, µ-BERT outperforms Baseline
(+Depth) [14] 47.18% to 30.01% for UF1 and 49.13% to
29.82% for UAR. Large gains over Baseline (+Depth) [14]
are seen in the case of 7 emotion classes, where µ-BERT
attains UF1 and UAR scores of 32.64% and 32.54% respec-
tively, compared to 17.73% and 18.29% for the baseline.

Table 2 details results for CASMEII. µ-BERT shows im-
provements over all other methods. For three categories,
it achieves a UF1 of 90.34% and UAR of 89.14%, repre-
senting 3.37% and 0.86% increases over the prior leading
method (OFF-ApexNet [8]), respectively. Similar improve-
ment is seen in five categories: a 4.83% over TSCNN [35]
in terms of UF1 and a 0.89% increase over SMA-STN [19]
for UAR. Similarly, µ-BERT performs competitively with
other methods on the SAMM as seen in Table 3. Using 5
emotion classes, µ-BERT outperforms MinMaNet [47] by
a large margin in terms of UF1 (83.86% vs 76.40%) and
UAR (84.75% vs 76.70%), respectively. The performance
of µ-BERT on SMIC is compared against several others in
Table 4. µ-BERT outperforms others with a 7.5% increase
in UF1 to 85.5% and a 3.97% boost in UAR to 83.84%.

On the composite dataset, µ-BERT again outperforms
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Table 1. MER on the CASME3 dataset.

Method # Classes UF1 (%) UAR(%)

FR [54] 3 34.93 34.13

STSTNet [18] 3 37.95 37.92

RCN-A [49] 3 39.28 38.93

µ-BERT (ours) 3 56.04 61.25

Baseline [14] 4 29.15 29.10

Baseline (+Depth) [14] 4 30.01 29.82

µ-BERT (ours) 4 47.18 49.13

Baseline [14] 7 17.59 18.01

Baseline(+Depth) [14] 7 17.73 18.29

µ-BERT (ours) 7 32.64 32.54

Table 2. MER on CASME II dataset.

Method # Classes UF1 (%) UAR (%)

LR-GACNN [10] 5 70.90 81.30

AMAN [46] 5 71.00 75.40

Graph-TCN [13] 5 72.46 73.98

DSTAN [44] 5 73.00 75.00

GEME [28] 5 73.54 75.20

MiMaNet [47] 5 75.90 79.90

SMA-STN [19] 5 79.46 82.59

TSCNN [35] 5 80.70 80.97

µ-BERT (ours) 5 85.53 83.48

STSTNet [17] 3 83.82 86.86

OFF-ApexNet [8] 3 86.97 88.28

MAE [9] 3 88.03 87.28

µ-BERT (ours) 3 90.34 89.14

Table 3. MER on SAMM dataset.

Method # Classes UF1 (%) UAR (%)

AMAN [46] 5 67.00 68.85

SMA-STN [19] 5 70.33 77.20

GRAPH-AU [12] 5 70.45 74.26

MTMNet [48] 5 73.60 74.10

MiMaNet [47] 5 76.40 76.70

MAE [9] 5 80.40 88.98

µ-BERT (ours) 5 83.86 84.75

other methods (Table 5). Attaining a UF1 score of 89.03%
and UAR of 88.42%, µ-BERT realizes 0.73%, and 0.82%
gains over previous best MiMaNet [47], respectively. Table
6 shows the impact of DMA and POI on CASME3. Our

Table 4. MER on SMIC dataset.

Method # Classes UF1 (%) UAR (%)

DIKD [36] 3 71.00 76.06

TSCNN [35] 3 72.36 72.74

MTMNet [48] 3 74.40 76.00

AMAN [46] 3 77.00 79.87

MiMaNet [47] 3 77.80 78.60

DSTAN [44] 3 78.00 77.00

MAE [9] 3 81.86 80.82

µ-BERT (ours) 3 85.50 83.84

method gives more modest gains of approximately 2% in
both metrics. A greater improvement is seen with DMA,
where UF1 and UAR increase by another 2-4%. Signif-
icant improvement from µ-BERT is seen when adopting
both modules, with a UF1 of 32.64% and UAR of 32.54%,
representing roughly 10% gains over previous methods.

5.5. How µ-BERT perceives micro-movements

To understand the micro-movements between two
frames, the onset and apex frames are inputs for µ-
BERT. These frames represent the moments that the micro-
expression starts and is observed. We measure diag(Â)
(Subsection 4.5) and St+δ (Eqn (11)) values to iden-
tify which regions contain small movements between two
frames. Comparisons of µ-BERT with RAFT [37], i.e.,
optical flow-based method and MagNet [29] are also con-
ducted as in Fig. 7. The third and fourth columns in Fig 7
show the results of RAFT [37], and MagNet [29] on spot-
ting the micro-movements, respectively. While RAFT is an
optical flow-based method, MagNet amplifies small differ-
ences between the two frames. These methods are sensi-
tive to the environment (e.g., lighting, illuminations). Thus,
noises in the background still exist in their outputs. In ad-
dition, neither RAFT nor MagNet understand semantic in-
formation in the frame and distinguish changes inside fa-
cial or background regions. Meanwhile, µ-BERT shows its
advantages in perceiving micro-movements via distinguish-
ing the facial regions and spotting the micro-expressions.
In particular, the attention map in the fifth column, in Fig.
7 illustrates the micro-differences between onset and apex
frames. The higher contrast represents the higher chance of
small movements in these regions. With the POI module, µ-
BERT can automatically figure out the informative patches
and ignore the background ones. Then, with DMA mod-
ule, µ-BERT, can detect and localize which corresponding
patches/regions contain tiny movements. As shown in the
seventh column, attention maps represent the most salient
regions in the image. By empowering DMA and POI, µ-
BERT effectively identifies micro-movements within facial
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Table 5. MER on the Composite dataset (MECG2019).

Method # Classes UF1 (%) UAR(%)

Dual-Inception [55] 3 73.22 72.78

FR [53] 3 78.38 78.32

NMER [20] 3 78.85 78.24

GRAPH-AU [12] 3 79.14 79.33

ICE-GAN [52] 3 84.50 84.10

BDCNN [3] 3 85.09 85.00

moment [48] 3 86.40 85.70

MiMaNet [47] 3 88.30 87.60

MAE [9] 3 88.50 87.40

µ-BERT (ours) 3 89.03 88.42

regions, as demonstrated in the last column.

5.6. Ablation studies
This section compares µ-BERT against other self-
supervised learning (SSL) methods on the MER task.
CASME3 is used for experiments since it has many un-
labelled images to demonstrate the power of SSL meth-
ods. We also analyze the essential contributions of Diag-
onal Micro-Attention (DMA) and Patch of Interest (POI)
modules. Finally, we illustrate the robustness of µ-BERT
pretrained on CASME3 on unseen datasets and domains.
Comparisons with self-supervised learning methods. We
utilize the encoder and decoder parts of µ-BERT (without
DMA and POI) to train previous SSL methods (MoCo
V3 [4], BEIT [1], MAE [9]) and then continue learning
the MER task on the large-scale database CASME3 [14].
Overall results are shown in Table 6. It is expected that
ViT-S achieves the lowest performance for UF1 and UAR
as ImageNet and Micro-Expression are two different do-
mains. Three self-supervised methods (MoCo V3, BEIT,
and MAE) got better results when they were pretrained on
CASME before fine-tuning to the recognition task. Com-
pared to ViT-S, these SSL methods gain remarkable perfor-
mance. Especially, MAE [9] achieves 3.5% and 2% up on
UF1 and UAR compared to ViT-S, respectively.
The role of Blockwise Swapping. Our basic setup of µ-
BERT (denoted as MB1) is employed to train in an SSL
manner. It is noted that only Blockwise Swapping is in-
volved, and it does not contain either DMA or POI. Com-
pared to MAE, MB1 outperforms MAE by 2% in both UF1
and UAR, approximately. The reasons are: (1) Blockwise
Swapping enforces the model to learn local context features
inside an image, i.e., It, and (2) It helps the network to fig-
ure out micro-disparities between two frames It and It+δ .
The role of DMA. This module is the guide to tell the net-
work where to look and which patches to focus. By do-
ing so, the µ-BERT gets more robust knowledge of micro-

Table 6. MER performance on CASME3 by different self-
supervised methods and various settings of µ-BERT

Method Pre-train DMA POI UF1 UAR

ViT-S [7] ImageNet ✗ ✗ 20.34 18.76
MoCo V3 - R50 [4] CASME3 ✗ ✗ 19.12 17.36
MoCo V3 - R101 [4] CASME3 ✗ ✗ 20.14 18.52

MoCo V3 [4] CASME3 ✗ ✗ 22.13 19.34
BEIT [1] CASME3 ✗ ✗ 23.54 19.89
MAE [9] CASME3 ✗ ✗ 23.86 20.87

µ-BERT (MB1) CASME3 ✗ ✗ 25.27 22.96
µ-BERT (MB2) CASME3 ✓ ✗ 27.35 26.18
µ-BERT (MB3) CASME3 ✓ ✓ 32.64 32.54

movements between two frames. For this reason, the net-
work (denoted as MB2) achieves 2% on UF1 and a signifi-
cant 4% gain on UAR compared to MB1.
The role of POI. Since MB1 are sensitive to background
noise, the micro-disparities features Pdma might contain
unwanted features coming from the background. The POI
is designed as a filter that only lets the typical interesting
patches belonging to the subject go through and preserves
the micro-movement features only. The improvements of
up to 6% compared to MB2 demonstrate the important role
of POI in µ-BERT for micro-expression tasks. Qualitative
results demonstrated in Supplementary Material can further
emphasize the advantages of POI in assisting the network
to be robust against facial movements.

6. Conclusions and Discussions
Unlike a few concurrent research on micro-expression,

we move forward and study how to explore BERT pretrain-
ing for this problem. In our proposed µ-BERT, we pre-
sented a novel Diagonal Micro Attention (DMA) to learn
the micro-movements of the subject across frames. The
Patch of Interest (POI) module is proposed to guide the net-
work, focusing on the most salient parts, i.e., facial regions,
and ignoring the noisy sensitivities from the background.
Empowered by the simple design of µ-BERT, SOTA perfor-
mance on micro-expression recognition tasks is achieved in
four benchmark datasets. Our perspective will inspire more
future study efforts in this direction.
Limitations. We demonstrated the efficiency of the POI
module in removing noise in the background, which is sen-
sitive to lighting and illumination. However, suppose any
facial parts, e.g., the forehead, are affected by lighting con-
ditions while there are no movements. In that case, these
noisy factors might also be included as micro-difference
features. The robustness with different lighting conditions
will be left as our future works.
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