
TIPI: Test Time Adaptation with Transformation Invariance

A. Tuan Nguyen1, Thanh Nguyen-Tang2,
Ser-Nam Lim3*, Philip H.S. Torr1*

1University of Oxford, 2Johns Hopkins University, 3Meta AI
tuan@robots.ox.ac.uk, nguyent@cs.jhu.edu

sernamlim@meta.com, philip.torr@eng.ox.ac.uk

Abstract

When deploying a machine learning model to a new en-
vironment, we often encounter the distribution shift prob-
lem – meaning the target data distribution is different from
the model’s training distribution. In this paper, we assume
that labels are not provided for this new domain, and that
we do not store the source data (e.g., for privacy reasons).
It has been shown that even small shifts in the data distri-
bution can affect the model’s performance severely. Test
Time Adaptation offers a means to combat this problem,
as it allows the model to adapt during test time to the new
data distribution, using only unlabeled test data batches. To
achieve this, the predominant approach is to optimize a sur-
rogate loss on the test-time unlabeled target data. In par-
ticular, minimizing the prediction’s entropy on target sam-
ples [34] has received much interest as it is task-agnostic
and does not require altering the model’s training phase
(e.g., does not require adding a self-supervised task dur-
ing training on the source domain). However, as the tar-
get data’s batch size is often small in real-world scenarios
(e.g., autonomous driving models process each few frames
in real-time), we argue that this surrogate loss is not op-
timal since it often collapses with small batch sizes. To
tackle this problem, in this paper, we propose to use an in-
variance regularizer as the surrogate loss during test-time
adaptation, motivated by our theoretical results regarding
the model’s performance under input transformations. The
resulting method (TIPI – Test tIme adaPtation with transfor-
mation Invariance) is validated with extensive experiments
in various benchmarks (Cifar10-C, Cifar100-C, ImageNet-
C, DIGITS, and VisDA17). Remarkably, TIPI is robust
against small batch sizes (as small as 2 in our experiments),
and consistently outperforms TENT [34] in all settings. Our
code is released at https://github.com/atuannguyen/TIPI.

*The last two authors contributed equally

1. Introduction

Distribution shift is a common problem and is often
faced in real-world applications. Specifically, despite tak-
ing various precautions while training a machine learning
model to ensure a better generalization (e.g., collecting
and training on multiple source domains [17, 27], finding
flat minima [5], training with meta-learning objectives [16]
etc.), the model often still struggles when the test data dis-
tribution shifts slightly. Note that it is also common not
to have labels for the new shifted domain during test time.
To tackle this problem, test time adaptation (also known as
online domain adaptation) is a framework that allows the
model to adapt to the target distribution using unlabeled
test data batches. This is necessary since we typically do
not have time to annotate the data during test time and can
only make use of the unlabeled data. In this framework,
the model needs to give predictions for the target data while
simultaneously updating itself to improve its performance
on that particular target distribution. We assume a situation
in which the target data only arrive in small batches, which
makes the adaptation task extremely challenging and ren-
ders traditional domain adaptation techniques such as rep-
resentation alignment (via a distance metric) ineffective.

Within this test time adaptation framework, a common
and effective approach is to optimize a surrogate objective
function in lieu of the true loss function on the target data.
The first group of surrogate objectives is the loss functions
of self-supervised tasks. In particular, one would formu-
late a user-defined task (such as predicting the rotation an-
gle of an image) and train it alongside the main task on
the source domain; and keep training the self-supervised
task on the test-time target data [19, 33]. However, these
are not fully test-time adaptation methods, since they re-
quire altering the training procedure of the source domain.
The second line of surrogate objectives is unsupervised loss
functions. Among this group of unsupervised objectives,
entropy minimization (TENT) [34] is the most successful
method, and has been shown to be consistent across many
benchmarks. Furthermore, different from the former group,

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

24162

TENT is a fully test-time adaptation method. For these rea-
sons, TENT has received much interest and a lot of follow-
up papers/discussions.

However, as pointed out by its authors, TENT is not ro-
bust when using small batch sizes, as it often collapses to a
trivial solution (i.e., it always predicts the same class for all
input). This is detrimental to real-world applications since
test data often arrive in small batches. For example, au-
tonomous driving systems only process a few frames in real
time – they typically do not accumulate the frames (let’s say
within one minute) to form a bigger batch. Note that TENT
is previously evaluated mainly for large batch sizes (such as
64,128 or 200).

In this paper, we aim to tackle the aforementioned prob-
lem. Specifically, we aim to develop an unsupervised sur-
rogate objective function for the test time adaptation prob-
lem such that it is task-agnostic, does not require altering
the training procedure (e.g., does not require incorporating
a self-supervised task into the training process), and is more
resilient against small batch sizes.

We first provide theoretical results regarding a model’s
performance under input transformations. Specifically, we
show that a model’s loss on a data distribution is bounded
by the KL distance on the predictive distribution of the data
before and after the transformations (which we will use as
a regularizer), and its loss on the transformed data distri-
bution. Motivated by this result, we use small shifts in the
input images that can simulate real source-target shifts, and
enforce the network to be invariant under such data transfor-
mations. Our model outperforms TENT (and other relevant
baselines) in all problem settings considered in the paper
and is remarkably robust in the small-batch-size regime.

Our contributions in this paper are threefold:

• We provide theoretical results regarding a model’s
performance under transformations of the input data.
Specifically, a model’s performance on the target do-
main is bounded by an invariance term (maximum KL
divergence of the predictive distributions before and
after the transformations) and its loss on the trans-
formed domain.

• We propose to find input transformations that can sim-
ulate the domain shifts, and enforce the network to
be invariant under such transformations, using a reg-
ularizer based on our derived bound. The resulting
method is TIPI (Test tIme adaPtation with transfor-
mation Invariance).

• We perform extensive experiments on a wide range
of datasets (Cifar10-C, Cifar100-C, ImageNet-C, DIG-
ITS, and VisDA17) and settings (varying batch sizes)
to validate our method. TIPI shows preferable perfor-
mance compared to relevant baselines.

2. Related Works
Distribution Shift is an important and commonly faced
problem when deploying machine learning models in real-
world applications. There are two main approaches that try
to alleviate this problem. The first setting is domain general-
ization [1,17,23,26,27], where one aims to collect multiple
source domains and learn a generalizable model based on
those domains. Another setting is (unsupervised) domain
adaptation [2, 6, 18, 21, 28], where a model is trained on a
labeled source dataset and we attempt to adapt that model to
a target distribution with the help of unlabeled target data.
This paper focuses on the latter setting, in particular, the
test-time domain adaptation variation.

Test Time Domain Adaptation: In this setting, the unla-
beled target data is not available during the training phase
of the source model. Instead, the model only has access to
the target data when deployed in the target environment, as
the stream of test data batches. As a consequence, the un-
labeled target data is not available in large quantities, but
only in small batches. This makes the adaptation task ex-
tremely challenging. So far, there are two main lines of
work dealing with this online adaptation problem. The first
approach is based on the batch normalization layer in the
network, with the idea of using the test-time batch statistics
for these layers instead of the source statistics [24,32]. This
can partially help with the representation misalignment be-
tween the source and target distributions but is only applica-
ble when the network has BatchNorm layers and the batch
size is large. The other line of work is to use an unsuper-
vised surrogate loss to “refine” the model on the target data.
For example, TENT [34] minimizes the prediction entropy
of the model on the target data. However, as pointed out by
its authors, TENT needs a large batch size to avoid collaps-
ing to a trivial prediction (only output one class), due to the
characteristics of this surrogate objective. Meanwhile, TTT
[33] and TTT+++ [19] train a self-supervised task alongside
the main task on the source domain, and continue to train
the self-supervised task during the online adaptation phase.
Therefore, TTT and TTT++ are not fully off-the-shelf test-
time adaptation methods, since they require modifications
to the training phase of the source domain (to incorporate
the self-supervised task). Recently, [8] generalizes TENT
to other source loss functions (beyond the typical cross-
entropy loss). There also have been several works [29] that
study datapoints selection strategies for optimizing the un-
supervised surrogate loss (e.g., TENT): only optimize the
loss for reliable and informative datapoints. Note that this
line of research is orthogonal/complementary to ours and
we believe that our surrogate loss will also benefit from
similar datapoints selection strategies. We leave exploring
this direction to future work. Using a completely differ-
ent approach, T3A [12] replaces the last linear layer (clas-
sification layer) with a nonparametric classifier and keeps
updating the support set of each class with the new target

24163

datapoints. T3A is robust against small batch sizes (since
it is not optimization-based), but is not as effective as other
optimization-based methods (e.g., TENT, TTT, and ours).

Connection between Adversarial Robustness and Ro-
bustness against Distribution shift: It has been observed
that adversarially trained models generally perform bet-
ter under certain types of domain shifts (for example,
see the leaderboard of Robustbench [4] for Cifar10-C and
Cifar100-C). Indeed, one might expect this to be the case if
the space of adversarial attacks matches the space of distri-
bution shifts. While it is not previously well understood, our
paper sheds some light on this phenomenon. Note that dif-
ferent from previous works, our method enforces an unsu-
pervised robustness loss during the online adaptation phase,
not at the source training stage.

3. Approach
3.1. Problem setting

Assume that we have a source domain with the distri-
bution pS(x, y), where x ∈ X is the input and y ∈ Y
is the prediction target. Similar to prior works, we con-
sider the classification problem, where Y = {1, 2, . . . , C}
(however, the approach can be straightforwardly extended
to regression problems). Suppose that using data from the
source domain, we already successfully trained a model
fθ : X → RC , where θ is the parameter of the neu-
ral network and fθ(x) outputs the prediction probabilities
for the C classes (∥fθ(x)∥1 = 1 and 0 ≤ fθ(x)i ≤
1,∀i ∈ {1, 2, . . . , C}). This leads to a predictive distri-
bution p̂θ(y|x), which is the categorical distribution where
p̂θ(y = i|x) = fθ(x)i. Note that, for our method, we will
not assume or require any modifications to the training pro-
cess of the model fθ on the source domain – a setting that
is common and useful (e.g., a Resnet50 model downloaded
directly from torchvision).

After that, this model is deployed to the target environ-
ment with data distribution pT (x, y). The model receives
target data as a stream of unlabeled mini-batches (probably
with small and varying sizes). The task is to adapt to this
environment simultaneously and continually with only the
unlabeled mini-batches.

The expected loss of this model on a data distribution
q(x, y) (for example, q(x, y) = pT (x, y)) is:

ℓ(θ, q(x, y)) = Eq(x) [l[q(y|x), p̂θ(y|x)]] , (1)

where l is a loss function (distance/divergence) between
the true labeling distribution q(y|x) and the predictive
distribution p̂θ(y|x). This loss is not actually computed
in practice for both the source and target data (we simply
do not have labeled data for both of those), and it is used
for theoretical discussion only. To make the theoretical
discussion simpler, in this paper, we will consider the
simple l1 distance between the two distributions. However,

note that our theoretical discussion also holds for other
divergences such as the Jensen-Shannon divergence (or
symmetric KL). Both of these distances satisfy the triangle
inequality, which we use in our derivation.

3.2. Test Time Domain Adaptation with Transfor-
mation Invariance

Recall that the task is to gradually update the network pa-
rameter θ so that the model can adapt to the target domain.
In this setting, we do not have access to the source data nor
a large amount of target data (only small batches), so tradi-
tional domain adaptation approaches such as representation
alignment are often infeasible.

Given access only to the batches of unlabeled target data,
it is natural to try to come up with a surrogate objective to
optimize in lieu of the true loss function (which is not avail-
able without the labels). In this sense, this has a close re-
semblance to the semi-supervised learning problem. In both
settings, we aim to find a surrogate function to optimize
for unlabeled data. In fact, both the entropy-minimization
and pseudo-labeling techniques have been borrowed from
the semi-supervised literature, with varying degrees of suc-
cess. It should be noted that, in semi-supervised learning,
the surrogate loss on the unlabeled data is minimized jointly
with the supervised objective for labeled data, thus model
collapsing is often not a problem. It is much more chal-
lenging, however, in this online adaptation setting, since the
unsupervised surrogate loss is optimized alone, which can
lead to the catastrophic collapse of the network parameter
(such that it can not perform prediction anymore, even for
the source domain). For example, as pointed out by its au-
thors, TENT [34] tends to collapse to a trivial model if the
batch size is small, which is often the case in practice.

In this paper, we examine the invariance regularization
technique in the setting of test time domain adaptation.
Note that a similar regularizer ([3,22,31]) has been applied
to semi-supervised learning. However, to the best of our
knowledge, we are the first to investigate this type of regu-
larization in the online domain adaptation problem. We aim
to investigate both theoretically and empirically how this
technique can help with adapting to the new target domain.
We also find that this surrogate loss is much more robust
(against small batch sizes) compared to TENT.

To summarize, we propose to enforce the network to be
invariant under a predefined space of transformations on the
data on the target domain. The idea is that this space of
transformations contains the actual domain shifts, or at least
could simulate them. Specifically, we minimize θ with the
following objective:

min
θ

EpT (x)

[
max

x′∈A(x)
KL

[
p̂θ(y|x′), p̂θ(y|x)

]]
, (2)

where θ is an identical copy of θ, and A(x) = {t(x)}t∈St

24164

Algorithm 1 Adapt and predict. θ is the network parameter,
{xi}ni=1 is the batch data, α is the learning rate for online
adaptation

Input θ, {x1, x2, ..., xn}
Output θnew (newly adapted), {ŷ1, ŷ2, ..., ŷn}
1: function ADAPT-PREDICT(θ, {x1, x2, ..., xn})
2: pi ← fθ(xi).detach() ▷ stop gradient
3: x′

i ← argmaxx′∈A(xi) KL[pθ(y|x′), pi]

4: l(θ) = 1
n

∑n
i=1 KL[pθ(y|x′

i), pi]
5: θnew = θ − α∇θl(θ)
6: ŷi = argmax fθnew(xi)
7: end function

(St is the predefined set of transformations).
We present the motivations and derivations of this ob-

jective function in the next subsection. The adapting and
predicting procedure is depicted in Algorithm 1.

3.2.1 Invariance Regularization Technique

In this subsection, we introduce the invariance regulariza-
tion technique for general transformations and provide theo-
retical results regarding the online domain adaptation prob-
lem, which will later motivate our method.

Let’s consider a set of transformations St, where each
t ∈ St is a transformation of the data, i.e., t : X → X .
Ideally, St should contain the transformations responsible
for the domain shift. This set can contain transformations
such as data augmentations, GAN-like cross-domain trans-
formations, random noise perturbation, etc. For now, we
shall not care much about the type of transformations in
St. The only important detail is that these transformations
should preserve the class information (this is formalized in
Assumption 1). Let A(x) = {t(x)}t∈St

and let pt(t) be a
distribution over St that assigns probability mass (or den-
sity) to each transformation t ∈ St. Each distribution pt(t)
defines a conditional distribution T (xt|x) (with the support
set A(x)), where xt = t(x), t ∼ pt(t). This in turn defines
a joint distribution over x, xt and y as:

pT (x, x
t, y) = pT (x, y)T (x

t|x). (3)

It is also worth noting that we have a transformed data
distribution pT (x

t, y) of xt and y (just marginalizing out x
from the above).

Assumption 1.

IT (x, y) = IT (x
t, y), (4)

where IT is the mutual information, calculated on the tar-
get domain (please refer to the Supplementary Material for
their exact formula).

Intuitively, this assumption means that the transformed
image xt contains the same amount of information about

the label y as the original image x does. This assump-
tion is equivalent to EpT (x,xt) [KL[pT (y|x), pT (y|xt)]] = 0
(a derivation can be found in the supplementary material),
meaning that pT (y|x) = pT (y|xt) almost surely.

The transformation invariance regularizer on the target
domain can be defined simply as:

h(θ, x) = max
x′∈A(x)

D
[
p̂θ(y|x), p̂θ(y|x

′)
]
, (5)

where D[·, ·] is a divergence/distance of choice and θ is
an identical copy of θ (so that the gradient is not back-
propagated through it). We will see later (through an anal-
ysis of the gradient) that this is extremely important. Intu-
itively, it also helps to alleviate the network collapse prob-
lem, since, without this gradient blocking, the network
would easily collapse to a constant output to minimize the
regularizer term.

Intuitively, we can view this objective as using p̂θ(y|x)
as the target to optimize p̂θ(y|t(x)) for all transformation
t. This makes sense because, as discussed earlier, t does
not change the semantic meaning of x significantly, so the
predictive distribution of x and t(x) should be similar.

Based on this regularizer, we can bound the loss on the
target domain as follows:

Proposition 1. Under Assumption 1, if D in Eq. 5 is either
the forward or reverse KL divergence, we have:

ℓ(θ, pT (x, y)) ≤ EpT (x)

[√
2h(θ, x)

]
+ ℓ(θ, pT (x

t, y)).

Proof. Provided in the Supplementary Material.

This means that the loss on the target distribution is
bounded by the invariance regularizer and the loss on the
transformed distribution pT (x

t, y).
Now, assume for a moment (even if it is not realistic) that

the set St contains all the transformations that can success-
fully transform the target data distribution pT (x, y) back to
the source distribution pS(x, y) (i.e., there exists a distribu-
tion pt(t) over St such that the resulting transformed dis-
tribution pT (x

t, y) is the same with pS(x, y)). Then, we
have that the loss on the target domain is bounded by the
loss on the source domain and our invariance regularizer.
Assume also that while adapting to the new target domain,
our model does not suffer from catastrophic forgetting of
the source domain (which is often the case if the network
does not collapse since we are adapting to the same task in
a different environment). Then we have that the loss on the
source domain would be small, and the invariance regular-
izer would also be small (since we explicitly minimize it).
As a consequence, the loss on the target domain would be
small and we can guarantee a good adaptation performance.

However, knowing the exact transformations from the
target domain back to the source domains is often infea-
sible (only possible if we have some prior domain knowl-
edge). This motivates us to find other transformations that

24165

are task-agnostic and can simulate the distribution shift be-
tween the target and source domains.

3.2.2 Practical choice of the transformation set

We want to choose task-agnostic transformations such that
they do not alter the semantic meaning of the image signif-
icantly, while they can simulate the distribution shift. The
first idea that comes to mind is to use common image aug-
mentations (e.g., random crop, random vertical flip, etc.)
However, our early experiments suggest that this method is
not consistent across corruption types/domain shifts. This
makes sense since image augmentations are often heuristic,
and they may be able to simulate certain types of distribu-
tion shifts, but not others. Therefore, we opt to use l∞-norm
based perturbations. Empirically, this leads to better perfor-
mance and also is consistent across domains/tasks.

To summarize, we use the l∞-norm based perturbations
as the transformations of images. Empirically, we also
found out that using the reverse KL leads to better perfor-
mance (although almost all distances/divergences have pos-
itive results). We provide explanations/intuitions as to why
we should prefer the reverse KL, and why adversarial ex-
amples can help with the distribution shift problem in the
next subsection. Our final optimization problem is:

min
θ

EpT (x)

[
max

||x′−x||∞≤ϵ
KL

[
p̂θ(y|x′), p̂θ(y|x)

]]
. (6)

We name our method TIPI (Test tIme adaPtation with
transformation Invariance). To save computational cost, we
use the single-step adversarial method FGSM [7] to find the
adversarial example x′. Note that one can also use more
advanced methods such as PGD [20] to find the adversarial
perturbation to get better results (but with the trade-off of
speed). We set ϵ to 2/255 in all of our experiments.

3.2.3 Additional Discussions

Why preferring reverse KL over forward KL? Natu-
ral choices for D are the KL-divergences (forward or re-
verse KL), since they can be computed straightforwardly for
the predictive distributions, and also are commonly used in
practice for similar problems (e.g., VAT [22] uses the for-
ward KL). Our experiments empirically suggest that using
the reverse KL as the divergence D leads to better results
compared to the forward KL. Here, we also give theoretical
intuition as to why it is the case. First of all, let’s consider
the gradient of θ with respect to both the forward and re-
verse KL:
For the forward KL:

∇θKL[p̂θ(y|x), p̂θ(y|x
′)] =

∑
y∈Y
−

p̂θ(y|x)
p̂θ(y|x′)

∇θp̂θ(y|x′).

(7)

Meanwhile, for the reverse KL:

∇θKL[p̂θ(y|x′), p̂θ(y|x)]

=
∑
y∈Y

(
− log

p̂θ(y|x)
p̂θ(y|x′)

+ 1

)
∇θp̂θ(y|x′). (8)

Compare Eq. 8 to Eq. 7, we can see that the coefficient
of∇θp̂θ(y|x′) in the reverse KL gets squashed down by the
log function, leading to much smaller variance. We conjec-
ture that the small variance in gradient is the reason why
reverse KL performs better than forward KL.

How can invariance enforcing with adversarial exam-
ples help with the distribution shift problem? In our
previous subsection, we provide theoretical evidence that
motivates us to find transformations that can simulate com-
mon distribution shifts in practice. We argue here that l∞
adversarial perturbation is a good candidate for this. First
of all, l∞ adversarial perturbation is a task-agnostic trans-
formation that does not require much tuning, and we do not
need to design heuristic transformations per domain. Sec-
ondly, a lot of the common domain shifts in practice are
image corruptions that add noises to the images (gaussian
noise, gaussian blur, jpeg compression noise, etc.), which
can be simulated very well by adversarial noises. Lastly,
even for more global domain shifts as seen in the DIG-
ITS and VisDA17 experiments (Section 4), we conjecture
that training a network that is robust against local and small
changes (adversarial noise) would also help to make it more
robust against larger shifts. Our empirical experiments also
agree with this, as TIPI performs consistently across multi-
ple types of domain shifts.

Implementation Details: Following TENT [34] and
other test-time surrogate optimization methods, we only op-
timize the affine parameters of the model (i.e., the weight
and bias parameters of the norm layers: BatchNorm, Lay-
erNorm, InstanceNorm, or GroupNorm). This has been
shown to lead to a more stable optimization, and also re-
duces the computational cost, as opposed to optimizing all
parameters of the network. However, note that optimiz-
ing over the entire representation network (similar to SHOT
[18]) is also possible. Furthermore, in case the network uses
BatchNorm layers, we replace each BatchNorm with two
BatchNorm layers (following [35]), one for the clean im-
ages and one for the adversarial ones. This is because the
batch statistics of the adversarial examples are much differ-
ent from that of the clean images [35], thus mixing them
might cause performance degradation. Note that these two
BatchNorm layers only keep separate batch statistics (fea-
ture mean and variance), while sharing the affine parameters
(weight and bias) – the parameters being optimized.

24166

4. Experiments

We test the effectiveness of our method on a wide variety
of tasks (robustness against image corruptions and domain
adaptation). Especially, we performed extensive experi-
ments on various batch sizes of the test-time data batches
(as small as 2 and as large as 200). The highlight of our
empirical findings is that: TIPI outperforms other test-
time adaptation baselines in all scenarios and problem
settings. We discuss these experiments in more detail in the
following subsections. As a side note, we also found that
using TIPI with TENT further improves the performance of
both methods, and helps TENT avoid network collapse. De-
tails of our experiments (such as learning rate) can be found
in our publicly available source code.

4.1. Evaluation Protocol and Baselines:

Evaluation Protocol: We consider a setting where the
model is trained normally on the source domain. When
the models are available online (e.g., ImageNet-trained
Resnet50), we download the weights and keep them as is.
Otherwise, we train the models ourselves. Following TENT
[34], we perform online adaptation, and report the average
performance across all batches (while the model is being
adapted). This mimics a real-world scenario.

Baselines: The main purpose of our experiments is to
compare our invariance regularizer against predictive en-
tropy as an unsupervised surrogate subjective. Therefore,
TENT [34] is our main baseline in all of the experiments.
We also consider recent and relevant fully test-time adap-
tation methods as our baselines, such as BatchNorm with
test-time statistics (BN) [24, 32] and T3A [12]. We also re-
port the performance of the source-only model (source–no
adaptation). Note that we also have tested T3A with test-
time batch norm statistics (T3A+BN), but this model’s per-
formance is almost identical to (or even a little worse than)
that of BN for all batch sizes, so we do not include it here.
For a fair comparison, we rerun all methods in our experi-
ment (to eliminate artifacts such as source model training),
using their official source code. However, our numbers for
these methods are very close to the reported numbers.

TTT [33] and TTT++ [19] are not fully test-time adap-
tation methods since they require altering the training pro-
cess of the source domain (to incorporate a self-supervised
task). Thus, they are not optimal for off-the-shelf models
that have not been trained with the self-supervised task (e.g.,
a ResNet50 trained on ImageNet downloaded directly from
torchvision). For this reason, we do not include these
two methods in the comparisons. Note that as reported in
Table 2 of the TTT++ paper [19], the variant of their model
which has not been trained with the self-supervised task
(which is the same as our evaluation protocol and most of
the literature) largely underperforms our method.

EATA [29] proposes a datapoints selection strategy for
TENT, and achieves state-of-the-art performance on the test
time adaptation task. As discussed before, we believe this
line of research is complementary to ours. Indeed, we are
able to incorporate TIPI into EATA, thereby improving
its robustness (EATA only uses TENT and is not robust
against small batchsizes). Due to the page limit, we defer
this comparison to the Supplementary Material.

4.2. Robustness to Image Corruptions
4.2.1 Experimental Settings

Following the literature, we conduct experiments on
widely-used image-corruption datasets, namely:

• CIFAR10-C and CIFAR100-C [10]: Common im-
age corruptions are applied to the CIFAR10 and CI-
FAR100 datasets [14]. We report the results for the
highest level of severity, averaging over 15 types of
corruption.

• ImageNet-C: Similar with the above two datasets, but
for ImageNet [30]. We report the performance of all
methods averaged over 15 types of corruption and 5
levels of severity.

For the CIFAR10-C and CIFAR100-C datasets, we use
a WideResnet28-10 [36] model, which is the base model in
Robustbench [4] and also used in TENT’s official GitHub
repository1. Note that in the original paper, TENT con-
ducts experiments with a Resnet26 model [9]; however,
the model/code was not publicly released, and there have
been numerous reproducibility issues as reported in their
GitHub page2. We use the Adam optimizer [13] for these
two datasets.

For the ImageNet-C dataset, we follow previous works
and use a Resnet50 network. We use SGD to optimize our
invariance regularizer.

4.2.2 Results

Table 1, 2 and 3 show that our method is the best performer
among the baselines. In the CIFAR10-C and CIFAR100-
C experiments, our method performs similarly with TENT
for large batch sizes (200). However, as the batch size
decreases, TENT collapses and TIPI outperforms it sig-
nificantly. For the challenging ImageNet-C dataset, our
method performs better than TENT even for large batch
sizes. TENT still collapses with small batch sizes while
TIPI is very robust to this parameter. T3A is not an
optimization-based adaptation approach so its performance
is robust against the batch size, but it largely underperforms
TIPI in all settings. Even more concerning, T3A performs
extremely purely on ImageNet-C (worse than the source

1https://github.com/DequanWang/tent
2https://github.com/DequanWang/tent/issues

24167

Table 1. CIFAR10-C: Results are averaged over 15 types of corruption with the highest level of severity

Method Accuracy

Source 56.5

Test Time Adaptation Batch Size

2 5 10 20 50 200 Average

T3A 57.8 57.8 57.8 57.8 57.9 57.9 57.8
BN 61.8 70.8 75.1 77.5 78.9 79.6 74.0

TENT 17.4 60.7 74.0 78.6 81.0 81.4 65.5
TIPI (ours) 78.6 79.8 80.3 81.0 81.2 81.5 80.4

Table 2. CIFAR100-C: Results are averaged over 15 types of corruption with the highest level of severity

Method Accuracy

Source 37.5

Test Time Adaptation Batch Size

2 5 10 20 50 200 Average

T3A 39.0 39.0 39.0 39.0 39.0 39.0 39.0
BN 26.0 48.0 54.1 57.4 59.5 60.7 50.9

TENT 1.5 7.4 39.8 59.9 64.4 65.7 39.8
TIPI (ours) 56.3 62.3 64.1 65.0 65.5 65.8 63.2

Table 3. ImageNet-C: Results are averaged over 15 types of corruption and 5 levels of severity

Method Accuracy

Source 39.5

Test Time Adaptation Batch Size

2 4 8 16 32 64 Average

T3A 30.2 30.2 30.2 30.3 30.3 30.3 30.3
BN 13.9 33.4 42.8 46.9 48.9 49.9 47.2

TENT 0.8 13.1 44.3 53.7 56.8 57.3 45.2
TIPI (ours) 45.2 53.3 56.7 57.9 58.3 58.4 55.0

model) – we conjecture this is because the non-parametric
classifier in T3A is not effective when there is a large num-
ber of classes (1000) and each class’s support set has a few
datapoints (50).

4.3. Domain Adaptation
4.3.1 Experimental Settings

In this problem, we consider two main adaptation tasks,
with the following two datasets:

• DIGITS: the task is digit classification (10 classes),
and we have to adapt a model from SVHN [25] to
MNIST [15], MNIST-M [6], and USPS [11]. For the
MNIST and MNIST-M datasets, we only use the test
set (10000 images) for the online adaptation. For the
USPS dataset, we use both the training and test set to

have roughly the same number of images for adapta-
tion (9298 in total).

• VisDA17 (12-class classification)3: is a more chal-
lenging dataset, with the adaption task from synthetic
to real images. The source dataset contains 152397
3D-rendered synthetic images, while the target dataset
contains 55388 real images.

Following the experiments performed in TENT, we use
a ResNet26 for DIGITS and a ResNet50 for the VisDA17
dataset. For the test-time optimization of our surrogate loss,
we use Adam for DIGITS and SGD for VisDA17. Other
details such as the learning rate can be found in the provided
source code.

3Oxford solely obtained and processed the VisDA17 dataset

24168

Table 4. DIGITS: Online Domain Adaptation from SVHN to MNIST, MNIST-M and USPS

Method SVHN→MNIST SVHN→MNIST-M SVHN→USPS

B.Size 4 B.Size 128 B.Size 4 B.Size 128 B.Size 4 B.Size 128

Source 85.8 60.3 84.9
T3A 86.3 86.3 60.7 60.7 84.9 84.9
BN 75.6 83.5 56.0 60.9 72.4 80.8

TENT 27.0 90.7 19.2 61.4 38.7 90.4
TIPI (ours) 86.3 91.6 64.2 63.8 86.8 93.9

Table 5. VisDA17: Online Domain Adaptation of the VisDA classification challenge

Method Accuracy

Source 46.4

Test Time Adaptation Batch Size

2 4 8 16 32 64 128 Average

T3A 48.8 48.8 48.9 48.9 48.9 48.9 48.9 48.9
BN 38.3 49.5 54.6 57.3 58.7 59.4 59.8 53.9

TENT 12.3 26.5 53.0 59.9 62.1 62.0 62.0 48.3
TENTx2 10.0 22.1 45.9 59.2 62.5 63.1 63.2 46.6

TIPI (ours) 51.2 60.3 62.7 64.0 64.3 64.6 64.5 61.7

4.3.2 Results

Table 4 and Table 5 show a similar trend as observed in
the image corruption experiments. In particular, TIPI per-
forms the best among all the baselines. Especially, our
method does not collapse with small batch sizes as most
other models (such as BN or TENT) do. It is clear that TIPI
achieves preferable performance in all settings while being
much more robust compared to TENT.

4.4. Runtime and memory consumption
We would also like to discuss the runtime and memory

(VRAM) consumption of our method. As TIPI is also an
optimization-based adaptation, it is natural to compare it
against TENT. Comparing our implementation of TIPI with
TENT’s official implementation, we observe that TIPI and
TENT require roughly the same amount of VRAM, while
our method is about two times slower than TENT (because
it needs to find the adversarial examples). We believe that
this is worth the trade-off, since our method clearly outper-
forms TENT, and is much more robust against small batch
sizes – which is often the case in practice. To be more spe-
cific, using an NVIDIA Quadro RTX 6000, TIPI can reach
160 FPS (including both adaptation and prediction) with the
standard 224x224 images of ImageNet and VisDA17.

However, just to be completely fair, we also compare
TIPI with a variant of TENT where we perform two adap-
tation steps for each batch (thus its runtime is roughly the
same as TIPI’s), namely TENTx2 (second-last row in Ta-
ble 5). We perform this comparison on the challenging

adaptation dataset VisDA17 (for smaller datasets such as
CIFAR and DIGITS, runtime and memory consumption are
almost never a problem). TENTx2 does perform better than
TENT (in the large-batch-size regime), but is still largely
inferior to TIPI. Additionally, the collapsing problem for
small batch sizes persists in this variant.

5. Conclusion

In this paper, we propose to use transformation invari-
ance as an unsupervised surrogate loss function for online
domain adaptation. Similar to TENT, our method (TIPI) is
task-agnostic and does not require altering the source train-
ing process of the model, thus can be applied easily to a
wide variety of off-the-shelf models. Remarkably, com-
pared to TENT, our method is much more robust against
small batch sizes, which proves to be extremely useful in
challenging real-world scenarios. A promising future re-
search direction is to investigate a data point selection strat-
egy for optimizing the TIPI objective, to further improve the
performance of the method.

Acknowledgments Author A. Tuan Nguyen acknowl-
edges Meta AI for funding his PhD study. Ox-
ford lab headed by author Philip Torr is supported by
the UKRI grant: Turing AI Fellowship EP/W002981/1.
Meta AI author Ser-Nam Lim is neither supported
by the UKRI grant nor has any relationship to the
grant.

24169

References
[1] Yogesh Balaji, Swami Sankaranarayanan, and Rama Chel-

lappa. Metareg: Towards domain generalization using meta-
regularization. Advances in neural information processing
systems, 31, 2018. 2

[2] Shai Ben-David, John Blitzer, Koby Crammer, Alex
Kulesza, Fernando Pereira, and Jennifer Wortman Vaughan.
A theory of learning from different domains. Machine learn-
ing, 79(1):151–175, 2010. 2

[3] David Berthelot, Nicholas Carlini, Ekin D Cubuk, Alex
Kurakin, Kihyuk Sohn, Han Zhang, and Colin Raffel.
Remixmatch: Semi-supervised learning with distribution
alignment and augmentation anchoring. arXiv preprint
arXiv:1911.09785, 2019. 3

[4] Francesco Croce, Maksym Andriushchenko, Vikash Se-
hwag, Edoardo Debenedetti, Nicolas Flammarion, Mung
Chiang, Prateek Mittal, and Matthias Hein. Robustbench:
a standardized adversarial robustness benchmark. arXiv
preprint arXiv:2010.09670, 2020. 3, 6

[5] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam
Neyshabur. Sharpness-aware minimization for efficiently
improving generalization. arXiv preprint arXiv:2010.01412,
2020. 1

[6] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pas-
cal Germain, Hugo Larochelle, François Laviolette, Mario
Marchand, and Victor Lempitsky. Domain-adversarial train-
ing of neural networks. The journal of machine learning
research, 17(1):2096–2030, 2016. 2, 7

[7] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572, 2014. 5

[8] Sachin Goyal, Mingjie Sun, Aditi Raghunathan, and Zico
Kolter. Test-time adaptation via conjugate pseudo-labels.
arXiv preprint arXiv:2207.09640, 2022. 2

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 6

[10] Dan Hendrycks and Thomas Dietterich. Benchmarking neu-
ral network robustness to common corruptions and perturba-
tions. arXiv preprint arXiv:1903.12261, 2019. 6

[11] J. J. Hull. A database for handwritten text recognition re-
search. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 16(5):550–554, 1994. 7

[12] Yusuke Iwasawa and Yutaka Matsuo. Test-time classifier
adjustment module for model-agnostic domain generaliza-
tion. Advances in Neural Information Processing Systems,
34:2427–2440, 2021. 2, 6

[13] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 6

[14] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 6

[15] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist hand-
written digit database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist, 2, 2010. 7

[16] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy
Hospedales. Learning to generalize: Meta-learning for do-

main generalization. In Proceedings of the AAAI conference
on artificial intelligence, volume 32, 2018. 1

[17] Ya Li, Xinmei Tian, Mingming Gong, Yajing Liu, Tongliang
Liu, Kun Zhang, and Dacheng Tao. Deep domain gener-
alization via conditional invariant adversarial networks. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 624–639, 2018. 1, 2

[18] Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need
to access the source data? source hypothesis transfer for un-
supervised domain adaptation. In International Conference
on Machine Learning, pages 6028–6039. PMLR, 2020. 2, 5

[19] Yuejiang Liu, Parth Kothari, Bastien van Delft, Bap-
tiste Bellot-Gurlet, Taylor Mordan, and Alexandre Alahi.
Ttt++: When does self-supervised test-time training fail or
thrive? Advances in Neural Information Processing Systems,
34:21808–21820, 2021. 1, 2, 6

[20] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learn-
ing models resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083, 2017. 5

[21] Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh.
Domain adaptation: Learning bounds and algorithms. arXiv
preprint arXiv:0902.3430, 2009. 2

[22] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and
Shin Ishii. Virtual adversarial training: a regularization
method for supervised and semi-supervised learning. IEEE
transactions on pattern analysis and machine intelligence,
41(8):1979–1993, 2018. 3, 5

[23] Krikamol Muandet, David Balduzzi, and Bernhard
Schölkopf. Domain generalization via invariant fea-
ture representation. In International Conference on Machine
Learning, pages 10–18. PMLR, 2013. 2

[24] Zachary Nado, Shreyas Padhy, D Sculley, Alexander
D’Amour, Balaji Lakshminarayanan, and Jasper Snoek.
Evaluating prediction-time batch normalization for robust-
ness under covariate shift. arXiv preprint arXiv:2006.10963,
2020. 2, 6

[25] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-
sacco, Bo Wu, and Andrew Y Ng. Reading digits in natural
images with unsupervised feature learning. 2011. 7

[26] A Tuan Nguyen, Ser-Nam Lim, and Philip HS Torr. FedSR:
A simple and effective domain generalization method for
federated learning. 2022. 2

[27] A Tuan Nguyen, Toan Tran, Yarin Gal, and Atilim Gunes
Baydin. Domain invariant representation learning with do-
main density transformations. Advances in Neural Informa-
tion Processing Systems, 34:5264–5275, 2021. 1, 2

[28] A Tuan Nguyen, Toan Tran, Yarin Gal, Philip HS Torr, and
Atılım Güneş Baydin. Kl guided domain adaptation. arXiv
preprint arXiv:2106.07780, 2021. 2

[29] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen,
Shijian Zheng, Peilin Zhao, and Mingkui Tan. Efficient test-
time model adaptation without forgetting. arXiv preprint
arXiv:2204.02610, 2022. 2, 6

[30] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International journal of
computer vision, 115(3):211–252, 2015. 6

24170

[31] Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tasdizen.
Regularization with stochastic transformations and perturba-
tions for deep semi-supervised learning. Advances in neural
information processing systems, 29, 2016. 3

[32] Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bring-
mann, Wieland Brendel, and Matthias Bethge. Improving
robustness against common corruptions by covariate shift
adaptation. Advances in Neural Information Processing Sys-
tems, 33:11539–11551, 2020. 2, 6

[33] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei
Efros, and Moritz Hardt. Test-time training with self-
supervision for generalization under distribution shifts. In
International conference on machine learning, pages 9229–
9248. PMLR, 2020. 1, 2, 6

[34] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Ol-
shausen, and Trevor Darrell. Tent: Fully test-time adaptation
by entropy minimization. arXiv preprint arXiv:2006.10726,
2020. 1, 2, 3, 5, 6

[35] Cihang Xie, Mingxing Tan, Boqing Gong, Jiang Wang,
Alan L Yuille, and Quoc V Le. Adversarial examples im-
prove image recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 819–828, 2020. 5

[36] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-
works. arXiv preprint arXiv:1605.07146, 2016. 6

24171

