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Abstract

Humans are proficient at continuously acquiring and in-
tegrating new knowledge. By contrast, deep models for-
get catastrophically, especially when tackling highly long
task sequences. Inspired by the way our brains constantly
rewrite and consolidate past recollections, we propose a
novel Bilateral Memory Consolidation (BiMeCo) frame-
work that focuses on enhancing memory interaction capa-
bilities. Specifically, BiMeCo explicitly decouples model
parameters into short-term memory module and long-term
memory module, responsible for representation ability of
the model and generalization over all learned tasks, re-
spectively. BiMeCo encourages dynamic interactions be-
tween two memory modules by knowledge distillation and
momentum-based updating for forming generic knowledge
to prevent forgetting. The proposed BiMeCo is parameter-
efficient and can be integrated into existing methods seam-
lessly. Extensive experiments on challenging benchmarks
show that BiMeCo significantly improves the performance
of existing continual learning methods. For example, com-
bined with the state-of-the-art method CwD [55], BiMeCo
brings in significant gains of around 2% to 6% while using
2x fewer parameters on CIFAR-100 under ResNet-18.

1. Introduction
Acquiring knowledge in a continuous fashion is a key

capability for a learning system to achieve human intelli-
gence. To this end, Continual Learning (CL) is introduced
to foster the network to learn a sequence of tasks incremen-
tally with the aim of exploiting existing knowledge to adapt
quickly to new tasks. In CL, the training data of different
classes comes in a phase-by-phase manner, where the model
is trained on new class data at each task and then evaluated
on all learned old and new classes. During training, a small
number of exemplars of old classes are allowed to be saved
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Figure 1. Model Size vs. Average Incremental Accuracy. Tak-
ing class incremental learning [45] as an example, we use two typ-
ical settings on CIFAR-100 [39], where 50 classes are for the first
task with later (a) 10 classes per task (6-task sequence) and (b) 2
classes per task (26-task sequence). BiMeCo significantly out-
performs other CL methods with 1.51∼2.06x smaller parameters
under ResNet-18/34/50/101 [26]. More details are in Appendix.

in the memory buffer with a strict budget restriction. These
limited exemplars mitigate forgetting of previously learned
tasks to some extent, but lead to another pressing issue –
the extreme data imbalance between new and old classes,
making the model biased towards recently learned tasks.

A wide variety of learning algorithms have been pro-
posed to tackle the above shortcomings, including approx-
imating exemplars per class for model inference [51], rec-
tifying the network predictions to alleviate the task bias [5,
61], and preserving the original model on old classes to pro-
vide soft labels for resisting to activating drifting [29, 42].
Recent studies such as CwD [55] also show that merely im-
proving the learned representations of the initial task can
facilitate mitigating forgetting greatly.

Although the achievements in the literature are brilliant,
these methods still struggle to prevent forgetting when tack-
ling long task sequences. In Fig. 1, we provide an empir-
ical evaluation of representative CL methods on CIFAR-
100 [39]. Though achieving decent accuracy in the incre-
mental setting of 6 tasks, surprisingly they encounter ev-
ident damages when handling 26 tasks. A vivid exam-
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ple is CwD [55], compared with fine-tuning with exem-
plars (Replay), it boosts accuracy by more than 17% on the
6-task sequence under various ResNet-type networks [26],
but merely brings around 10% accuracy gains on the more
challenging 26-task sequence.

As pointed out in [18, 45], increasing memory buffer
sizes or model parameters typically can alleviate forgetting
for tackling long task sequences. However, we argue these
strategies could be sub-optimal, since a desirable continual
learning system should be able to scale to a wide variety of
incremental scenarios without the need for extra overheads.

In this work, we approach this problem from a rather
different perspective, and we study how to sufficiently
mine memory samples to form structured knowledge for all
learned tasks. To this end, we present Bilateral Memory
Consolidation (BiMeCo) as a simple framework for con-
tinual learning. Specifically, BiMeCo explicitly disentan-
gles model parameters into two complementary and parallel
parts: short-term memory module and long-term memory
module. Short-term memory module focuses on the repre-
sentation ability of the model and rapid adaptation to recent
tasks to form working memory, while being guided by the
long-term memory module to prevent forgetting by knowl-
edge distillation. Concurrently, long-term memory mod-
ule learns a few task-balance samples online to consolidate
working memory, while inheriting strong expressiveness
from the short-term memory module by momentum-based
updating. The key to BiMeCo is encouraging dynamic in-
teractions between different degrees of memories to pro-
duce rich feature representations. This way, BiMeCo en-
ables continually evoking previous knowledge while learn-
ing from changing data streams. In implementation, we
present a simple module replacement to integrate BiMeCo
with existing models in a parameter-efficient manner.

We demonstrate that the proposed BiMeCo is signifi-
cantly superior to other CL methods in a variety of aspects
with great parameter efficiency. Fig. 1 illustrates the quan-
titative results of our BiMeCo on CIFAR-100 [39] of two
incremental settings under four ResNet-type networks [26].
Specifically, integrated with LUCIR [29], BiMeCo brings
in a gain of at least +2.58% average incremental accuracy
while significantly reducing parameters over other meth-
ods on the 6-task sequence under ResNet-18. BiMeCo also
achieves a superior result compared with CwD [55], which
brings +5.52% accuracy gains with the reduction of param-
eters by 41.9% on the 26-task sequence under ResNet-101.
Notably, BiMeCo is flexible and can be compatible with ex-
isting methods seamlessly with further performance gains.

The key contributions can be summarized as follow:

• A bilateral memory consolidation framework, i.e.,
BiMeCo, is proposed. This generic framework is
parameter-efficient and can be seamlessly integrated
into existing CL methods to further boost performance.

• The proposed BiMeCo decouples model parameters
into two complementary memories, encouraging dy-
namic interactions between different degrees of mem-
ories to prevent forgetting for continual learning.

• Extensive experiments as well as comprehensive ab-
lation studies demonstrate the effectiveness of our
BiMeCo on three challenging benchmarks under a
wide variety of incremental settings.

2. Related Work
2.1. Continual Learning

Recently, a large body of work in continual learn-
ing (CL) has been developed to alleviate catastrophic for-
getting [46]. Broadly, CL methods can be grouped into four
categories: rehearsal, regularization, task-recency bias cor-
rection, and network expansion. Rehearsal-based methods
keep a small set of exemplars in a raw format or gener-
ate pseudo-samples for preventing forgetting. iCaRL [51]
stores a subset of exemplars and selects the best approx-
imate class means in the learned feature space. Subse-
quent work explores new update rules using exemplar sam-
ples [13, 44], new sampling strategies [4, 12, 37, 60], and
using generative models to construct pseudo-examples [35,
62]. Regularization-based methods use regularization terms
in the loss function to mitigate forgetting. Some studies
regularize the weights and perform the importance metric
estimation for each parameter [1, 41, 48], while others are
devoted to the importance of remembering feature represen-
tations [33,40,50,65]. Another line of CL is bias-correction
methods, which aim to alleviate the tendency of the network
to be biased toward the recently learned tasks. BiC [61]
learns a bias correction layer for correcting task bias of the
network with two-stage training. LUCIR [29] replaces the
standard softmax layer with a cosine normalization layer to
enforce balanced magnitudes across all classes. Recently,
expansion-based methods are proposed to dedicate differ-
ent model parameters to each task for mitigating forgetting,
either freezing previously learned parameters [43,53,63], or
allocating a model copy to each task [2]. In this work, the
proposed method falls into the expansion-based category.
But it differs from previous studies in a key aspect: instead
of freezing model parameters for generalization over old
tasks, we encourage dynamic interactions between model
parameters of generality over all learned tasks and scalabil-
ity over learning new tasks. This way, our method can ef-
fectively prevent forgetting with great parameter efficiency.

2.2. Knowledge Distillation

Knowledge distillation is originally proposed to learn a
more compact student network from a larger teacher net-
work [9, 27]. As a pioneer, LwF [42] employs this tech-
nique to keep the representations of previous data from
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Figure 2. Overview of the proposed BiMeCo. For clarity, a model
comprised of L modules (e.g., ResNet [26] with L stacked residual
blocks) is illustrated as an example. Here we use the shorthand M
for exemplars M1:t−1. The skip connection remains unchanged
(omitted for simplicity). Best viewed in color.

excessively drifting while learning new tasks. Subse-
quently, numerous pieces of research are devoted to apply-
ing knowledge distillation for mitigating forgetting of pre-
vious tasks by constraining the model, including directly
on the weights [12, 38, 64], the gradients [13, 44], the net-
work outputs [11,51], intermediate features [21,23,29,69],
and combinations thereof. In these methods, when learn-
ing a new task, the model of previous tasks is used as the
teacher, and the network is regularized to constrain their
feature drift. In this way, the knowledge of previously
learned classes can be preserved. However, these studies
typically rely on a fixed teacher trained on previous tasks.
Our work extends this route by dynamically updating the
teacher network, which is trained on online balance class
distribution of old and new tasks. This way, instead of
only containing the constant and static task biases that are
previously learned, the teacher network provides a generic
input-conditional activation trained on class-balanced data
for memory consolidation. Finally, our work is also anal-
ogous to DINO [10] in self-supervised learning, where the
student and teacher have the same architecture and use dis-
tillation during training. However, the teacher in DINO is
updated with an average of the student, while it is updated
separately in a class-balanced manner in our work.

3. Methodology

In this section, we describe the proposed bilateral mem-
ory consolidation framework for continual learning (CL),
which can be readily integrated with existing CL methods.

3.1. Preliminary

In CL, a model is trained on a sequence of tasks with a
distribution shift. Suppose there are totally T tasks, the t-th
task contains a set of {xt,yt}|D

t|
t=1 , representing the training

data pairs from the t-th task comprised of ct new classes,
where xt denotes the input images and yt the correspond-
ing ground truth labels. While all xt are i.i.d within Dt,
the overall training procedure does not abide by the i.i.d as-
sumption, i.e., Di ∩ Dj = ∅ s.t. i ̸= j, since the input

distribution shifts between tasks and labels change. When
finishing the training on one task, its training data would be
discarded, except that only a tiny number of samples can be
stored in a memory buffer as exemplars. At the t-th task,
we denote the exemplars asM1:t−1, which are comprised
of c1:t−1 old classes in total.

The popular pipeline of existing CL methods is to di-
rectly load the union of new class data Dt and a few ex-
emplarsM1:t−1 to train the model f(·; θ). However, there
are mainly two limitations of this pipeline when applied to
continual learning: 1) due to the memory constraint, the
performance is typically dependent on selecting represen-
tative exemplars [45]; 2) naive uniting a large amount of
new data and a few exemplars causes high bias to recently
learned tasks and quick forgetting of old tasks as the num-
ber of tasks grows [49]. These issues can be partly alle-
viated by some techniques like exemplar sampling strate-
gies [12, 19, 32, 51, 52] or increasing the model capacity
for learning new tasks [34, 43, 56, 57, 59], yet they could
be sub-optimal because of requiring carefully designing the
selecting of exemplars or growing network parameters. A
desirable continual learning system should scale to a large
number of tasks without excessive human prior and increas-
ing parameter overheads.

3.2. Bilateral Memory Consolidation

We argue that the above limitations can be mitigated
by sufficiently mining structured knowledge from memory
samples. To this end, we develop Bilateral Memory Con-
solidation called BiMeCo. BiMeCo explicitly decouples
the memory mechanism into two parts: short-term phase
and long-term phase, with the goal of consolidating the
structured knowledge across all learned tasks by training
on online balanced data while improving the representa-
tional capacity. Specifically, short-term phase focuses on
expressiveness with a large amount of training samples and
rapid adaptation to recent tasks to form working memory.
Concurrently, long-term phase learns a few task-balance
samples online to consolidate working memory for guid-
ing the short-term phase to prevent forgetting, while in-
heriting strong expressiveness from the short-term phase.
In this way, BiMeCo encourages dynamic interactions be-
tween different degrees of memories to produce rich rep-
resentations to preserve scalability over learning new tasks
and generality over the learned tasks synchronously.
Modeling. Formally, given the model f(·; θ), we disen-
tangle the model parameters θ as short-term memory mod-
ule θs, long-term memory module θl, as well as a shared
fully-connected layer ϕ. The left part of Fig. 2 illustrates
this modeling. Our underlying motivation is that, although
short-term memory module and long-term memory mod-
ule are responsible for learning the task sequence from
different aspects, i.e., representational capacity and mem-
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Figure 3. Sketch of bilateral memory consolidation. “mom.”: the
momentum-based update rule from short-term memory module to
long-term memory module after each task in Eq. (3).

ory consolidation, they nevertheless have a uniform goal
of performing classification on the learned task sequence.
This makes cross-memory knowledge transferring feasible.
Meanwhile, a shared classification head as a unified inter-
face can provide a category-consistency constraint for en-
couraging their high-level information interaction for boost-
ing the final classification.

In Fig. 2, we illustrate this process with a model com-
prised of L modules (e.g., ResNet with L stacked resid-
ual blocks [26]) as an example. At each task, the short-
term memory f(·; θs) receives xs as input, which is the
union of a training batch Bt from the data stream Dt and
a random batch BM1 from a few exemplars M1:t−1, i.e.,
xs = Bt ∪ BM1 . In the meantime, the long-term memory
f(·; θl) samples a small portion of samples Btb fromDt (line
5 in Alg. 1), then unites these samples with a random batch
BM2

from M1:t−1 to construct the class-balanced xl be-
tween old tasks and new tasks as input, i.e, xl = Btb ∪BM2 .
Finally, a shared fully-connected layer h(·;ϕ) is used to out-
put the network predictions. To encourage knowledge in-
teractions of two types of memories, the bilateral memory
consolidation mechanism is introduced, as described next.
Memory consolidation. We first employ a distillation
loss to realize the guidance from long-term memory (as
a teacher) to short-term ones (as a student) for prevent-
ing forgetting. Specifically, taking xs as input, the output
embeddings of each module fℓ(xs; θl) and fℓ(xs; θs) are
used to compute the constraints by minimizing their L2 dis-
tance, where ℓ = {1, . . . , L} and L denotes the number
of modules. Motivated by recent studies [22, 23, 28], we
employ the pooling operation over their output embeddings
along horizontal and vertical dimensions respectively for
better generality across tasks. Given an embedding tensor1

z ∈ RH×W×C , the extracted embedding Ψ by horizontal
and vertical pooling can be defined as

Ψ(z) =

[
1

W

W∑
w=1

z[:, w, :]

∥∥∥∥ 1

H

H∑
h=1

z[h, :, :]

]
, (1)

1For simplicity, we omit the mini-batch dimension in this notation.

Algorithm 1: BiMeCo (in the t-th task)
Input: Data stream Dt; bufferM1:t−1; the number

of new and old classes ct, c1:t−1; model
parameters θ = {θs, θl, ϕ}; momentum
coefficient m.

Output: BufferMt, model parameters θ.
1 for mini-batches in Dt ∪M1:t−1 do
2 Bt ⊆ Dt // Bt is one sampled batch from Dt.;
3 {BM1 ,BM2} ⊆ M1:t−1 // BM1 , BM2 denote

different sampled batches fromM1:t−1. ;
4 Uniting new samples Bt and limited exemplers

BM1
to obtain Bt ∪ BM1

for training θs;
5 Randomly sampling ct/(ct + c1:t−1) · |Bt| new

samples Btb from Dt to form class-balanced
Btb ∪ BM2 for trianing θl;

6 zs, zl ← f(Bt ∪ BM1
; θs), f(Btb ∪ BM2

; θl)
// zs, zl denote the concatenated outputs of L
modules over the channel axis of θs, θl.;

7 Update model parameters [θs, θl, ϕ] on
{Bt ∪ BM1 ,Btb ∪ BM2 , zs, zl} by Eq. 6;

8 end
9 θl ← mθl + (1−m)θs;

10 Update bufferMt, e.g., by herding [29, 51];
11 ReplaceM1:t−1 withM1:t−1 ∪Mt in the memory.

where [· ∥ ·] denotes concatenation over the channel axis. In
our BiMeCo, this output embedding is computed at each
module, for both long-term memory and short-term mem-
ory. Interestingly, consistent with self-supervised meth-
ods [10, 68], we observe that applying a stop-gradient (sg)
operator on the long-term memory (teacher) to propagate
gradients only through the short-term memory (student) can
further boost the performance (Sec. 4.3). Formally, this dis-
tillation loss can be described as

Lm (θs) =
1

L

L∑
ℓ=1

∥Ψ(fℓ(xs; θl))−Ψ(fℓ(xs; θs))∥2 .

(2)
Second, the short-term phase transfers its strong expres-

siveness to the long-term ones, in order to endow the long-
term phase with providing better guidance. We draw in-
spiration from the momentum encoder [25] and develop a
momentum-based update rule – after each task, the long-
term memory weights are updated by the following form

θl ← mθl + (1−m)θs, (3)

where m ∈ [0, 1] is the momentum coefficient. Particularly,
different from the momentum encoder, where only the pa-
rameters θs are updated by the back-propagation, we further
relax this constraint to support the synchronous gradient up-
date of two types of memory, i.e., θs and θl. One under-
lying assumption is that, by back-propagating through the
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Method Params (M)
CIFAR-100 (B=50) ImageNet-100 (B=50) ImageNet (B=100)

S=10 5 2 10 5 2 100 50

LWF [42] 11.7 54.01±0.46 48.40±0.65 45.49±0.34 53.62† 47.64† 44.32† 41.42±0.11 28.31±0.10

iCaRL [51] 11.7 67.16±0.20 60.54±0.23 54.50±0.36 65.44† 59.88† 52.97† 49.88±0.15 42.52±0.13

DualNet [48] 13.8 68.01±0.21 63.42±0.33 63.22±0.40 71.36±0.30 67.21±0.35 66.35±0.29 55.80±0.11 51.96±0.19

AANet [43] 13.1 68.85±0.28 65.68±0.30 63.56±0.35 72.08±0.20 69.25±0.41 67.41±0.38 51.88±0.13 47.91±0.14

Replay 11.7 50.07±0.31 46.80±0.35 44.79±0.28 51.80±0.30 47.71±0.27 43.82±0.25 42.77±0.15 39.93±0.13

+BiMeCo (ours) 6.2 51.36±0.25 48.25±0.31 46.99±0.30 52.81±0.21 48.86±0.18 45.51±0.20 43.86±0.16 41.61±0.14

BiC [61] 11.7 63.11±0.20 56.27±0.25 48.83±0.16 70.09±0.34 64.88±0.26 57.82±0.22 52.46±0.17 47.30±0.12

+BiMeCo (ours) 6.2 64.17±0.13 58.64±0.32 52.66±0.22 71.01±0.30 65.97±0.21 59.35±0.19 53.55±0.14 49.41±0.19

LUCIR [29] 11.7 66.31±0.31 60.84±0.27 53.01±0.24 70.86±0.40 67.85±0.32 63.01±0.23 56.47±0.11 52.55±0.16

+BiMeCo (ours) 6.2 69.87±0.19 66.82±0.21 64.16±0.22 72.87±0.25 69.91±0.16 67.85±0.18 57.36±0.10 53.84±0.12

CwD [55] 11.7 67.29±0.18 62.99±0.12 56.84±0.20 71.93±0.23 69.42±0.27 65.06±0.46 57.49±0.09 53.51±0.15

+BiMeCo (ours) 6.2 69.23±0.20 65.78±0.25 62.73±0.17 72.81±0.20 70.64±0.22 66.20±0.41 58.30±0.16 54.91±0.14

Table 1. Comparison of average incremental accuracy (%) with or without Bilateral Memory Consolidation (BiMeCo). B denotes the
number of classes learned in the initial task and S denotes the number of classes learned per task after the initial one. For fair comparison,
Params denotes the model parameters on ImageNet [20]. Note that the number of exemplars for each class is set to 20, as is common
practice [29, 55]. The results denoted by † are taken from [55]. We report the results that are averaged over 3 runs (mean±std).

long-term memory trained on online class-balanced data,
the long-term memory can obtain powerful generalization
ability across all learned tasks. We study different updating
rules in Sec. 4.3 and show updating two memory branches
synchronously by back-propagation works better than only
updating the short-term memory, indicating that the learned
generalization across tasks of long-term memory is the key
to providing guidance for preventing forgetting. Fig. 3 high-
lights the process of our bilateral memory consolidation.

3.3. BiMeCo for Continual Learning

Architecture. Technically, we implement BiMeCo with
a Pseudo Siamese network, which has two branches
f(·; θs) and f(·; θl) with identical architectures but differ-
ent weights as well as a shared head h(·;ϕ). As a variant of
the standard Siamese network [8], it has been widely used
in diverse vision tasks [6, 15, 24, 58, 67]. To make BiMeCo
compatible with existing network architectures while en-
joying great parameter efficiency, we draw inspiration from
the MobileNet series [30, 31, 54], and present the following
module replacement strategies: 1) replacing each original
k × k (k > 1) convolution with a sequential convolutional
layer comprised of 1×1 convolution, k × k depthwise con-
volution [17], 1×1 convolution; 2) reducing group by a fac-
tor of 4 for each original 1×1 convolution. For the general-
ity of our method, all replaced convolutions do not change
the channel dimension. Then the network is extended into a
Pseudo Siamese network. Details are in Appendix.
Training. In Alg. 1, we summarize the overall training
process of the proposed BiMeCo in the t-th task (where
t ∈ [1, . . . , T ]). Formally, the object of the proposed
BiMeCo can be formulated as

Ll(θl) = −yllog(h(f(xl; θl);ϕ)), (4)

Ls(θs) = −yslog(h(f(xs; θs);ϕ)), (5)

(θ∗l , θ
∗
s , ϕ

∗) = argmin
θl,θs,ϕ

[Ll + λ1 ∗ Ls + λ2 ∗ Lm], (6)

where yl, ys denote the ground truth labels for xl, xs re-
spectively, λ1, λ2 are the hyper-parameters to balance the
trade-off between three terms.

4. Experiments
In this section, we first introduce the experimental set-

tings and implementation details in Sec. 4.1. Then, we in-
tegrate our BiMeCo into some state-of-the-art methods on
three challenging benchmarks to evaluate its effectiveness
in Sec. 4.2. Finally, comprehensive ablation studies are pro-
vided to analyze BiMeCo thoroughly in Sec. 4.3.

4.1. Experimental Settings

Following [7,18,45,48], we focus on two typical contin-
ual learning setups: Class Incremental Learning (CIL) and
Tasks Incremental Learning (TIL), which typically unfold a
base classification problem in successively learned tasks. In
two setups, all training classes are split into multiple tasks
and learned sequentially. The difference is that TIL has ac-
cess to the task identity of test samples at inference time,
but CIL is not allowed. Due to the space restriction, here
we report the results of the CIL setting, the results of the
TIL setting are in Appendix.
Datasets. Three datasets are used in our experiments:
CIFAR-100 [39], ImageNet [20], and ImageNet-100 [20].
Details of these datasets are in Appendix.
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m 0 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Acc. (%) 61.41 63.10 63.42 63.62 63.47 63.58 63.75 62.53 61.38 60.72 58.65 fail

(a) Only updating one branch (short-term memory) by back-propagation as in [25].

m 0 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Acc. (%) 66.25 66.29 66.82 66.61 66.38 66.25 66.15 66.06 65.86 65.75 65.67 65.44

(b) Synchronously updating two branches (two types of memory) by back-propagation.

Table 2. Comparison of different settings of m in Eq. (3) under ResNet-18 on CIFAR-100.

Baselines. We combine the proposed BiMeCo with the
following advanced baselines: BiC [61], LUCIR [29],
CwD [55], as well as a naive baseline fine-tuning with
exemplars (Replay). Additionally, we compare BiMeCo
with some classic methods (LWF [42] and iCaRL [51])
and strong expansion-based methods (DualNet [48] and
AANet [43]). For CwD [55] and AANet [43], we adopt
the default settings in the original paper such as using their
versions based on LUCIR [29] for fair comparison.
Implementation details. Following the common prac-
tice [44, 55], we use ResNet-18 [26] as the baseline archi-
tecture. Herding [43, 51] is employed to select exemplars
after each task. More details are in Appendix.

4.2. Results

Extensive experiments are conducted on CIFAR-100,
ImageNet-100, and ImageNet. Specifically, we add our
BiMeCo to several representative state-of-the-art methods
to evaluate its effectiveness. Notably, B denotes the num-
ber of classes learned in the initial task, and S denotes the
number of new classes learned per task in the rest.

The quantitative comparisons are summarized in Tab. 1.
From the results, we observe that BiMeCo consistently
brings significant improvements. Taking LUCIR [29] as
an example, BiMeCo achieves better performance with
+3.56%∼11.15% validation accuracy gains on CIFAR-100,
while significantly reducing the model parameters by 47%.
Particularly, as the length of the task sequence increments,
our BiMeCo can bring significant performance gains. For
example, BiMeCo brings +5.89% and +3.83% validation
accuracy gains over CwD [29] and BiC [61] when S = 2,
which demonstrates that our method does better work with
longer incremental learning sequences. Our method also
shows powerful performance for scenarios with a large
number of classes such as ImageNet. BiMeCo surpasses the
baseline method fine-tuning with exemplars (Replay) by a
large margin (+1.09% when S = 100 and +1.68% when
S = 50) using 1.9x fewer trainable parameters.

Moreover, we illustrate the comparisons of the accuracy
curve with LUCIR [29] and CwD [55] on CIFAR-100 in
Fig. 4(h). It can be seen that, in the remaining tasks after
the initial task, the improvement of our method is consis-
tently incremental. As the number of classes increases, our
method owns growing significant advantages. This is rea-
sonable since the limited model size of our BiMeCo leads

to a slight drop in the first task. Benefiting from the bilat-
eral memory consolidation mechanism, our model can suf-
ficiently learn long-term and short-term memory represen-
tations in a complementary fashion, thus exhibiting strong
capacities of preventing forgetting knowledge previously
learned. More results of the accuracy curve on other in-
cremental settings are in Appendix.

4.3. Ablation Study

In this subsection, extensive ablation studies are con-
ducted to analyze our BiMeCo systematically. Specifically,
experiments are based on LUCIR [29] under ResNet-18 on
CIFAR-100, learning with 50 classes in the initial task and
5 classes per task for the rest, unless otherwise specified.
Analysis of bilateral memory consolidation. First, to re-
veal the effect of different strategies of the guidance from
long-term memory to short-term ones for preventing for-
getting, we compare BiMeCo with four additional and im-
portant baselines: 1) “+None”, in which the two types of
memory are trained without the regularization constraint; 2)
“+L2”, in which the short-term memory is trained by adding
an L2 regularization constraint with the long-term memory
on each weight; 3) “+Wei.”, in which the short-term mem-
ory is trained by estimating important parameters with the
long-term memory, similar to [38]; 4) “+Out.”, in which
the short-term memory is trained by minimizing its output
probabilities with those of the long-term memory, similar
to [42]. As shown in Fig. 4(a), we can observe that 1) com-
pared with the L2 regularization, estimating important pa-
rameters obtains better performance (64.00% vs. 65.51%),
where a similar phenomenon also occurs in [38]; 2) the data
distillation manners (+Out. and BiMeCo) work better than
weight regularization (+L2. and +Wei.), implying that data
distillation is more suitable for our proposed framework.

Second, to transfer the strong expressiveness of the
short-term memory to the long-term ones, we further inves-
tigate the effectiveness of our used momentum-based up-
date rule in Eq. (3). Specifically, we consider the origi-
nal momentum update that is proposed and fueled by the
MoCo series [14, 16, 25], only updating one branch by
back-propagation. Then we introduce the relaxed version
of this momentum-based update rule, which synchronously
updates two branches by back-propagation. The results in
Tab. 2 shows that the relaxed momentum update is particu-
larly well-suited for BiMeCo. Under the relaxed case, when
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(c) Influence of exemplar sampling strategies.
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(d) Analysis of the number of exemplars.
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(e) Impact of the number of classes in the initial task.
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(f) Analysis of the model parameters.
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Figure 4. Further analysis of the proposed BiMeCo. (a) Comparisons of different regularization techniques. (b) The impact of the number
of tasks that vary from 3, 6, 11, 26, and 51. Note that the X-axis represents the total number of tasks, where the first task covers 50 classes
and the rest tasks equally divide the rest 50 classes. (c) Influence of exemplar sampling strategies. (d) Influence of the number of exemplars,
varying from 5, 10, 20, 30, and 40 per class. (e) Impact of the number of classes in the initial task. (f) Ablation on the model parameters
of BiMeCo. (g) The training accuracy under varying Gaussian noise added to the weights of each layer of the trained model. (h) Accuracy
at each task. With 50 classes in the initial task and 5 classes per task for the rest. Best viewed in color.

the long-term memory is not updated at all (m = 1), the
model fails to converge. If there is no momentum (m = 0),
it leads to a drop in accuracy. At a relatively small momen-
tum (m = 0.1), BiMeCo achieves the best performance.
These results support our motivation for designing the re-
laxed momentum update rule for inheriting the representa-
tion ability from short-term memory to long-term ones. The
effectiveness of bilateral memory consolidation is also ver-
ified under other incremental settings in Appendix.
Analysis of two types of memory. Tab. 3 lists the aver-
age incremental accuracy and average forgetting2 for thor-
oughly analyzing long-term memory and short-term mem-
ory. Compared with the baseline method LUCIR [29],
one can observe that the variant of LUCIR (denoted by
LUCIR†), which naively extends the backbone to the
Pseudo Siamese network as described in Sec. 3.3, ex-
hibits slightly inferior performance due to the limited model
capacity. Additionally, we add two important baselines,
BiMeCoL and BiMeCoS, which denote the variants of
BiMeCo without short-term memory and without long-
term memory, respectively. Of particular interest, we ob-
serve that BiMeCoS achieves decent accuracy but performs
poorly in denying forgetting, while BiMeCoL can prevent
forgetting well. This result supports our hypothesis in
Sec. 3.2, i.e., long-term memory can obtain strong gener-
alization ability across all learned tasks through training on
online class-balanced data by back-propagating. Besides, in
diverse incremental settings, one can observe that BiMeCo
is superior to its variant BiMeCo∗, where only the samples

2For convenience of analysis, we show the average forgetting, which is
calculated as the difference between the peak accuracy and the final accu-
racy of each task [47, 48].

Method #Params
S=6 S=11 S=26

Acc. ↑ For. ↓ Acc. ↑ For. ↓ Acc. ↑ For. ↓
LUCIR [29] 11.2M 66.31 19.02 60.84 22.95 53.01 27.65
LUCIR† 5.8M 66.00 19.71 60.40 23.48 52.07 29.28
BiMeCoS 3.1M 65.76 20.64 60.21 24.09 51.65 29.99
BiMeCoL 3.1M 64.66 13.30 56.69 12.19 45.58 10.01
BiMeCo∗ 5.8M 68.74 14.32 65.62 18.81 62.90 24.07
BiMeCo 5.8M 69.87 13.78 66.82 17.15 64.16 22.56

Table 3. Ablation study of BiMeCo (%). #Params denotes the
model parameters on CIFAR-100. For each metric, ↑ (↓) indicates
that the larger (the smaller) values, the better results are.

of old tasks are used to train long-term memory. This shows
that the effectiveness of our dynamically updated teacher
network, as stated in Sec. 2.2.
Impact on the number of tasks. We vary the number
of tasks and implement LUCIR [29] and CwD [55] with
or without our BiMeCo. As shown in Fig. 4(b), the X-
axis represents the total number of tasks (denoted as n), in
which 50 classes are trained in the initial task, and the re-
maining classes are equally divided into n − 1 tasks. We
can observe that as the length of the task sequence in-
creases, all methods are prone to forgetting old tasks, re-
sulting in a drop in overall performance. However, our
method drops more smoothly and outperforms the baselines
in each case, especially when the number of tasks is larger.
For example, when n = 51, our BiMeCo achieves supe-
rior results over LUCIR [29] and CwD [55], which brings
+8.90% and +6.46% validation accuracy improvements, re-
spectively. This convincingly demonstrates that the pro-
posed BiMeCo does better work in continual learning, es-
pecially when tackling the highly long task sequence.
Influence of exemplar sampling strategies. Previous
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methods [29, 55] have proven that reserving a few sam-
ples is helpful for maintaining model performance on old
classes. However, as illustrated in Fig. 4(c), different
sampling strategies perform unstably on LUCIR [29] and
CwD [55]. For example, LUCIR [29] and CwD [55] per-
form unsatisfying in the distance and entropy sampling. On
the contrary, our method outperforms the baselines com-
prehensively. Taking LUCIR [29] as an example, BiMeCo
brings +6.56%, +11.06%, +10.67% and +5.98% validation
accuracy gains under four sampling strategies, respectively.
The dramatic improvements demonstrate the capability of
our BiMeCo to be insensitive to sampling strategies.
Analysis of the number of exemplars. We investigate the
impact of reserving a few samples of old classes on model
performance. The results in Fig. 4(d) show that all meth-
ods can obtain performance gains as the number of exem-
plars increases. Specifically, our proposed BiMeCo outper-
forms the baselines in each case, especially when the num-
ber of reserved samples is quite small. Notably, integrated
with BiMeCo, the baselines with reserving 20 exemplars
per class suffices to surpass those of their vanilla version by
utilizing 40 exemplars per class, which further verifies the
power of our proposed method.
Impact of the number of classes in the initial task. In
this ablation, we discuss the effect of the number of classes
learned in the initial task on the average incremental accu-
racy. As shown in Fig. 4(e), the X-axis represents the num-
ber of classes in the initial task, and the remaining classes
are incremented with 5 classes per task. We can find that
all methods can achieve better performance when the num-
ber of classes in the initial task increase. Particularly, our
BiMeCo consistently outperforms other methods, with val-
idation accuracy gains of +0.89%∼5.98%.
Analysis of the model parameters. By varying the num-
ber of intermediate channels, we investigate the effect of
model size on performance. For example, 0.5x repre-
sents reducing the intermediate channel dimension of mod-
ules (i.e., the residual blocks in ResNet-18 [26]) by a factor
of 0.5. From Fig. 4(f), we can see that BiMeCo achieves
better performance with the increased parameters. Addi-
tionally, compared with prior methods, our method shows
significant advantages in accuracy with great parameter ef-
ficiency. A vivid example is that BiMeCo with reducing
channels dimension by 0.5x still achieves a superior result
over LUCIR [29], which brings in a gain of +5.75% accu-
racy with a dramatic reduction of parameters by 73.5%.
Sensitivity to the perturbation. Following the common
practice [3, 66], we add the Gaussian noise to the weights
of each layer of the model to explore the model general-
ization in Fig. 4(g). Compared with Replay, LUCIR [29],
and CwD [55], our method is less sensitive to perturbations,
which reflects the characteristic of converging to flatter min-
ima [36, 66]. Specifically, the accuracy of three baselines

Model Distillation Pooling SG Mom. acc.

A 60.69
B ✓ 64.53
C ✓ ✓ 65.09
D ✓ ✓ ✓ 66.25
E ✓ 61.74
F ✓ ✓ 65.75
G ✓ ✓ ✓ 66.07
H ✓ ✓ ✓ ✓ 66.82

Table 4. Ablation study of each component of BiMeCo (%).
“Mom.” denotes using momentum update in our method. “SG”
denotes the stop gradient operation.

encounters devastating damages (-55.2%∼-64.6%), while
our BiMeCo shows only a slight drop (at most -4.3%). This
demonstrates that our method can facilitate the optimization
converges to a sharp minimum.
Effect of different components. Tab. 4 shows the results
of the ablation on knowledge distillation (Eq. (2)), pool-
ing (Eq. (1)), stop gradient (Eq. (2)), and momentum up-
date (Eq. (3)). From the results, we can observe that:
1) based on model A, all operations bring positive gains.
For example, momentum update improves accuracy gain
by +1.05%; 2) distillation-based guidance from short-term
memory to long-term memory is a key component in our
method, which brings a gain of +3.84% accuracy.

5. Conclusion

In this work, we present BiMeCo, a simple yet effi-
cient framework for continual learning (CL). From the per-
spective of sufficiently mining memory samples to form
generic knowledge, BiMeCo is designed to explicitly de-
couple model parameters into long-term memory module
and short-term memory module. By encouraging their dy-
namic interactions, BiMeCo can preserve scalability over
learning new tasks and generality over all learned tasks syn-
chronously. Extensive experiments show that BiMeCo is
lightweight and can be integrated into existing CL methods
seamlessly with further performance gains.
Limitation. Similar to most CL methods, our BiMeCo fo-
cuses on image classification and works well on it, but how
to extend it to other tasks such as object detection remains
an open question in this field. Our work provides a feasi-
ble solution to prevent forgetting while reducing parameter
overheads. However, there are still unexplored issues, such
as entirely removing the reliance on exemplars.
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