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Abstract

Predicting a high quality depth map from a single im-
age is a challenging task, because it exists infinite pos-
sibility to project a 2D scene to the corresponding 3D
scene. Recently, some studies introduced multi-head at-
tention (MHA) modules to perform long-range interaction,
which have shown significant progress in regressing the
depth maps. The main functions of MHA can be loosely
summarized to capture long-distance information and re-
port the attention map by the relationship between pixels.
However, due to the quadratic complexity of MHA, these
methods can not leverage MHA to compute depth features
in high resolution with an appropriate computational com-
plexity. In this paper, we exploit a depth-wise convolution
to obtain long-range information, and propose a novel trap
attention, which sets some traps on the extended space for
each pixel, and forms the attention mechanism by the fea-
ture retention ratio of convolution window, resulting in that
the quadratic computational complexity can be converted to
linear form. Then we build an encoder-decoder trap depth
estimation network, which introduces a vision transformer
as the encoder, and uses the trap attention to estimate the
depth from single image in the decoder. Extensive experi-
mental results demonstrate that our proposed network can
outperform the state-of-the-art methods in monocular depth
estimation on datasets NYU Depth-v2 and KITTI, with sig-
nificantly reduced number of parameters. Code is available
at: https://github.com/ICSResearch/TrapAttention.

1. Introduction

Depth estimation is a classical problem in computer vi-
sion (CV) field and is a fundamental component for vari-
ous applications, such as, scene understanding, autonomous
driving, and 3D reconstruction. Estimating the depth map
from a single RGB image is a challenge, since the same 2D
scene can project an infinite number of 3D scenes. There-
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Figure 1. Illustration of trap attention for monocular deep esti-
mation. Note that trap attention can significantly enhance depth
estimation, as evidenced by the clearer depth differences between
the table/chairs and the background.

fore, the traditional depth estimation methods [27, 28, 33]
are often only suitable for predicting low-dimension, sparse
distances [27], or known and fixed targets [28], which obvi-
ously limits their application scenarios.

To overcome these constraints, many studies [1, 8, 9, 20]
have employed the deep neural networks to directly obtain
high-quality depth maps. However, most of these research
focuses on improving the performance of depth estimation
networks by designing more complex or large-scale mod-
els. Unfortunately, such a line of research would render the
depth estimation task a simple model scale problem with-
out the trade-off between performance and computational
budget.

Recently, several practitioners and researchers in monoc-
ular depth estimation [3, 17, 45] introduced the multi-head
attention (MHA) modules to perform the long-range inter-
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Figure 2. Overview of our trap depth estimation network, which includes an encoder and a decoder. TB, TI and BS denote the trap block,
trap interpolation and block selection unit, respectively. TB is the basic block of our decoder, which decodes the depth feature from coarse
to fine in five stages. TB consists of a depth-wise (DW) convolution layer, a trap attention (TA) unit and a convolution based MLP. The
size of decoder depends on an arbitrary channel dimension (denoted as C). “⊕” denotes the addition operation.

(a) t1 (b) t2

(c) t3 (d) t4

Figure 3. The curves for trap functions used in trap attention with-
out the rounded operation. (a) and (d) are two similar curves. (b)
has a higher frequency. (c) has a different initial phase with other
curves.

action, which have shown considerable progress in regress-
ing the depth maps. Representative works of such methods
are AdaBin [3] and NeW CRFs [45]. Nevertheless, due to
the quadratic computational complexity of MHA, the com-

putational complexity of high resolution depth map for Ad-
aBin or NeW CRFs is typically expensive, i.e., for an h×w
image, its complexity is O(h2w2).

To reduce the computational complexity, in this work,
we firstly exploit a deep-wise convolution layer to compute
the long-distance information and then propose an attention
mechanism, called trap attention, which leverages various
manual traps to remove some features in extended space,
and exploits a 3 × 3 convolution window to compute rela-
tionship and attention map. As a result, the quadratic com-
putational complexity O(h2w2) can be converted to linear
form O(hw). As illustrated by the example in Figure 1,
the proposed trap attention is highly effective for depth esti-
mation, which can allocate more computational resource to-
ward the informative features, i.e., edges of table and chairs,
and output a refined depth map from coarse depth map.

Based on this attention mechanism, we finally build an
encoder-decoder depth estimation network, which intro-
duces a vision transformer as the encoder, and uses the trap
attention to estimate the depth from single image in the de-
coder. We can build our depth estimation network of differ-
ent scales according to the depth estimation scene, which
can obtain a balance between performance and computa-
tional budget. Experimental results show that our depth
estimation network outperform previous estimation meth-
ods by remarkable margin on two most popular indoor and
outdoor datasets, NYU [36] and KITTI [11], respectively.
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Specifically, our model can obtain consistent predictions
with sharp details on visual representations, and achieve the
new state-of-the-art performance in monocular depth esti-
mation, with only 35% parameters of the prior state-of-the-
art methods.

In summary, our main contributions are as follows:

• We use a depth-wise convolution to capture long-
distance information and introduce an extra attention
mechanism to compute the relationships between fea-
tures, which is an efficient alternative to MHA, result-
ing in that the computational complexity is reduced
from O(h2w2) to O(hw).

• We propose a novel attention mechanism that can al-
locate more computational resource toward the infor-
mative features, called trap attention, which is highly
effective for depth estimation.

• We build an end-to-end trap network for monocular
depth estimation, which can obtain the state-of-the-art
performance on NYU and KITTI datasets, with signif-
icantly reduced number of parameters.

2. Related Work
2.1. Unsupervised monocular depth estimation

The unsupervised method is an approach that needs only
rectified stereo image pairs to train the monocular depth es-
timation network. As an inspiring work, Garg et al. [10]
firstly proposed to train the depth estimation network by
synthesizing the rectified views, which can significantly re-
duce the effort to collect the training data for unseen scenes
or environments. To obtain the higher quality depth predic-
tion, several works have afterwards focused on this unsu-
pervised setting by using photometric reconstruction error
[10], or generating a probability distribution of possible dis-
parities for each 2D point [42], or introducing a multiview
consistency loss [44], or training with extra robust repro-
jection loss and automasking loss [13], respectively. These
unsupervised methods can achieve better depth estimation
results than traditional depth estimation methods. However,
these unsupervised approaches always required more com-
plex data for rectifying stereo pairs during training and test-
ing, which may limit their generalization in new monocular
scenarios.

2.2. Supervised monocular depth estimation

Supervised depth estimation methods generally use a
single RGB image and take the depth map measured with
range sensors device as ground truth for supervision during
network training in monocular depth estimation. A notable
early approach is proposed by Saxena et al. [33], which can
associate multi-scaled local and global image features, and

model both depths at individual nodes and the relationship
between depths at different nodes via Markov random field.
To learn an end-to-end mapping from RGB images to depth
data, Eigen et al. [8] have pioneered a multi-scaled convo-
lutional architecture, which firstly uses one convolutional
neural network (CNN) to predict a coarse global depth, and
then refine the prediction locally via another CNN. Follow-
ing the success of this approach, several works have pro-
posed different networks to estimate the depth maps by in-
troducing strong scene priors to estimate surface normal
[22], or translating the depth regression problem to depth
classification [4], or by supervising via virtual planes [43],
or using extra auxiliary loss function [19, 21], respectively.
Our proposed depth estimation method can refine the depth
features from coarse to fine in five stages, which belongs to
supervised monocular depth estimation.

2.3. Attention Mechanisms

Attention mechanisms, such as SE block [16] and
CBAM [41], have been introduced to direct computational
resources towards more informative features. These meth-
ods generate coefficients for each channel or spatial loca-
tion to emphasize important features. To focus on a specific
pixel rather than a group of features, the multi-head atten-
tion (MHA) mechanism was introduced by Vaswani et al.
[39] for natural language processing. MHA has been shown
to be a more effective attention method than previous atten-
tion mechanisms in computer vision tasks [5, 7, 40], and
has been recently leveraged for monocular depth estima-
tion [3, 45]. However, MHA has a quadratic complexity,
which makes it difficult to perform long-range interaction
in high input resolutions throughout the decoder, resulting
in rough prediction details or insignificant improvement for
depth regression. To address this problem, we propose an
efficient alternative attention mechanism, called trap atten-
tion, which can be implemented throughout the decoder to
predict high-resolution depth maps with linear complexity.

3. Method
This section first details the proposed trap attention,

and then displays the architecture of our depth estimation
model, which exploits a vision Transformer as the encoder,
and decodes the depth features via trap attention.

3.1. Trap attention

Multi-head attention (MHA) is the popular method to
perform long-distance interaction in depth estimation [3,
45], which can be roughly summarized to two main oper-
ations: one is to capture long-range information, and the
other is to report the feature relevance and attention map
by a softmax matrix. To perform an efficient alternative to
MHA, we exploit a 7 × 7 depth-wise convolution layer to
capture long-range information, and present a trap attention
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Table 1. Comparison of performances on the NYU dataset. “*” indicates using additional data, and “†” denotes the unsupervised method.

Method # Params
higher is better lower is better

δ < 1.25 δ < 1.252 δ < 1.253 Abs Rel Sq Rel RMSE RMSE log log10

Saxena et al. [34] - 0.447 0.745 0.897 0.349 - 1.214 - -
Li et al. [22] - 0.621 0.886 0.968 0.232 - 0.821 - 0.094
Liu et al. [23] - 0.650 0.906 0.974 0.213 - 0.759 - 0.087
P2Net † [44] - 0.801 0.951 0.987 0.147 - 0.553 - 0.062
Yin et al. [43] 91.6M 0.875 0.976 0.994 0.108 - 0.416 - 0.048
Long et al. [25] 81.6M 0.890 0.982 0.996 0.101 - 0.377 - 0.044
P3Depth [30] 94.2M 0.898 0.981 0.996 0.104 - 0.356 - 0.043
AdaBin [3] 78.0M 0.903 0.984 0.997 0.103 - 0.364 - 0.044
BTS [20] 47.0M 0.885 0.978 0.994 0.110 0.066 0.392 0.142 0.047
Trap-S (ours) 28.3M 0.910 0.984 0.996 0.100 0.054 0.356 0.128 0.043

Eigen et al. [8] 141.0M 0.769 0.950 0.988 0.158 - 0.641 - -
DORN [9] 110.0M 0.828 0.965 0.992 0.115 - 0.509 - 0.051
DPT* [32] 123.1M 0.904 0.988 0.998 0.110 - 0.357 - 0.045
NeW CRFs [45] 270.5M 0.922 0.992 0.998 0.095 0.045 0.334 0.119 0.041
PackNet-SAN* [14] 110.8M 0.892 0.979 0.995 0.106 - 0.393 - -
Trap-M (ours) 94.2M 0.925 0.988 0.997 0.092 0.047 0.332 0.119 0.040
Trap-L (ours) 222.0M 0.927 0.991 0.998 0.090 0.044 0.329 0.117 0.039

(TA) operation to report the attention map and compute the
feature relationship. The trap attention first leverages man-
ual traps to identify the importance of features, and then
employs a depth-wise separable convolution layer to sum-
marize the attention and relevance information.

Manual traps. To select the informative feature, we set
some manual traps on the extended feature map and name
this operation as trap interpolation (TI). In our trap design,
there are 4 kinds of trap functions, namely t1, t2, t3, and t4,
which can be defined as:

t1(x) = [| sin(x)|],
t2(x) = [|2 sin(x) cos(x)|],
t3(x) = [| cos(x)|],
t4(x) = [sin2(x)],

(1)

, respectively, where x is the input feature map, and “[ ]”
denotes the rounding operation.

As shown in Figure 3, t1 and t4 are two similar functions,
which are set on the diagonal regions. They can prelim-
inarily classify, retain, and remove the input feature map.
t2 is a higher frequency function that can further classify
the retained or removed features. In addition, t3 is used to
prevent the complete removal of these features during the
upsampling process.

These four traps are leveraged to classify each pixel in
an extended 2× 2 space, which can be written as follows:

TI (xi) =
(
xi × t1(xi), xi × t2(xi)
xi × t3(xi), xi × t4(xi)

)
, (2)

where i is the index that enumerates all possible positions
along spatial dimension. Obviously, the TI operation is used
to upsample the input feature map x to a larger size of 2×
height and 2× width.

Attention map and feature relationship. To keep the
identical resolution between input and output, we leverage
a reversal operation of pixel shuffle [35] to rearrange the
pixels. Afterwards, the trap interpolation is used to classify
the rearranged features. Finally, we use a 3× 3 depth-wise
separable convolution layer with a group size of 4 to obtain
the attention information and feature relevance. Suppose
that the input feature map X ∈ RĤ×Ŵ×Ĉ . Formally, the
trap attention can be defined as:

TA(X) = Wd ∗ TI(PR(X)) + bd, (3)

where PR denotes the pixel rearrangement operator, Wd ∈
RĈ×4×3×3 and bd ∈ RĈ are the weights and biases of
depth-wise separable convolutional filters, respectively, “∗”
is the convolution operation. In particular, the pixel rear-
rangement operator resizes X to the shape of Ĥ

2 × Ŵ
2 ×4Ĉ,

and then the TI operator upsamples it to a size of Ĥ × Ŵ ×
4Ĉ.

Complexity of TA. Suppose that a feature map has an
h×w spatial size. We can calculate the computational com-
plexity of MHA and TA, i.e.,

Ω(MHA) = 4hwc2 + 2(hw)2c,
Ω(TA) = 10hwc+ 4× 32hwc,

(4)
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(a) Input (b) BTS (c) AdaBin (d) NeW CRFs (e) Trap-S (ours) (f) Trap-M (ours) (g) GT

Figure 4. Qualitative comparison with the state-of-the-art methods on the NYU dataset. Compared with BTS, AdaBin and NeW CRFs, the
predictions of our Trap-S and Trap-M have higher qualities. Please zoom in for more details.

where c and Ω denote the channel dimension of image
and the computational complexity, respectively. Obviously,
Ω(MHA) is quadratic to hw, TA has the linear complexity
of spatial size hw. As a result, TA can be easily imple-
mented to predict the depth map in a high resolution, com-
pared to MHA.

3.2. Model architecture

Overview. Our depth estimation network consists of a
ViT encoder, a decoder, and a block selection (BS) unit in
between (see Figure 2). The trap attention unit is embed-
ded into the basic block of the decoder, i.e., the trap block,
to compute depth features. For a single RGB image of size
H × W , our network has five stages of deep features for
the trap attention-based decoder, ranging from H

32 × W
32 to

H
2 × W

2 . A TI operation is used between each two adja-
cent stages to upsample the lower-resolution feature map
for feature fusion. Finally, the depth features of all stages
are mixed in a feature map computed by a trap block and a
3 × 3 convolution layer for the depth map. The depth pre-
diction is upsampled using bilinear interpolation to the same
resolution as the RGB image. To adapt to different applica-
tion scenarios, we have three sizes of end-to-end networks:
Trap-S, Trap-M, and Trap-L. These models use XCiT-S12
[2], XCiT-M24 [2], and Swin-L [24] as encoders, respec-
tively. Details of our Trap-S, Trap-M, and Trap-L models
can be found in Section 1 of our Supplement file.

Block selection. During feedforward propagation in

the vision Transformer encoder, the attention paid to back-
ground features can be diminished. Unlike the semantic
segmentation task, which classifies background pixels into
a single class, monocular depth estimation requires back-
ground pixels to be categorized into different depth levels.
To address this challenge, we introduce a block selection
unit that compares the feature maps of n consecutive can-
didate blocks pixel by pixel and selects the maximum value
pixel. Formally, the output feature of the block selection
unit, denoted as Yj , is defined as:

Yj = Max(B1
j , B

2
j , ..., B

k
j ..., B

n
j ), (5)

where Bk
j denotes the pixel of output feature map in n can-

didate encoder blocks, k and j are the indexes of a can-
didate block and a position of feature map (in channel or
space), respectively, Max is an operation to take the maxi-
mum value. The BS operation is used on all positions of in-
put feature maps. Raghu et al. have demonstrated that ViT
architectures own highly similar representations throughout
different depths [31], hence the BS operation does not de-
stroy the integrity of features, and can obtain the more ac-
curate depth map.

Decoder block. The basic block of the decoder, namely
trap block, which leverages a 7× 7 depth-wise convolution
layer and a trap attention unit to capture the spatial relation-
ship, and obtain depth information along channel dimension
by a convolution based MLP (denoted by Chan). The Chan
operator exploits two 1× 1 convolution layers and a GELU
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Table 2. Comparison of performances on KITTI dataset. “*” indicates using additional data.

Method # Params higher is better lower is better
δ < 1.25 δ < 1.252 δ < 1.253 Abs Rel Sq Rel RMSE RMSE log

Saxena et al. [34] - 0.601 0.820 0.926 0.280 3.012 8.734 0.361
Liu et al. [23] - 0.680 0.898 0.967 0.201 1.584 6.471 0.273
Godard et al. [12] - 0.861 0.949 0.976 0.114 0.898 4.935 0.206
Kuznietsov et al. [18] - 0.862 0.960 0.986 0.113 0.741 4.621 0.189
Yin et al. [43] 91.6M 0.938 0.990 0.998 0.072 - 3.258 0.117
P3Depth [30] 94.2M 0.953 0.993 0.998 0.071 0.270 2.842 0.103
AdaBin [3] 78.0M 0.964 0.995 0.999 0.058 0.190 2.360 0.088
BTS [20] 47.0M 0.956 0.993 0.998 0.059 0.245 2.756 0.096
Trap-S (ours) 28.3M 0.967 0.996 0.999 0.055 0.177 2.278 0.085

Eigen et al. [8] 141.0M 0.702 0.898 0.967 0.203 1.548 6.307 0.282
DRON [9] 110.0M 0.932 0.984 0.994 0.072 0.307 2.727 0.120
DPT* [32] 123.1M 0.959 0.995 0.999 0.062 - 2.573 0.092
NeW CRFs [45] 270.5M 0.974 0.997 0.999 0.052 0.155 2.129 0.079
PackNet-SAN* [14] 110.8M 0.955 - - 0.062 - 2.888 -
Trap-M (ours) 94.2M 0.976 0.998 0.999 0.054 0.149 1.990 0.078
Trap-L (ours) 222.0M 0.980 0.998 0.999 0.050 0.128 1.869 0.074

nonlinearity [15] to compute the depth information along
channel dimension, which can be written as follows:

Chan(X) = Wc2 ∗ (GELU(Wc1 ∗X + bc1)) + bc2, (6)

where Wc1, Wc2 are the convolution weights and bc1, bc2
are the biases of convolutions, respectively.

As detailed in Figure 2, a 7× 7 depth-wise convolutions
layer is employed to mix long-range depth features to in-
put zI. Then a trap attention unit is used to compute the
relationship and attention information zattn from the mixed
feature zmix. As a result, the trap block can be summarized
as follows:

zmix = DW(zI) + zI,
zattn = TA(zmix) + zmix,
zo = Chan(LN(zattn)),

(7)

where DW and LN denote the 7×7 depth-wise convolution
layer and the LayerNorm layer, respectively, zo refers to the
output feature map.

Feature fusion. To fuse the depth feature maps from
neighboring decoder stages, it is necessary to upsample the
lower resolution features. Compared to traditional upsam-
pling algorithms, i.e., nearest neighbor or bilinear interpola-
tion, which linearly extends the depth features along spatial
dimensions, nonlinear extending methods exhibit superior
performance in feature fusion. This has been demonstrated
in previous depth estimation methods, including BTS [20],

Table 3. Comparison of performances on SUN RGB-D dataset.

Method higher is better lower is better
1.25 1.252 1.253 Abs Rel RMSE log10

Chen [6] 0.757 0.943 0.984 0.166 0.494 0.071
Yin [43] 0.696 0.912 0.973 0.183 0.541 0.082
BTS [20] 0.740 0.933 0.980 0.172 0.515 0.075
AdaBin [3] 0.771 0.944 0.983 0.159 0.476 0.068

Trap-S 0.796 0.958 0.988 0.150 0.436 0.064
Trap-M 0.802 0.962 0.989 0.146 0.424 0.063
Trap-L 0.806 0.964 0.991 0.141 0.414 0.061

and NeW CRFs [45]. In our method, the nonlinear and low-
computational trap interpolation is used to upsample feature
map in our depth estimation model.

Loss function. Following previous studies [20, 45],
scale-invariant logarithmic loss [8] is used during super-
vised training, which can be defined as:

L = α

√
1

N

∑
(log d̂i − log di)2 −

λ

N2
(
∑

log d̂i − log di)2, (8)

where d̂i is the predicted depth pixel, di is the ground truth
depth pixel, and N denotes the number of valid pixels. To
keep the consistency of loss function with previous methods
[3, 20, 45], we set λ = 0.85 and α = 10.

4. Experimental Results
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(a) Input (b) NeW CRFs (c) Trap-L(ours)

Figure 5. Qualitative comparison with the state-of-the-art method on the KITTI dataset. In comparison to NeW CRFs, our Trap-L model
demonstrates stronger performance in predicting the depths of diverse targets.

4.1. Datasets

NYU dataset. There are 120K training RGB and depth
pairs from 249 indoor scenes, and 654 testing samples from
215 indoor scenes in the NYU dataset [36]. We follow the
official split to train and evaluate our method, with 24231
image-depth pairs for training and 654 testing images for
testing.

KITTI dataset. The KITTI dataset is a outdoor bench-
mark with 61 scenes, which are captured from the equip-
ment mounted on a moving vehicle. We employ the split
provided by Eigen et al. [8] (23488 training samples and
697 testing samples) to evaluate our method. The capturing
range of the Eigen split is 0-80m.

SUN RGB-D dataset. Following previous studies [3,
20], we evaluate the NYU pretrained models in SUN RGB-
D dataset [37] without extra training. The SUN RGB-D
dataset contains 10K indoor images collected from four dif-
ferent sensors.

4.2. Training setting and evaluation metric

Training protocols. Our models are implemented in Py-
torch [29], and trained on Nvidia Tesla V100 GPUs. These
networks are optimized end-to-end for 320K iterations, us-
ing batch size 8 and an AdamW [26] optimizer with an ini-
tial learning rate of 0.0001, a weight decay of 0.01, a sched-
uler that uses linear learning rate decay, a LayerScale [38]
with initialization ϵ = 1, and a linear warmup of 3.2K it-
erations. The output depth map of our networks is simply
upscaled to the full resolution by bilinear interpolation.

Quality metrics of depth estimation. We use stan-
dard eight metrics to evaluate the performance of the pre-
dicted depth [8], including five error metrics, and three ac-
curacy metrics. The error metrics consist of absolute rela-
tive (Abs Rel), squared relative (Sq Rel) error, Log10 error,
root mean squared error (RMSE) and its log variant (RMSE

log). Moreover, the thresholds (δ) for these accuracy met-
rics are set to 1.25, 1.252 and 1.253, respectively.

Model size. Some previous state-of-the-art methods,
e.g., NeW CRFs [45], typically exploit a big scale model to
obtain high performance. Obviously, it is unfair to just com-
pare the depth estimation results of various models. There-
fore, we adopt the number of parameters to measure the size
of model, as done in BTS [20] and AdaBin [3].

4.3. Comparison to the state-of-the-art methods

In terms of efficiency, our main comparisons are as fol-
lows: we compare our Trap-S model with small models
containing less than 100 million parameters, while we com-
pare our Trap-M and Trap-L models with models containing
over 100 million parameters.

Results on NYU. Table 1 shows the performance on
NYU dataset. For small models, our Trap-S surpasses prior
state-of-the-art model across five metrics with only 36.2%
parameters. For larger models, our Trap-M outperforms
previous state-of-the-art method across four metrics with
only 35% parameters. As shown in Figure 4, it can be
clearly observed that the predictions of our method have
sharper details for various objects, e.g., bookshelves, lamps
and vases. Please see the Section 2 of our Supplement file
for more details.

Results on KITTI. The results on KITTI dataset are
listed in Table 2. Our Trap-S and Trap-M can outperform
previous state-of-the-art methods, and reduce about 65%
parameters. Especially, compared with similar size BTS
method, Trap-S reduces the “Sq Rel” and “RMSE” error
by 27.8% and 17.3%, respectively. Using the same Swin-L
[24] encoder, our Trap-L model can surpass the prior state-
of-the-art NeW CRFs model across 6 metrics. As visualized
in Figure 5, compared to NeW CRFs, our method can more
accurately predict for both the depth of dense objects and in-
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Table 4. Ablation studies for our deep estimation networks on
NYU dataset. S and M denote the Trap-S and Trap-M models
without TI, TA, or BS unit, respectively. BSi represents that BS
is used to select the maximum pixels from i blocks of encoder.
“†” refers to the substitution of the four trap functions in the trap
attention module with diverse functions for Trap-M.

Variant higher is better lower is better
1.25 1.252 1.253 Abs Rel RMSE

S 0.883 0.981 0.995 0.120 0.385
S + TA 0.892 0.983 0.996 0.114 0.371
S + TI + TA 0.900 0.983 0.995 0.107 0.363
S + TI + TA + BS2 0.902 0.984 0.996 0.105 0.361
S + TI + TA + BS4 0.910 0.984 0.996 0.100 0.356

M + TI + TA 0.916 0.987 0.996 0.099 0.342
M + TI + TA + BS2 0.917 0.988 0.997 0.099 0.337
M + TI + TA + BS4 0.917 0.988 0.997 0.098 0.335
M + TI + TA + BS6 0.920 0.988 0.997 0.096 0.334
M + TI + TA + BS8 0.925 0.988 0.997 0.092 0.332

Trap-M with different manual functions and other alternative functions

Trap-M (baseline) 0.925 0.988 0.997 0.092 0.332
Without rounding 0.920 0.987 0.997 0.096 0.339
t3 = [| sin(x2)|] 0.923 0.988 0.997 0.093 0.336
Without traps 0.900 0.986 0.996 0.112 0.359
ReLU nonlinearity† 0.902 0.986 0.996 0.111 0.358
GeLU nonlinearity† 0.913 0.986 0.997 0.099 0.340
SiLU nonlinearity† 0.904 0.986 0.996 0.111 0.362
4 learning weights† 0.904 0.986 0.997 0.109 0.354

dividual objects across various brightness scene, which can
further verify the efficient performance of our model.

In addition, our proposed trap network can achieve the
state-of-the-art performance among all published submis-
sions on the KITTI online benchmark. Please refer to the
Section 3 of our Supplement file.

Results on SUN RGB-D. To test the generalization of
our method, we perform a cross-dataset evaluation and de-
tail the comparison results in Table 3. Compared with the
state-of-the-art method, our Trap-L can reduce the “Abs
Rel”, “RMSE”, and “log 10” error by 11.3%, 13.0%, and
10.3%, respectively. Moreover, the visualization results are
displayed in Section 2 of our Supplement file. And it can
be clearly observed that our predictions have a stronger in-
tegrity for big targets, e.g., beds, walls, etc.

4.4. Ablation Study

We conduct several ablation studies for our proposed
deep estimation network on NYU dataset. In this experi-
ment, the trap attention (TA), trap interpolation (TI), and
block selection (BS) with various blocks are optionally fit-
ted to the proposed trap network as spare parts.

Trap attention. As shown in Table 4, the trap attention
can improve the performance of “θ < 1.25”, “θ < 1.252”,
“θ < 1.253”, “Abs Rel” and “RMSE” by 1.0%, 0.2%, 0.1%
5.0% and 3.6%, respectively. According to Table 4, we
can clearly observe that trap attention is indeed effective for

depth estimation. Please see Section 4 of our Supplement
file for more details.

Trap interpolation. Compared with the well-used bi-
linear interpolation, our trap interpolation can gain the per-
formance improvement, which can reduce “Abs Rel” and
“RMSE” error by “6.1%” and “2.2%”, respectively, as
shown in Table 4. In fact, the trap interpolation and the
DW convolution of trap block can be also treated as a trap
attention mechanism.

Block selection. For our proposed network, the number
of candidate blocks for each BS unit is an important variant.
We evaluate the variant in different model sizes (Trap-S uses
an encoder of 12 blocks, and Trap-M uses an encoder of
24 blocks). The results in Table 4 show that the optimal
setting for the number of candidate blocks is 1

3 of the total
block number of encoder i.e., Trap-S and Trap-M use 4 and
8 candidate blocks, respectively.

Trap functions. According to Equation 2, we propose
four manual trap functions to be used in TI or TA units. Ta-
ble 4 shows that the rounding operation can slightly improve
the performance of Trap-M. Figure 3 shows that t3 differs
from the other trap functions when the input x is around 0.
Therefore, we replace the t3 function with [| sin(x2)|] while
retaining the other three trap functions and investigate the
experimental results. As indicated in Table 4, the original
function of [| cos(x)|] outperforms the [| sin(x2)|] function.
Moreover, we can observe that the four manual traps can
achieve significant margins over alternative functions such
as ReLU nonlinearity, GELU nonlinearity, SiLU nonlinear-
ity, or four learning weights.

5. Conclusion

This paper first exploits the depth-wise convolution to
obtain long-range information, and introduces a novel trap
attention mechanism to compute the relationships between
features, which is an efficient alternative to MHA. As a re-
sult, the quadratic computational complexity O(h2w2) can
be converted to linear form O(hw). Moreover, trap atten-
tion is further employed to build an end-to-end network
for monocular depth estimation. Experimental results show
that the proposed depth estimation network can obtain state-
of-the-art scores on two most popular datasets, NYU and
KITTI, with only 35% parameters of the prior state-of-the-
art methods. We hope that our proposed work can inspire
further research in different fields, e.g., image classification,
semantic segmentation, and 3D reconstruction from multi-
ple images.
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