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Figure 1. Given a set of input images, our method automatically detects and jointly aligns semantically-common content across the images.
This is achieved through a test-time training approach that estimates a unified 2D atlas that represents the common semantic content, and
dense mappings from the joint atlas to each of the input images. Our atlas and mappings are optimized per input set in a self-supervised
manner by leveraging a pre-trained DINO-ViT model. Our method can be applied to diverse image sets, without requiring any additional
training data, and allows us to automatically propagate an edit applied to a single image across the entire set.

Abstract

We present Neural Congealing – a zero-shot self-
supervised framework for detecting and jointly aligning
semantically-common content across a given set of images.
Our approach harnesses the power of pre-trained DINO-
ViT features to learn: (i) a joint semantic atlas – a 2D
grid that captures the mode of DINO-ViT features in the
input set, and (ii) dense mappings from the unified atlas
to each of the input images. We derive a new robust self-
supervised framework that optimizes the atlas representa-
tion and mappings per image set, requiring only a few real-
world images as input without any additional input infor-
mation (e.g., segmentation masks). Notably, we design our
losses and training paradigm to account only for the shared
content under severe variations in appearance, pose, back-
ground clutter or other distracting objects. We demon-
strate results on a plethora of challenging image sets in-
cluding sets of mixed domains (e.g., aligning images depict-
ing sculpture and artwork of cats), sets depicting related
yet different object categories (e.g., dogs and tigers), or do-
mains for which large-scale training data is scarce (e.g.,
coffee mugs). We thoroughly evaluate our method and show
that our test-time optimization approach performs favor-
ably compared to a state-of-the-art method that requires ex-
tensive training on large-scale datasets. Project webpage:
https://neural-congealing.github.io/

1. Introduction

Humans can easily associate and match semantically-
related objects across images, even under severe variations
in appearance, pose and background content. For exam-
ple, by observing the images in Fig. 1, we can immediately
focus and visually compare the different butterflies, while
ignoring the rest of the irrelevant content. While compu-
tational methods for establishing semantic correspondences
have seen a significant progress in recent years, research ef-
forts are largely focused on either estimating sparse match-
ing across multiple images (e.g., keypoint detection), or es-
tablishing dense correspondences between a pair of images.
In this paper, we consider the task of joint dense semantic
alignment of multiple images. Solving this long-standing
task is useful for a variety of applications, ranging from
editing image collections [36,56], browsing images through
canonical primitives, and 3D reconstruction (e.g., [8, 47]).

The task of joint image alignment dates back to the sem-
inal congealing [13, 14, 20, 28], which aligns a set of im-
ages into a common 2D space. Recently, GANgealing [36]
has modernized this approach for congealing an entire do-
main of images. This is achieved by leveraging a pre-trained
GAN to generate images that serve as self-supervisory sig-
nal. Specifically, their method jointly learns both the mode
of the generated images in the latent space of the GAN, and
a network that predicts the mappings of the images into the
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joint mode. GANgealing demonstrated impressive results
on in-the-wild image sets. Nevertheless, their method re-
quires a StyleGAN model pre-trained on the domain of the
test images, e.g., aligning cat images requires training Style-
GAN on a large-scale cat dataset. This is a challenging task
by itself, especially for unstructured image domains or un-
curated datasets [34]. Moreover, they require additional ex-
tensive training for learning the mode and their mapping
network (e.g., training on millions of generated images).
In this work, we take a different route and tackle the joint
alignment task in the challenging setting where only a test
image set is available, without any additional training data.
More specifically, given only a few images as input (e.g.,
<25 images), our method estimates the mode of the test set
and their joint dense alignment, in a self-supervised manner.

We assume the input images share a common semantic
content, yet may depict various factors of variations, such as
pose, appearance, background content or other distracting
objects (e.g., Mugs in Fig. 3). We take inspiration from the
tremendous progress in representation learning, and lever-
age a pre-trained DINO-ViT – a Vision Transformer model
trained in a self-supervised manner [4]. DINO-ViT features
have been shown to serve as an effective visual descriptor,
capturing localized and semantic information (e.g., [2,49]).
Here, we propose a new self-supervised framework that
jointly and densely aligns the images in DINO-ViT feature
space. To the best of our knowledge, we are the first to har-
ness the power of DINO-ViT for dense correspondences be-
tween in-the-wild images. More specifically, given an im-
age set, our framework estimates, at test-time: (i) a joint la-
tent 2D atlas that represents the mode of DINO-ViT features
across the images, and (ii) dense mappings from the atlas
to each of the images. Our training objective is driven by
a matching loss encouraging each image features to match
the canonical learned features in the joint atlas. We further
incorporate additional loss terms that allow our framework
to robustly represent and align only the shared content in the
presence of background clutter or other distracting objects.

Since our atlas and mappings are optimized per set, our
method works in a zero-shot manner and can be applied
to a plethora of image sets, including sets of mixed do-
mains (e.g., aligning images depicting sculpture and art-
work of cats), sets depicting related yet different object
categories (e.g., dogs and tigers), or domains for which
a dedicated generator is not available (e.g., coffee mugs).
We thoroughly evaluate our method, and demonstrate that
our test-time optimization framework performs favorably
compared to [36] and on-par with state-of-the-art self-
supervised methods. We further demonstrate how our atlas
and mappings can be used for editing the image set with
minimal effort by automatically propagating edits that are
applied to a single image to the entire image set.

2. Related Work
Joint Image Set Alignment. Congealing [14, 20, 28] in-
troduced the task of jointly aligning images into a common

2D image, representing the geometric mode of the set. This
was done by minimizing the entropy of intensity values in a
pixel stack after the alignment. They demonstrated the use
of their method for several applications, including image
classification given a few labels per class. These seminal
works were extended by incorporating deep learning, com-
bining unsupervised alignment with unsupervised feature
learning [13], which showed improvement in face verifica-
tion accuracy. Further, various methods were proposed to
generalize congealing to several modes, e.g., through clus-
tering [10, 11, 21, 26, 35, 51], and make it more robust to
occlusions [37]. Other methods are based on pairwise op-
tical flow, requiring either consistent matching across im-
age pairs in a collection [42, 55], or factorizing the collec-
tion into simpler subspaces, simplifying the matching task
[19, 33]. AverageExplorer [56] presented a user interactive
framework for browsing Internet photo collections through
average images representing modes in the collections.

Recently, GANgealing [36] used a Spatial Transformer
Network (STN) [16] to predict a transformation from any
image sampled from a predefined domain (e.g. cat images)
into a shared aligned space. They leverage the style-pose
disentanglement in a pre-trained StyleGAN2 model [17] to
provide training supervision. Specifically, during training,
their method simultaneously learns the mode of object pose
across a large collection of images, and trains the STN to
map each image to this mode. Their method demonstrates
impressive results on complex data such as LSUN [54], yet
requires extensive compute and large-scale training data. In
contrast, we take the congealing task to the realm of test-
time optimization, where only a small test image set is avail-
able (e.g., <25 images). Thus, our method can be applied
on diverse domains, or sets that comprise of images from
mixed yet related domains, as shown in Fig. 1, 3, 6 and 7.

Semantic Correspondences. Prior to the deep-learning
era, various methods were proposed for the task of es-
tablishing sparse point correspondences between an im-
age pair [23, 48]. However, due to their local nature and
lack of global context, they cannot handle significant color
and shape variations. Later, data-driven based descriptors
opened the door to establishing correspondences based on
higher level information by learning from data representa-
tions that encode semantic global information; such meth-
ods either work by extracting features from a pre-trained
classification model (e.g., [1, 9, 46]), or by training a model
end-to-end for establishing semantic correspondences (e.g.,
[40, 41]). Many of them use groundtruth supervision for
training [5], while others aim to tackle the task in a weakly-
supervised [40,41] or unsupervised fashion [2]. Our method
also aims to learn semantic correspondences, however, we
focus on aligning multiple images jointly by leveraging de-
scriptors extracted from a pre-trained DINO-ViT model [4].

DINO-ViT Features as Local Semantic Descriptors.
Recent works showed the power of ViT (Vision Trans-
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former) features as local and global semantic descriptors,
specifically features of a pre-trained DINO-ViT [4]. Several
works [4, 45, 53] showed the use of these features for vari-
ous applications such as instance segmentation, object dis-
covery or transfer learning on downstream tasks. GCD [50]
categorize all unlabeled images given only a partially la-
beled dataset. Other works used the pre-trained features for
both object localization and segmentation [27], and even
object part discovery and segmentation [7]. STEGO [12]
showed a method for unsupervised semantic segmentation,
which unlike most works that learn a feature per pixel, they
use contrastive loss that produces low rank representation
for the DINO features.

It was shown by [2] that the deep features of a pre-
trained DINO-ViT encode semantic information at fine spa-
tial granularity and capture semantic object parts. Further-
more, they showed that this information is shared across
domains of semantically-related categories, e.g. cats and
dogs, allowing them to design dense descriptors which are
used for various applications of co-segmentation, part co-
segmentation and point correspondences between images.
Splice [49] established a method for semantic appearance
transfer using DINO-ViT features, and presented additional
powerful properties such as keys inversion, which shows the
amount of details they hold of the original image.

We build upon the findings from [2, 49] and use DINO-
ViT’s spatial features as dense descriptors for aligning im-
ages from semantically-related categories.

3. Neural Atlas Congealing
The input to our method is a collection of images with

common semantic content, e.g., a set of images depicting
different types of guitars in natural scenes. The shared
content may significantly differ across the images in ap-
pearance, structure, pose, and appear in cluttered scenes
containing complex backgrounds or other distracting ob-
jects (e.g., Fig. 3). Our goal is to automatically detect the
common content across the images and estimate a geomet-
ric transformation that maps each image into a joint 2D
space. Our key idea is to harness the power of deep fea-
tures extracted from a pre-trained (and fixed) DINO-ViT
model, which have been shown to capture localized seman-
tic information under significant appearance and pose vari-
ations [2, 4, 49].

Specifically, our framework, illustrated in Fig. 2, jointly
aligns the images in DINO-ViT feature space using two
learnable components: (i) a unified latent 2D atlas that rep-
resents the common semantic mode in DINO-ViT space
across the images, and (ii) a Spatial Transformer Network
(STN) that aligns each of the input images to the joint latent
atlas. Our method is fully automatic and self-supervised:
each of the input images is first fed into DINO-ViT and fea-
tures (keys) are extracted from the last layer, and serve as
our spatial semantic descriptors. The atlas representations,
in which each pixel stores a latent feature, and the STN pa-
rameters are then optimized such that the transformed fea-

tures of each image are aligned with the joint atlas features.
We further define a saliency value in each atlas pixel that

takes a continuous value between zero and one. We opti-
mize the atlas saliency using a voting-based loss w.r.t. rough
initial image saliency masks estimated from DINO-ViT fea-
tures in a pre-processing step [2]. This allows us to robustly
align only the common regions in highly cluttered scenes.

3.1. Semantic Joint Image Alignment
Given an input image set {Ii}Ni=1 and a pre-trained (and

fixed) DINO-ViT model, we extract for each image its keys
features from the last layer, denoted by Ki ∈ RH×W×D; an
initial per-image saliency mask Si is estimated by applying
a simple clustering-based method directly to the extracted
features (see [2]). These maps roughly capture salient fore-
ground regions, but are often noisy and contain uncommon
regions across the images, as seen in Fig. 4.

We define a learnable atlas A as a 2D grid of latent
features KA ∈ RHA×WA×D, and a saliency mask SA ∈
RHA×WA . We define the 2D mapping of each atlas point
xA to each of the input images Ii as follows:

xi = M(Ii,xA) (1)

where xi is the estimated corresponding point of xA in im-
age Ii. Note that applying M on all atlas coordinates allows
us to backward warp Ii, Si or Ki into the atlas space.

Similarly to [36], M is modeled as a composition of
rigid and non-rigid transformations Mr ◦Mf , each is esti-
mated by a separate STN. That is, Mr is a global 2D simi-
larity transformation defined by:

Mr(I,x) = sRx+ t (2)

where R ∈ SO(2), t ∈ R2 and s ∈ R+ are 2D rotation,
translation and global scale, respectively. Our method also
supports horizontal flips, see the Supplementary Materials
(SM) for details.

Given an image I , the non-rigid transformation Mf is
defined by a dense flow field:

Mf (I,x) = x+w (3)

where w is a per-pixel 2D offset.
In practice, each transformation is obtained by an STN

model: one takes Ii as input and predicts the parameters
of the similarity transformation Mr; the image Ii is then
backward warped using Mr and fed to the second STN that
predicts Mf . See SM for network architecture details.

3.2. Training
Given {Ii, Si,Ki}Ni=1, we now turn to the task of learn-

ing the joint atlas A = (KA, SA) and 2D mappings M =
(Mr,Mf ). Our objective function incorporates four main
loss terms and takes the following form:

L = Lkeys + λsLsaliency + λrLregM + λaLregA (4)

where λs, λa and λr control the relative weights between
the terms, and are fixed throughout training.
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Figure 2. Neural Congealing. Each of the input images Ii in the set (a) is fed into a pre-trained and fixed DINO-ViT model. (b) Spatial
features, Ki, are extracted and processed to estimate initial rough saliency masks Si (see [2]), both of which are used to train: (i) a mapping
network (STN), which (c) transforms each of the input images into a joint 2D space, and (ii) (d) a joint learnable 2D feature atlas, KA, and
an atlas saliency map SA. Note that while the input saliency masks are noisy and contain objects from the background, our method is able
to refine them and focus on the most common object in the set. See SM for the full set of images.

Semantic loss Lkeys. The semantic loss is our driving
loss and it encourages an alignment in DINO-ViT feature
space between the atlas and each of the congealed images:

Lkeys =

N∑
i=1

1

N · ΣSA

∑
xA

SA(xA) · D (Ki(xi),KA(xA))

(5)
where ΣSA =

∑
xA

SA(xA), KA(xA) is the atlas fea-
ture at location xA, and Ki(xi) is the corresponding fea-
ture in Ii (see Eq. 1). The distance metric D is defined
by: λl ∥Ki(xi)−KA(xA)∥22 + Dcos (Ki(xi),KA(xA)),
where Dcos is the cosine distance. Note that since we are
interested in aligning only the semantically common con-
tent across the images, our loss is weighted according to the
atlas saliency SA.

Saliency loss Lsaliency. This term serves as a saliency-
voting loss that allows us to capture the common content
across the images by the atlas saliency SA. Formally, the
atlas saliency is optimized to match the initial congealed
images’ saliency masks. Since the image saliency masks are
often rough and contain clutter or irrelevant salient objects
of the scene (Fig. 2), we use a robust loss:

Lsaliency =
1

N ·NA

N∑
i=1

∑
xA

ρ0.7 (Si(xi), SA(xA))

(6)
where NA is the number of pixels in the atlas, and ρδ(a, b)
denotes the Huber loss [15] with parameter δ:

ρδ(a, b) =

{
1
2 (a− b)2, if |a− b| < δ

δ ·
(
|a− b| − 1

2δ
)

otherwise
(7)

Intuitively, each image “votes” for the regions that should
be salient in the atlas, and the aggregated common salient

content is estimated.

Transformation regularization LregM . For obtaining a
shared representation that is as undistorted as possible,
while containing some distortions for aligning objects with
different proportions of semantic parts, we apply regular-
ization on both mapping networks:

LregM = λs1Lscale + λs2Lmag + Lsmooth (8)

where λs1 and λs2 are the relative weights.
Lscale regularizes Mr from changing the scale of the

original images in the atlas space:

Lscale =
1

N

N∑
i=1

|1− si|2 (9)

where si is the scale parameter of the learned rigid transfor-
mation for image Ii.

The non-rigid transformation is encouraged to be as
small as possible:

Lmag =
1

N ·NA

N∑
i=1

∑
xA

∥wi∥22 (10)

where w is the per-pixel flow vector defined in Eq. (3). The
term Lsmooth, defined as in [18], is used to prevent the non-
rigid mapping from distorting the shared content by encour-
aging as rigid as possible mapping. Formally, this term is
defined by:

Lsmooth =
1

N ·NA

N∑
i=1

∑
xA

(∥∥JTJ
∥∥
F
+
∥∥∥(JTJ

)−1
∥∥∥
F

)
(11)

where J is the Jacobian matrix of M at xA. See SM for
more details.
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(a) Image Sets (b) Joint Atlas

Figure 3. Neural Congealing results. We show results on a variety of image sets, each containing images with large variations in pose,
appearance, scale, different domains, and cluttered backgrounds. We show (a) the original images together with the congealed images, and
(b) the average image in atlas space together with the joint atlas saliency mask. See SM for results on all full sets.

Atlas regularization LregA . This term controls the local-
ization and sparsity of the atlas:

LregA = Lcenter + λpLsparsity (12)

where λp is the relative weight.
Since the position of the shared content in the atlas space

is arbitrary, we define Lcenter to encourage the common
object to be mapped to the center of the atlas space:

Lcenter =

∥∥∥∥∥ 1

ΣSA

·
∑
xA

SA(xA) · xA

∥∥∥∥∥
2

2

(13)

where xA coordinates are normalized to be in the range
(−1, 1)×(−1, 1). By minimizing the norm of the saliency’s
center of mass, we encourage it to be as close as possible to
the atlas center that is located at the origin.

We further observe that without any sparsity regular-
ization, the atlas often contains non-common information.
Lsparsity encourages both SA and KA to be sparse:

Lsparsity = LSA
sparsity + λkLKA

sparsity (14)

where λk is the relative weight. We follow [3, 24, 25] and
define the sparsity loss term for the atlas saliency as a com-
bination of L1- and L0-approximation regularization terms

LSA
sparsity = γ ∥SA∥1 +Ψ0(SA) (15)

where Ψ0(x) ≡ 2Sigmoid(5x) − 1 is a smooth L0 ap-
proximation that penalizes non zero elements, and γ is the
relative weight between the terms.

For the atlas features, we apply L1 sparsity loss on non-
salient parts only:

LKA
sparsity = (1− SA) · ∥KA∥1 (16)

3.3. Editing
Once we have the atlas representation, we can use the

average image of all congealed images as a template for
editing. Then, the edit in the atlas space is automatically
propagated back to all original images. As in [36], given an
image Ii and an RGBA edit image in atlas space we apply
forward warping using M(Ii,xA) to the image space and
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then apply alpha blending of the warped edit image with
Ii. One can also apply an edit on one of the images and
propagate it to all the rest by passing through the atlas space.

4. Results
We tested our method on a variety of image sets, contain-

ing 5-25 images, from LSUN [54] and AFHQ [6] datasets,
Pixabay [38], Shutterstock [44], and the general Internet.
Each set contains objects that share the same semantic parts
from different categories including painted/animated/real
animals, mugs, guitars, etc. The domain, pose/orientation
and appearance, as well as the amount of irrelevant salient
objects in the background, may significantly change be-
tween the images in each set. We pre-process the images
to 256× 256 px, with border padding in case of an unsuited
aspect-ratio. See SM for full implementation details.

4.1. Qualitative Results.
Sample input sets along with our joint alignment result

can be seen in Fig. 1, 2, 3, 6 and 7. Fig. 3 also shows visual-
izations of the average image in the atlas space and the atlas
saliency. The full set of results is included in the SM. As
can be seen, our method successfully aligns diverse in-the-
wild sets under significant differences in object scale (e.g.
Mugs in Fig. 3), proportions between semantic parts (e.g.,
Garfield’s ears in Mix Cats, or the Corgi’s ears in Mix An-
imals in Fig. 3), slight differences in out-of-plane rotation
(e.g., white tiger in Mix Animals in Fig. 3), and under non-
rigid deformations (e.g., the butterflies in Fig. 1).

In addition, Fig. 6 shows an example where our method
aligns images across different domains (paintings, food,
etc.). This demonstrates the flexibility of our test-time train-
ing approach compared to GANgealing [36] which was
trained on naturally-looking images, and thus struggles to
generalize to other domains.

Edit results. Fig. 1 and 5 show sample edits automati-
cally applied to the input set (Sec. 3.3). As seen, the edits
are mapped correctly and accurately to the same semantic
regions in all images, under significant variation in scale,
pose and appearance. More edit results are included in SM.

Refined masks. As discussed in Sec. 3.1, the initial
saliency masks extracted from DINO-ViT features [2] are
typically very coarse and may contain irrelevant content
such as other objects. Fig. 2 and 4 show examples of how
our method manages to congeal these rough estimates into
an accurate and refined mask that captures the shared con-
tent, while robustly filtering out cluttered background con-
tent or non-shared objects. The full set of saliency masks is
included in the SM.

4.2. Quantitative Evaluation and Comparison.
We evaluate our framework on the task of semantic

point correspondences on SPair-71K [31] and CUB-200-
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Figure 4. Refined saliency masks (overlay). Initial saliency masks
extracted using [2], together with our final learned atlas saliency
mask. Our method is able to capture the common object, while
ignoring cluttered background content or irrelevant objects.
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 Average Image
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Edited

Figure 5. Sample editing results for two different sets. Edits are
propagated to the same semantic parts in all images. See SM for
more results.

2011 [52]. Specifically, given a source image IA and a
target image IB together with their ground truth point cor-
respondences, we transfer the points from image IA to the
atlas space and map them back to image IB to obtain its
predicted points (see SM for technical details). We then
measure for each set the PCK-Transfer, i.e., the percent-
age of keypoints that are mapped within the threshold of
α · max(h,w) from the ground truth. We follow previous
works and set α = 0.1 for both benchmarks, and h,w to be
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Figure 6. Across-domain set. While GANgealing [36] struggle
with such images, our method is able to semantically align them.

the dimensions of the object’s bounding box for SPair-71K.
For CUB, we follow [36] and set h,w to be the image size.

Results on SPair-71K. We use the same pre-processing
as in [36], applying border padding for non-square images
and resizing to 256 × 256. We apply our method on each
test set separately, each includes 25-26 images. See SM for
further technical details.

Table 1 reports the results for our method, GANgealing,
and a number of leading methods for semantic correspon-
dences. As seen, our method outperforms GANgealing on
most sets, and outperforms other self-supervised methods
on all sets. Our method performs very well on the Cat
and Dog sets, yet in the Bicycle set, due to the large de-
formations and the symmetric shape of the object, our per-
formance decreases. Nevertheless, even in this challenging
case, our performance is on-par with most supervised meth-
ods on this set. Note that all supervised methods have been
directly trained or fine-tuned using ground-truth supervision
on the SPair-71K training set.

Figure 7 shows qualitative comparisons to [36];
GANgealing converges to a global mode across a large
dataset, which allows them to achieve good alignment for
Bicycle and Birds (Fig. 7(c),(d)). However, in the Dog set
this restricts their alignment to capturing only the head,
while our method detects the common mode in a given set
and can align the full body of the dogs (Fig. 7(a)).

There is an inherent tradeoff between aligning highly
articulated content (e.g., the bodies of the non-rigid ani-
mals) and maintaining undistorted atlas representation. We
demonstrate this tradeoff for the Cat set, by controlling the
effective relative weight of our rigidity loss. As seen, with
our default parameters, the method aligns the bodies of the
cats yet their faces are not accurately aligned. By increas-
ing the relative weight of the rigidity, we can encourage
the model to focus on the most rigid part across the set,
while disregarding the cats’ body (even though it is a shared
salient part across the set). In this setting, fine facial details
are accurately aligned and our method outperforms all pre-
vious methods, including supervised methods.

Results on CUB-200-2011. Since our method works with
small image sets, we randomly sample 14 sets of 25 images
each, and train separately on each of them. For fair com-
parison, we apply the same pre-processing as in [36]. As

Method Supervision Cat Dog Bicycle

HPF [30] supervised 52.9 32.8 18.9
DHPF [32] supervised 61.6 46.1 23.8
SCOT [22] supervised 63.1 42.5 20.7
CHM [29] supervised 64.9 56.1 29.3
CATs [5] supervised 66.5 56.5 34.7

WeakAlign [40] weakly-supervised 31.8 22.6 17.6
NC-Net [41] weakly-supervised 39.2 18.8 12.2

CNNgeo [39] self-supervised 32.7 22.8 16.7
A2Net [43] self-supervised 35.6 24.3 18.5
GANgealing [36] GAN-supervised 67.0 23.1 37.5
Ours self-supervised 54.5/70.7* 35.8 29.1

Table 1. PCK-Transfer on categories from SPair-71K with α =
0.1. *Results for relaxed setting, aligning only the cats’ heads.

Method Supervision PCK@α = 0.1

Ours w/o Lkeys self-supervised 30.7
Ours w/o saliency masks self-supervised 53.4
Ours w/o LregM self-supervised 36.9
Ours w/o LregA self-supervised 64.9

GANgealing [36] GAN-supervised 56.8
Ours self-supervised 63.6

Table 2. PCK-Transfer on subsets of CUB-200-2011. Comparison
to [36], together with ablation for our different loss terms.

seen in Table 2, our method achieves better results com-
pared to GANgealing. As seen in Fig. 7(c), GANgealing
tends to hallucinate object parts, and struggles with align-
ing the heads, especially when the object pose differs sig-
nificantly from the canonical pose learned from the entire
domain. Our method, by optimizing the representation and
mappings per set, manages to align the heads of the birds
even under unusual poses, e.g., distant bird spreading wings
(second column from the left).

4.3. Ablation Study
We ablate the different loss terms of our objective func-

tion (Eq. 4), both quantitatively in Table 2 and qualitatively
in Fig. 8. Without our driving loss Lkeys, we notice a sig-
nificant drop in performance. Fig. 8 shows that even though
the saliency masks help a great deal in bringing the birds
one on top of the other, there is no semantic alignment be-
tween them. Without saliency masks (no atlas saliency), our
framework attempts to align all observed content, and thus
struggles to converge, or converges only to small parts of
the object, in cases of significant background clutter.

Removing LregM provides too much freedom to the non-
rigid mapping, which converges either to a single point in
the atlas, or spreads in disorder. Thus, the performance
drops dramatically and the visual results are not appealing.
Our method performs on-par without LregA , however, we
note that the initial saliencies for the CUB subsets are quite
accurate, thus there is no much need for regularizing the
atlas in this case. More generally, this loss allows us to ob-
tain cleaner atlases (see SM). Finally, we see in Fig. 8 that
Lcenter of LregA encourages the shared content to be cen-
tered, allowing us to keep the birds within atlas borders.
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Figure 7. Comparison to GANgealing [36]. We compare results from sets used in evaluation (Sec. 4.2). Since our method is based on
alignment according to semantic DINO-ViT features, even in hard examples, our method focuses on aligning the most common salient
object part, e.g., the birds in (c). Note that as in [36], our method supports horizontal flips (see SM for technical details).

Input Images Full Modelw/o Saliencies w/o  w/o w/o

Figure 8. Ablation of our objective function’s loss terms (Sec. 4.3).

5. Limitations

Our method relies on semantic similarity in the space of
DINO-ViT feature space. Hence, in cases where these fea-
tures do not capture the semantic association across the im-
ages, our method would not work well (e.g., image domains
that are not well-represented in DINO’s training data). In
addition, in cases of extreme topological changes in the
common object across the set, our method struggles to con-
verge to a good alignment due to the strong rigidity con-
straints, e.g., Fig. 7(b) and Fig. 7(c). Furthermore, we no-
tice that in sets containing symmetric objects with large ro-
tation differences, the relative position between parts may

affect the convergence, and may lead to partial alignment
(e.g., matching the left ear of one image with the right ear
of the other). In general, our framework is not designed to
align images depicting more than one instance of the shared
mode. In this case, our method may align arbitrarily one of
the objects, and in other cases may fail to converge. See SM
for some examples of failure cases.

6. Conclusions
We tackled the congealing task in a particularity chal-

lenging setting – jointly aligning a small set of in-the-wild
images, without any additional training data other than the
test set itself. We showed how to leverage the power of pre-
trained DINO-ViT features for this task in a new test-time
training framework. We demonstrated the key advantages
of our approach w.r.t. existing state-of-the-art methods in its
applicability to diverse image domains, lightweight train-
ing and overall performance. We further showed that our
method can be used for automatically propagating edits to
the entire set by simply editing a single image. We believe
that our approach – combining test-time optimization with
semantic information learned by external large-scale mod-
els – holds great promise for dense alignment tasks, and can
motivate future research in this direction.

Acknowledgements: We thank Shai Bagon and Shir
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