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Abstract

With the surge of large-scale pre-trained models (PTMs),
fine-tuning these models to numerous downstream tasks be-
comes a crucial problem. Consequently, parameter effi-
cient transfer learning (PETL) of large models has grasped
huge attention. While recent PETL methods showcase im-
pressive performance, they rely on optimistic assumptions:
1) the entire parameter set of a PTM is available, and 2)
a sufficiently large memory capacity for the fine-tuning is
equipped. However, in most real-world applications, PTMs
are served as a black-box API or proprietary software with-
out explicit parameter accessibility. Besides, it is hard to
meet a large memory requirement for modern PTMs. In
this work, we propose black-box visual prompting (Black-
VIP), which efficiently adapts the PTMs without knowl-
edge about model architectures and parameters. Black-
VIP has two components; 1) Coordinator and 2) simul-
taneous perturbation stochastic approximation with gradi-
ent correction (SPSA-GC). The Coordinator designs input-
dependent image-shaped visual prompts, which improves
few-shot adaptation and robustness on distribution/location
shift. SPSA-GC efficiently estimates the gradient of a tar-
get model to update Coordinator. Extensive experiments
on 16 datasets demonstrate that BlackVIP enables robust
adaptation to diverse domains without accessing PTMs’
parameters, with minimal memory requirements. Code:
https://github.com/changdaeoh/BlackVIP

1. Introduction

Based on their excellent transferability, large-scale pre-
trained models (PTMs) [7, 17, 54] have shown remarkable
success on tasks from diverse domains and absorbed in-
creasing attention in machine learning communities. By
witnessing PTMs’ success, Parameter-Efficient Transfer
Learning (PETL) methods that efficiently utilize the PTMs
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Figure 1. While FT updates the entire model, VP has a small num-
ber of parameters in the input pixel space. However, VP still re-
quires a large memory capacity to optimize the parameters through
backpropagation. Moreover, FT and VP are only feasible if the
PTM’s parameters are accessible. Meanwhile, BlackVIP does not
assume the parameter-accessibility by adopting a black-box opti-
mization (SPSA-GC) algorithm rather than relying on backpropa-
gation. Besides, BlackVIP reparameterizes the visual prompt with
a neural network and optimizes tiny parameters with SPSA-GC.
Based on the above properties, BlackVIP can be widely adopted
in realistic and resource-limited transfer learning scenarios.

are recently emerging. While the standard fine-tuning (FT)
and its advanced variants [38, 73] update the entire or large
portion of a PTM [16], PETL methods aim to achieve com-
parable performance to FT by optimizing a small number of
learnable parameters.

Among them, prompt-based approaches [3,5,33,40,41]
have been widely investigated from diverse research areas.
For vision PTMs, Visual Prompt Tuning [33] injects a few
additional learnable prompt tokens inside of ViT’s [17] lay-
ers or embedding layer and only optimizes them. Bahng
et al. [3] investigate visual prompting (VP), which adopts
the learnable parameters on input pixel space as a visual
prompt, while no additional modules are inserted into the
pre-trained visual model. Besides, prompt learning meth-
ods for VLM are also actively studied [35, 78, 81, 83].

While existing PETL methods show impressive perfor-
mance with few learnable parameters, they rely on two
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optimistic assumptions. First, the previous PETL as-
sumes that the full parameters of the PTM are accessible.
However, many real-world AI applications are served as
API and proprietary software, and they do not reveal the
implementation-level information or full parameters due to
commercial issues, e.g., violating model ownership. As a
result, exploiting high-performing PTMs to specific down-
stream tasks not only in the white-box setting but also
black-box setting (limited accessibility to the model’s de-
tail) is a crucial but unexplored problem. Second, exist-
ing methods require a large memory capacity. While PETL
approaches have few learnable parameters, they require a
large amount of memory for backpropagating the gradient
throughout the large-scale PTM parameters to learnable pa-
rameters. Therefore, users who want to adopt a large-scale
PTM should satisfy large memory requirements despite the
small learnable parameters. Besides, if the users entrust
PTM fine-tuning to the model owner with their specific data,
data-privacy concerns will inevitably arise [74].

To alleviate the above unrealistic assumptions, we
are pioneering black-box visual prompting (BlackVIP)
approach, which enables the parameter-efficient transfer
learning of pre-trained black-box vision models from the
low-resource user perspective (illustrated in Figure 1).
BlackVIP works based on the following two core compo-
nents: 1) pixel space input-dependent visual prompting and
2) a stable zeroth-order optimization algorithm.

Firstly, we augment an input image by attaching an vi-
sual prompt per pixel. It is noted that input space prompt-
ing does not require the accessibility on parts of architec-
ture [37, 78] or the first embedding layer [35, 81, 83] of
PTM. While the previous works only introduce a pixel-level
prompt to a small fraction of the fixed area, such as out-
side of the image [3], BlackVIP designs the prompt with the
same shape as the original given image to cover the entire
image view. Therefore, our prompt has a higher capability
and can flexibly change the semantics of the original image.
In addition, we reparameterize the prompt with a neural net-
work. Specifically, we propose the Coordinator, an asym-
metric autoencoder-style network that receives the original
image and produces a corresponding visual prompt for each
individual image. As a result, Coordinator automatically
designs each prompt conditioned on the input rather than
the shared manual design of a previous work [3]. By opti-
mizing the reparameterized model instead of the prompt it-
self, we greatly reduce the number of parameters (from 69K
of VP [3] to 9K) so that suitable for black-box optimization.

Next, unlike other PETL approaches, BlackVIP adopts a
zeroth-order optimization (ZOO) that estimates the zeroth-
order gradient for the coordinator update to relax the as-
sumption that requires access to the huge PTM parame-
ters to optimize the prompt via backpropagation. There-
fore, BlackVIP significantly reduces the required mem-

ory for fine-tuning. Besides, we present a new ZOO al-
gorithm, Simultaneous Perturbation Stochastic Approx-
imation with Gradient Correction (SPSA-GC) based on
(SPSA) [58]. SPSA-GC first estimates the gradient of the
target black-box model based on the output difference of
perturbed parameters and then corrects the initial estimates
in a momentum-based look-ahead manner. By integrating
the Coordinator and SPSA-GC, BlackVIP achieves signifi-
cant performance improvement over baselines.

Our main contributions are summarized as follows:

• To our best knowledge, this is the first paper that ex-
plores the input-dependent visual prompting on black-
box settings. For this, we devise Coordinator, which
reparameterizes the prompt as an autoencoder to han-
dle the input-dependent prompt with tiny parameters.

• We propose a new ZOO algorithm, SPSA-GC, that
gives look-ahead corrections to the SPSA’s estimated
gradient resulting in boosted performance.

• Based on Coordinator and SPSA-GC, BlackVIP
adapts the PTM to downstream tasks without parame-
ter access and large memory capacity. We extensively
validate BlackVIP on 16 datasets and demonstrate its
effectiveness regarding few-shot adaptability and ro-
bustness on distribution/object-location shift.

2. Related Works
2.1. Pre-trained Vision Models

Over the past decade, the pre-train and fine-tune
paradigm has become the de-facto standard using deep neu-
ral networks. Beyond the label supervision [28, 55], self-
supervised learning (SSL) [11,22,26,27,75,79] approaches
that do not rely on human-annotated labels hit the machine
learning community. SSL approaches can roughly be cate-
gorized into discriminative and generative approaches. Dis-
criminative SSL methods [11, 22, 27, 79] learn the embed-
dings by enforcing closeness and/or distantness on the pair-
wise distance structure among the augmented training sam-
ples. Meanwhile, the recently emerging generative SSL
methods [4, 26, 75] are based on masked image modeling,
which supervises the model by encoding and reconstructing
the partially masked individual images. SSL approaches are
appealing not only due to their label-free training regime but
also produce a more transferable representation [8, 26, 43]
getting over the pre-defined label category.

Moreover, fuelled by pre-training with rich seman-
tic structures from image-caption pairs of the web-scale
dataset, visual-language pre-trained models [32, 54, 56, 77]
recently showed surprising performance on the zero-shot
transfer and few-shot adaptation. Based on their high trans-
ferability, they are being adopted for numerous downstream
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tasks from diverse domains. Meanwhile, the number of pa-
rameters of PTMs has increased continuously, showing the
performance improvement proportional to the number of
parameters [36]. However, large models require sufficiently
large memory capacity in the fine-tuning stage. Besides, it
is commonly impossible to access the PTMs’ parameters in
public. Therefore, we propose a new fine-tuning method
that does not require both knowledge about model parame-
ters and a large amount of memory.

2.2. Parameter-Efficient Transfer Learning

To adapt the large-scale PTMs to targeted downstream
tasks, Parameter-Efficient Transfer Learning (PETL) meth-
ods pursue fine-tuning of a small subset of large PTMs,
while achieving competitive performance compared to full
fine-tuning. Recently, diverse PETL approaches have
emerged in the NLP domain, such as adapter [30, 53] and
prompt learning [40, 41].

Motivated by the promising results of PETL in NLP,
there have been many efforts to realize PETL in vision
or vision-language fields. For the case of adapter-based
methods, AdaptFormer [10], and CLIP-Adapter [20] in-
sert a few learnable modules inside of the vision encoder
(e.g., ViT [17]) or on top of both the vision and text en-
coder, respectively. In the case of prompt-based approaches,
CoOp [84] introduces the continuous text prompt into the
text encoder of a VLM, and Conditional CoOp (CoCoOp)
[82] extends CoOp to an input-dependent version. Besides,
Jia et al. [33] propose the Visual Prompt Tuning (VPT)
that governs learnable visual tokens to the embedding layer
(VPT-Shallow) or several encoder layers (VPT-Deep) of
ViT. Bahng et al. [3] explore the Visual Prompting (VP)
approach, which introduces a learnable prompt in the in-
put space, not into the embedding space or model’s building
blocks. Then the prompt is attached to the image in the fixed
restricted region. Among them, VP is especially attractive
because it does not require full accessibility of the model ar-
chitecture and parameters during the inference phase, which
motivates us to investigate the black-box visual prompting.

However, we argue that the existing visual prompt ap-
proaches can be advanced from three perspectives. (1) From
white-box to black-box: to be utilized for a variety of real-
world applications, PETL should be able to deal with black-
box PTMs that are served via API or proprietary software;
for this, black-box optimization methods are required rather
than backpropagation in previous works. (2) Towards input-
dependent visual prompt: the visual features of individual
images are distinct even though the images share the same
class label; therefore, the input-dependent prompt is nec-
essary. (3) beyond the manual prompt design: the prompt
of VP is manually designed like a frame- or square-shaped
and attached to a restricted region; this limited flexibility
induces a sub-optimal prompt on challenging generaliza-

tion scenario (refer to the Sec 5.2). To this end, we pro-
pose BlackVIP, which adopts ZOO rather than backpropa-
gation and automatically designs input-dependent prompts
over the entire image region. Table 1 summarizes the com-
parison between the previous methods and ours.

Table 1. Prompt-based PETL. Loc. denotes the prompt location.

Method Grad-free Prompt Loc. Input-dependent

CLIP ZS [54] ✓ L input ✗
CoOp [84] ✗ L emb ✗
CoCoOp [82] ✗ L emb ✓
VPT [33] ✗ V emb ✗
VP [3] ✗ V input ✗
BAR [68] ✓ V input ✗
BlackVIP (Ours) ✓ V input ✓

2.3. Black-Box Optimization

Numerous high-performing artificial intelligence models
have been deployed, and many custom services are based
on the API or proprietary software. There are several works
on NLP field that fine-tune the large language model via
black-box optimization [15, 65, 66]. Besides, black-box ad-
versarial reprogramming (BAR) [68] had been proposed to
re-purpose the ImageNet [14] pre-trained vision model to a
medical image classifier.

The previous works on black-box attack and optimiza-
tion utilize ZOO algorithms or derivative-free optimization
algorithms for parameter updates. BAR [68] adopts a one-
sided approximation gradient estimator, but we find that
the one-sided estimator shows inaccurate gradient approx-
imations empirically. BBT [66], and BBTv2 [65] adopt
Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) [24, 25], and RLPrompt [15] uses reinforcement learn-
ing (Soft Q-Learning [23]) to optimize the discrete prompts.
However, It has been known that derivative-free optimiza-
tions (e.g. evolutionary optimization) are hard to solve
large-scale problems and do not guarantee convergence
[44]. Besides, reinforcement learning algorithms are notori-
ous for their unstable optimization, and high variance [80].

In this work, we adopt the Simultaneous Perturba-
tion Stochastic Approximation (SPSA) [58] as a ZOO al-
gorithm. It is known that SPSA is efficient at high-
dimensional gradient approximation problems [58,62]. Be-
sides, SPSA theoretically guarantees convergence, and the
convergence error is linearly upper bounded by the pa-
rameter dimension [58]. While SPSA is designed to es-
timate high-dimensional gradients efficiently, we found
that SPSA-based neural network optimization still requires
many queries in practice. Therefore, we propose SPSA with
Gradient Correction (SPSA-GC) that corrects the approxi-
mated gradients to enhance the convergence speed. To our
best knowledge, this is the first work exploring the ZOO-
based black-box optimization to large PTMs for general-
purpose adaptation (rather than a specific domain [68]).
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Figure 2. BlackVIP equips an input-dependent prompt designer (Coordinator) and an accurate gradient estimation algorithm (SPSA-GC).

3. Preliminary
We first present an outline of adversarial reprogramming

and visual prompting, that originated from distinct motiva-
tions, but closely related topics. Elasyed et al. [18] pre-
sented adversarial reprogramming (AR) inspired by adver-
sarial attack [21, 51, 76]. The goal of AR is repurposing the
pre-trained model to perform a new task. Let x ∈ Rk×k×3

be a downsized image from the adversarial target dataset,
and x̃ ∈ Rn×n×3 is a random image from pre-train dataset
or a zero-padded tensor that includes x in the center of im-
age x̃, where k < n. Given the target class of adversarial
task yadv ∈ {1, ..., Ctar}, the AR is formulated as:

argmin
W

(− logPθ;W (h(yadv)|x̃adv) + ||W ||F )

Here, θ is the pre-trained model parameters, and the adver-
sarial image is constructed as x̃adv = x̃ + tanh(W ⊙ M),
and W ∈ Rn×n×3 is the adversarial program that is opti-
mized, where n is the image width of a pre-train dataset, M
is an optional mask for better visualization of the embed-
ded target image, and ⊙ denotes the element-wise multipli-
cation. Given a pre-defined hard-coded mapping h(·) that
maps labels from an adversarial task to labels of a pre-train
dataset, AR reprograms the model via learned perturbation
without architectural change. The vulnerability of neural
networks to adversarial examples has inspired many works
that use the AR approach from transfer learning perspec-
tives [9, 47, 48, 68] i.e., model reprogramming.

Meanwhile, motivated by the remarkable success of the
prompting paradigm on NLP, Bahng et al. [3] are the first
to explore the input pixel space visual prompting (VP) ap-
proach for pre-trained vision and vision-language models.
By learning pixel-style prompts (i.e., perturbation) attached
to the input images, VP adapts the frozen PTM to targeted
downstream tasks without modifying on model architec-
ture. Given the input image x and corresponding label y,
the learning objective of VP is as follows:

argmin
ϕ

− logPθ;ϕ(y|x+ ϕ)

where θ and ϕ are the PTM parameters and visual prompt,
respectively. At the inference phase, VP employs the shared
prompt (input-independent) for all images. It is noted that
ϕ is attached to the fixed location, e.g., the outer part of the
image like a frame by default.

Though AR and VP use different terms and stem from
distinct motivations, they share the general idea: adapt a
PTM to perform new tasks without modifying the model ar-
chitecture. This paper aligns with AR and VP, but broadens
and improves them for more realistic environments.

4. Methodology
We introduce our novel input-dependent prompt gener-

ation module, Coordinator (in Section 4.1). Then, we ex-
plain the end-to-end framework of BlackVIP with the new
ZOO algorithm, SPSA-GC (in Section 4.2). Figure 2 illus-
trates the overall framework of BlackVIP.

4.1. Coordinator: Prompt Reparameterization

Our learning objective is to minimize the downstream
task loss by adapting the frozen PTM via input space
prompt optimization. Given a frozen prediction model
Pθ(y|x), and perturbed image x̃ with prompt correspond-
ing to the label y, the training objective is formulated as:

argmin
ϕ

− logPθ;ϕ(y|x̃)

While VP and AR optimize the input space visual prompt
directly, we reparameterize the visual prompt to the
prompt generation network hϕ(·) parameterized by ϕ =
{ϕd, ϕt} ∈ Rd. Specifically, we build a novel autoencoder-
style network named Coordinator composed of a frozen en-
coder f(·) which is pre-trained on ImageNet [14] by self-
supervised learning (SSL) objective and followed by an
extremely light-weight learnable decoder gϕd

(·). Though
the encoder can also be a supervised counterpart or light-
weight learnable network, we adopt the SSL pre-trained en-
coder for the following three reasons: 1) It has been widely
substantiated that self-supervised representation contains
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the multiple discriminative features and spatial informa-
tion [8, 19, 26, 31, 42, 43, 50], so it is more helpful to use
SSL pre-trained encoder than label-supervised encoder for
robustly performing on diverse downstream tasks. 2) Im-
ageNet pre-trained encoders are currently well-popularized
[1, 52, 71, 72], so they can be easily adopted by local users,
and does not hurt our realistic experimental setting. 3)
By using the frozen pre-trained encoder, we significantly
reduce the number of learnable parameters. The reduced
low-dimensional parameters encourage efficient gradient
approximation. Consequently, the image equipped with a
prompt (prompted image) is constructed as follows:

x̃ = clip(x+ ϵhϕ(x))

hϕ(x) = gϕd
(zx, ϕt)

where zx = f(x) is the feature vector of x from the frozen
SSL encoder f(·), and ϵ ∈ [0, 1] is a hyperparameter that
controls the intensity of visual prompt. Here, ϕt is a task-
specific prompt trigger vector that is jointly optimized with
decoder parameter ϕd. We concatenate it with zx and then
reshape them into a 3D feature map to feed into the convo-
lutional decoder. As a result, the instance-specific rich se-
mantic representation zx and the task-specific prompt trig-
ger vector ϕt are merged to design a valid visual prompt
hϕ(x) for a given image. Similar to [48], the prompted im-
age is bounded to a valid RGB scale via pixel-wise clipping.

Unlike previous visual prompts (e.g., VP) or adversar-
ial programs (e.g., BAR), our BlackVIP automatically de-
signs the input-dependent prompts with the same shape as
the original images; therefore, it has a higher capability to
change the semantics of images if necessary. Thanks to this
flexibility, BlackVIP can cover more diverse tasks and be
robust to challenging scenarios, e.g., distribution shift.

4.2. End-to-End Black-Box Visual Prompting

Unlike other PETL approaches that assume the acces-
sibility to the architecture and/or parameters of the PTM,
we consider the PTM as a black-box predictor that gives
only a prediction output (i.e. logit) for a given input image
query. In this black-box setting, we adopt the ZOO algo-
rithm, SPSA, with our considerate modification to optimize
our Coordinator without the oracle true gradient.

SPSA Spall et al. proposed Simultaneous Perturbation
Stochastic Approximation (SPSA) [58, 61] that approxi-
mates the high-dimensional gradient efficiently. Given the
positive decaying sequences of ai > 0 and ci ∈ [0, 1], the
gradient approximation, ĝ, and single-step parameter up-
date of SPSA is described as follows:

ĝi(ϕi) =
L(ϕi + ci∆i)− L(ϕi − ci∆i)

2ci
∆−1

i (1)

ϕi+1 = ϕi − aiĝi(ϕi) (2)

Algorithm 1 BlackVIP algorithm

Require: Downstream dataset D, pre-trained model Pθ,
Coordinator h with encoder f and prompt decoder g, is
parameterized by ϕi = {ϕd,i, ϕt,i}, SPSA-GC decaying
parameters {ai, ci}, and smoothing parameter β, prompt
intensity ϵ, and training iteration R.
// Initialize ϕ1 = {ϕd,1, ϕt,1}, {a1, c1} and m1

for i in 1 to R do
// Parse a batch (x, y) ∼ D and design the prompt
hϕi

(x) = gϕd,i
(f(x), ϕt,i)

x̃ = clip(x+ ϵhϕi
(x))

// Draw a sample ∆i, set ci, and estimate the gradient
L(ϕi) := − logPθ;ϕi(y|x̃)
ĝi(ϕi) = (L(ϕi + ci∆i)−L(ϕi − ci∆i))(2ci∆i)

−1

// Set ai, and update parameters
mi+1 = βmi − aiĝi(ϕi + βmi)
ϕi+1 = ϕi +mi+1

end for

where L is an objective function, ϕi ∈ Rd is d-dimensional
learnable parameters, and ∆i ∈ Rd is a ith-step random
perturbation vector, sampled from mean-zero distributions
that satisfy finite inverse momentum condition [58,63] such
as Rademacher and Segmented Uniform distribution. With
only two forward evaluations, i.e., querying twice to the
API service model, SPSA parses the learning signal (esti-
mate gradient) from the model’s output difference, and we
can optimize the parameters of Coordinator ϕ to design the
proper visual prompt for a given input.

SPSA with Gradient Correction Although the standard
form of SPSA works well in myriad applications [6,57,64],
like other ZOO algorithms, it may suffer slow convergence
in practice [59, 60], and the problem gets even bigger on
the high-dimensional problem setting such as neural net-
works’ optimization. We speculate that the source of slow
convergence is its noisy gradient estimation from the poor
direction of random perturbations or intrinsic data noise. To
mitigate this estimation noise, inspired by Nesterov’s accel-
erated gradient (NAG) [49], we improve the parameter up-
date rule in Eq. 2 as below:

ϕi+1 = ϕi +mi+1 (3)
mi+1 = βmi − aiĝi(ϕi + βmi)

where β ∈ [0, 1] is smoothing parameter. As clearly noted
in [67], when the poor update ϕi + βmi occurs, this NAG
style update rule strongly pulls it back towards ϕi. Because
of the SPSA’s strongly stochastic nature, we conjecture that
this gradient correction property is also highly effective for
SPSA as well as first-order optimization algorithms. Algo-
rithm 1 summarizes the BlackVIP algorithm.
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5. Results
We first provide the experimental setup in Section 5.1.

Next, Section 5.2 presents the comparison between SPSA-
GC and the previous ZO method. Besides, we provide do-
main generalization and object location sensitivity experi-
ments. Section 5.3 and 5.4 provide the results on 14 transfer
learning benchmarks and ablation studies, respectively.

5.1. Experimental Setup

We extensively evaluate BlackVIP on 14 benchmarks
(refer Supp A.1). These cover diverse visual domains and
tasks, so they require understanding various visual seman-
tics like scenes, actions, fine-grained categories, textures,
satellite imagery, the number of objects, and the recognition
of generic objects. Additionally, to investigate the impor-
tance of prompt design, we consider two synthetic datasets:
Biased MNIST and Loc-MNIST (see Sec 5.2 and Fig. 4).

In this paper, we adopt CLIP ViT-B/16 [54] as a tar-
get PTM because it does not require a separate classifier
for different tasks, and has a strong zero-shot generaliza-
tion capability. For the frozen encoder of Coordinator, we
use ImageNet pre-trained vit-mae-base checkpoint. As
the baselines, we consider CLIP’s zero-shot classifier (ZS),
black-box adversarial reprogramming (BAR) [68], and VP
with SPSA-GC that simply replace the backpropagation in
VP [3] with SPSA-GC. Following the few-shot classifica-
tion setting of [84], we use 16-shot training samples and the
full testset by default. More details are provided in Supp A.

5.2. Synthetic Datasets

Comparison among optimization algorithms We vali-
date our SPSA-GC on the well-known optimization bench-
mark, Rosenbrock function. We report the normalized loss
( |L(θ∗)−L(θ)|
|L(θ∗)−L(θ0)| ) where L(θ∗) and L(θ0) is the loss value

on the optimal and initial point, respectively, and L(θ) is
a loss value on the current parameter θ ∈ R100. In Fig.
3 (left), SPSA-GC shows faster and more stable conver-
gence than Random Gradient-Free (RGF) [45,68], and even
achieves a comparable result to Nesterov’s Accelerated Gra-
dient (SGD-NAG) using true gradients. Besides, we sim-
ulate the noisy loss observation (emulating the mini-batch
optimization) by adding Gaussian noise to learning loss,
i.e., Lnoisy(θ) = L(θ) + ϵ, where ϵ ∼ N(0, scale2). In
Fig. 3 (right), as the noise increases, RGF rapidly degener-
ates while SPSA is still relatively stable, and our gradient
correction (SPSA-GC) gives further improvement.

Robustness on Distribution Shift Next, we evaluate our
method on Biased MNIST [2] to investigate the robust-
ness of BlackVIP’s input-dependent automatic prompt de-
sign under distribution shift. Biased MNIST is a modified
version of MNIST [39], constructed to validate a model’s

Figure 3. (Left) loss curve and (right) noise sensitivity analysis of
100-Dimensional Rosenbrock optimization.

Figure 4. Prompt visualization on synthetic datasets. Unlike VP,
our BlackVIP designs input-dependent conditional prompts con-
tributing to the robustness under distribution/object-location shift.

generalization ability under color bias shift. At train-time,
each digit has a unique preassigned background color that
strongly correlates with the label. The degree of correlation
is determined by the value ρ ∈ [0, 1], and the correlation
ratio is reversed as 1-ρ at test-time. Results are summa-
rized in Tab. 2 (left) and Fig. 5, respectively. In this setup,
BlackVIP remarkably outperforms others (even white-box
VP), and the performance gap goes larger under the stronger
correlation. This means our input-dependent image-shaped
prompts can be beneficial in domain generalization settings.

Figure 5. (Left) t-SNE [69] of prompted images’ embedding on
Biased MNIST and Loc-MNIST. (right) Normalized Mutual In-
formation (NMI) [46] score of learned embedding.
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Table 2. Results on synthetic datasets. BlackVIP shows robust performance under distribution/object-location shift.

Biased MNIST Loc-MNIST

Method
16-Shot 32-Shot 16-Shot 32-Shot

ρ = 0.8 ρ = 0.9 ρ = 0.8 ρ = 0.9 1:1 1:4 1:1 1:4

VP (white-box) 57.92 43.55 69.65 42.91 86.79 86.54 90 .18 92.09

ZS 37.56 37.25 37.56 37.25 29.70 22.70 29.70 22.70
BAR 53.25 53.07 53.93 53.30 33.98 26.05 34.73 27.72
VP w/ SPSA-GC 60.34 53.86 59.58 51.88 16.21 25.68 18.43 30.13
BlackVIP 66.21 62.47 65.19 64.47 69.08 60.86 76.97 67.97

Robustness on Object Location Shift We expect that
BlackVIP adopts input-dependent image-shaped prompts,
so does be still robust even if the object is not always lo-
cated in the center of the image. To validate this, we create
a variant of the MNIST, Loc-MNIST, by putting a real tar-
get digit on the four edges and an arbitrary fake digit in
the center of the black blank image. The location of the
target digit and the class of the fake digit are chosen ran-
domly. We further consider a more challenging setup in
that the fake digit is four times larger (1:4) than the real
one. We summarize the results in Tab. 2 (right) and Fig. 5,
respectively. Compared to input-independent frame-shaped
prompting (BAR and VP), BlackVIP achieves significantly
better performance which proves the superiority of the Co-
ordinator’s prompt design.

5.3. Few-shot Transfer Learning on Benchmarks

We consider the 14 few-shot benchmark datasets follow-
ing [3, 82, 84]. As shown in Tab. 3, while BAR and VP
undergo large performance variations across 14 datasets,
BlackVIP boasts consistently high performance (i.e., im-
proves the zero-shot performance on 13 over 14 datasets).
Specifically, BAR shows promising results on the tasks that
require understanding coarse semantics (DTD [13], Eu-
roSAT [29], and RESISC [12]), but fails to show com-
petitiveness on CLEVR [34] that requires visual reasoning
(counting objects) by capturing the overall image semantics.
Meanwhile, BlackVIP performs well across various tasks
by extending or limiting attention of frozen PTM (Fig. 6),
which denotes BlackVIP is a high-capability prompt learner
that robustly adapts the PTM to diverse downstream tasks.

Practically, BlackVIP has three major advantages: 1) it
only requires the 9K learnable parameters (see Tab. 4),
while BAR and VP require 37K and 69K parameters. 2)
It greatly reduces the peak memory allocation compared to
white-box transfer learning methods. 3) BlackVIP shows
outstanding query efficiency among the prompting methods
(see Fig. 7). For instance, by sending just 10K queries with
12 USD (based on Clarifai Vision API), we can improve the
performance of a zero-shot model about twice.

Figure 6. Grad-CAM analysis on CLVER, Pets, and UCF101.

Figure 7. Query efficiency. (x-axis) A number of queries and cost
for achieving (y-axis) corresponding performance.

5.4. Ablation Study

In this section, we provide two additional results for our
BlackVIP: 1) we validate whether BlackVIP can achieve
superior performance across four target backbones and two
encoders of Coordinator. 2) we present the ablation study
about pre-trained weights and optimization algorithms.

Architectures To study the versatility of our method, we
vary the backbone architecture of the pre-trained target
model and the encoder of Coordinator in Tab. 5. While
BAR and the naive application of SPSA-GC on VP fail to
improve the zero-shot performance of CNN-based target
backbones that lack the global attention of Transformers
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Table 3. Classification accuracy across 14 benchmarks that require natural, specialized, structured, and fine-grained visual recognition.
BlackVIP shows outstanding results among input-space prompting methods. Win means the number of datasets that each method beats the
zero-shot performance. Grays are the results of white-box learning. All experiments are done in 16 shots with three repeated runs.

Method Caltech Pets Cars Flowers Food Aircraft SUN DTD SVHN EuroSAT RESISC CLEVR UCF IN Avg. Win

VP (white-box) 94.2 90.2 66.9 86.9 81.8 31.8 67.1 61.9 60.4 90.8 81.4 40.8 74.2 67.4 71.1 13

ZS 92.9 89.1 65.2 71.3 86.1 24.8 62.6 44.7 18.1 47.9 57.8 14.5 66.8 66.7 57.6 -
BAR 93.8 88.6 63.0 71.2 84.5 24.5 62.4 47.0 34.9 77.2 65.3 18.7 64.2 64.6 61.4 6
VP w/ SPSA-GC 89.4 87.1 56.6 67.0 80.4 23.8 61.2 44.5 29.3 70.9 61.3 25.8 64.6 62.3 58.8 4
BlackVIP 93.7 89.7 65.6 70.6 86.6 25.0 64.7 45.2 44.3 73.1 64.5 36.8 69.1 67.1 64.0 13

Table 4. Train-time peak memory allocation (Peak Memory) and
the number of learnable parameters (Params) on ImageNet.

Method Peak Memory (MB) Params

ViT-B ViT-L ViT-B ViT-L

FT (white-box) 21,655 76,635 86M 304M
LP (white-box) 1,587 3,294 513K 769K
VP (white-box) 11,937 44,560 69K 69K

BAR 1,649 3,352 37K 37K
VP w/ SPSA-GC 1,665 3,369 69K 69K
BlackVIP 2,428 3,260 9K 9K

Table 5. Ablation study for backbone architecture. Classification
accuracy on EuroSAT across pre-trained target backbone architec-
tures and BlackVIP’s Coordinators (SSL encoder backbone).

Method Target Backbone
RN50 RN101 ViT-B/32 ViT-B/16 Avg.

ZS 37.5 32.6 45.2 40.8 48.4
BAR 26.9 33.5 70.3 77.2 52.0
VP w SPSA-GC 34.7 31.2 71.1 70.9 52.0
Ours (RN50) 51.3 50.8 62.9 68.5 58.4
Ours (VIT-B/16) 48.4 51.3 67.9 73.1 60.2

[70], our BlackVIP consistently brings huge performance
gains across all the architectures. It implies that BlackVIP is
an architecture-agnostic approach, which pursues the gen-
eral adaptation method for high-performing PTMs.

Table 6. Different Coordinator weights with SPSA variants. Mean
classification accuracy of three repeated runs on EuroSAT

Encoder Type Optim. Acc.

Zero-Shot 47.9

scratch SPSA 49.6
scratch SPSA-GC 49.5

Sup. pre-trained SPSA 59.4
Sup. pre-trained SPSA-GC 65.2
SSL pre-tained SPSA 69.4

BlackVIP (SSL pre-trained with SPSA-GC) 73.1

Coordinator weights and ZOO algorithms BlackVIP
adopts the encoder-decoder structure to efficiently generate
the input-dependent image-shaped prompts. We exploit an
SSL pre-trained encoder while we plug the randomly ini-
tialized extremely lightweight decoder. From the design
philosophy of BlackVIP, we expect that a pre-trained en-
coder extracts the rich semantic features of the given image,
including the spatial features, and the decoder utilizes the
features to produce a spatially and semantically structured
prompt tailored to the input. We conjecture that an SSL
pre-trained encoder is desirable to capture the demanding
diverse semantics instead of a supervised one learned from
pre-defined labels. Therefore, for Coordinator, BlackVIP
adopts an SSL encoder (i.e., Masked Auto-Encoder [26]).
Tab. 6 confirms that the SSL encoder outperforms the super-
vised pre-trained or randomly initialized encoder (scratch).
Besides, SPSA-GC improves the 3.7% accuracy than SPSA,
from 69.4 to 73.1. It denotes that approximated gradients by
our SPSA-GC are more accurate than the original SPSA.

6. Conclusion
We pioneer black-box visual prompting for the realistic

and robust adaptation of pre-trained models. We propose
BlackVIP, which reparameterizes the input-space prompt
as a conditional generative network Coordinator and equips
our new ZOO algorithm, SPSA-GC, rather than backprop-
agation. BlackVIP does not require any accessibility on
model architecture or parameters and efficiently adapts the
pre-trained model to targeted downstream tasks. Extensive
empirical results show that BlackVIP consistently improves
the performance over baseline methods on few-shot adapta-
tion, distribution shift, and object-location shift with mini-
mal parameters, memory capacity, API queries, and cost.
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