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Abstract

Hands, one of the most dynamic parts of our body, suffer
from blur due to their active movements. However, previous
3D hand mesh recovery methods have mainly focused on
sharp hand images rather than considering blur due to the
absence of datasets providing blurry hand images. We first
present a novel dataset BlurHand, which contains blurry
hand images with 3D groundtruths. The BlurHand is con-
structed by synthesizing motion blur from sequential sharp
hand images, imitating realistic and natural motion blurs.
In addition to the new dataset, we propose BlurHandNet, a
baseline network for accurate 3D hand mesh recovery from
a blurry hand image. Our BlurHandNet unfolds a blurry
input image to a 3D hand mesh sequence to utilize tem-
poral information in the blurry input image, while previ-
ous works output a static single hand mesh. We demon-
strate the usefulness of BlurHand for the 3D hand mesh
recovery from blurry images in our experiments. The pro-
posed BlurHandNet produces much more robust results on
blurry images while generalizing well to in-the-wild images.
The training codes and BlurHand dataset are available at
https://github.com/JaehaKim97/BlurHand_RELEASE.

1. Introduction
Since hand images frequently contain blur when hands

are moving, developing a blur-robust 3D hand mesh esti-
mation framework is necessary. As blur makes the bound-
ary unclear and hard to recognize, it significantly degrades
the performance of 3D hand mesh estimation and makes
the task challenging. Despite promising results of 3D hand
mesh estimation from a single sharp image [5,13,16,17,22],
research on blurry hands is barely conducted.

A primary reason for such lack of consideration is the ab-
sence of datasets that consist of blurry hand images with ac-
curate 3D groundtruth (GT). Capturing blurry hand datasets

*Authors contributed equally.

(a) Examples of the presented BlurHand dataset.

(b) Illustration of the temporal unfolding.

Figure 1. Proposed BlurHand dataset and BlurHandNet. (a)
We present a novel BlurHand dataset, providing natural blurry
hand images with accurate 3D annotations. (b) While most pre-
vious methods produce a single 3D hand mesh from a sharp im-
age, our BlurHandNet unfolds the blurry hand image into three
sequential hand meshes.

is greatly challenging. The standard way of capturing mark-
erless 3D hand datasets [8,23,50] consists of two stages: 1)
obtaining multi-view 2D grounds (e.g., 2D joint coordinates
and mask) manually [50] or using estimators [14, 15, 44]
and 2) triangulating the multi-view 2D grounds to the 3D
space. Here, manual annotations or estimators in the first
stage are performed from images. Hence, they become un-
reliable when the input image is blurry, which results in tri-
angulation failure in the second stage.

Contemplating these limitations, we present the Blur-
Hand, whose examples are shown in Figure 1a. Our Blur-
Hand, the first blurry hand dataset, is synthesized from In-
terHand2.6M [23], which is a widely adopted video-based
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hand dataset with accurate 3D annotations. Following state-
of-the-art blur synthesis literature [25, 26, 39], we approxi-
mate the blurry images by averaging the sequence of sharp
hand frames. As such technique requires high frame rates
of videos, we employ a widely used video interpolation
method [27] to complement the low frame rate (30 frames
per second) of InterHand2.6M. We note that our synthetic
blur dataset contains realistic and challenging blurry hands.

For a given blurry hand image, the most straightforward
baseline is sequentially applying state-of-the-art deblurring
methods [3, 29, 30, 46] on blurry images and 3D hand mesh
estimation networks [21, 22, 38] on the deblurred image.
However, such a simple baseline suffers from two limita-
tions. First, since hands contain challenging blur caused
by complex articulations, even state-of-the-art deblurring
methods could not completely deblur the image. Therefore,
the performance of the following 3D hand mesh estima-
tion networks severely drops due to remaining blur artifacts.
Second, since conventional deblurring approaches only re-
store the sharp images corresponding to the middle of the
motion, it limits the chance to make use of temporal infor-
mation, which might be useful for 3D mesh estimation. In
other words, the deblurring process restricts networks from
exploiting the motion information in blurry hand images.

To overcome the limitations, we propose BlurHandNet,
which recovers a 3D hand mesh sequence from a single
blurry image, as shown in Figure 1b. Our BlurHandNet
effectively incorporates useful temporal information from
the blurry hand. The main components of BlurHandNet
are Unfolder and a kinematic temporal Transformer (KT-
Former). Unfolder outputs hand features of three timesteps,
i.e., middle and both ends of the motion [12, 28, 32, 36].
The Unfolder brings benefits to our method in two aspects.
First, Unfolder enables the proposed BlurHandNet to out-
put not only 3D mesh in the middle of the motion but also
3D meshes at both ends of the motion, providing more in-
formative results related to motion. We note that this prop-
erty is especially beneficial for the hands, where the motion
has high practical value in various hand-related works. For
example, understanding hand motion is essential in the do-
main of sign language [2,34] and hand gestures [40], where
the movement itself represents meaning. Second, extract-
ing features from multiple time steps enables the following
modules to employ temporal information effectively. Since
hand features in each time step are highly correlated, ex-
ploiting temporal information benefits reconstructing more
accurate 3D hand mesh estimation.

To effectively incorporate temporal hand features from
the Unfolder, we propose KTFormer as the following mod-
ule. The KTFormer takes temporal hand features as input
and leverages self-attention to enhance the temporal hand
features. The KTFormer enables the proposed BlurHand-
Net to implicitly consider both the kinematic structure and

temporal relationship between the hands in three timesteps.
The KTFormer brings significant performance gain when
coupled with Unfolder, demonstrating that employing tem-
poral information plays a key role in accurate 3D hand mesh
estimation from blurry hand images.

With a combination of BlurHand and BlurHandNet, we
first tackle 3D hand mesh recovery from blurry hand im-
ages. We show that BlurHandNet produces robust results
from blurry hands and further demonstrate that BlurHand-
Net generalizes well on in-the-wild blurry hand images by
taking advantage of effective temporal modules and Blur-
Hand. As this problem is barely studied, we hope our work
could provide useful insights into the following works. We
summarize our contributions as follows:

• We present a novel blurry hand dataset, BlurHand,
which contains natural blurry hand images with accu-
rate 3D GTs.

• We propose the BlurHandNet for accurate 3D hand
mesh estimation from blurry hand images with novel
temporal modules, Unfolder and KTFormer.

• We experimentally demonstrate that the proposed
BlurHandNet achieves superior 3D hand mesh estima-
tion performance on blurry hands.

2. Related works
3D hand mesh estimation. Since after the introduction
of RGB-based hand benchmark datasets with accurate 3D
annotations, e.g., Friehand [50] and InterHand 2.6M [23],
various monocular RGB-based 3D hand mesh estimation
methods [5, 13, 16, 17, 21, 22, 31] have been proposed.
Pose2Mesh [5] proposed a framework that reconstructs 3D
mesh from the skeleton pose based on graph convolutional
networks. Kulon et al. [13] utilized encoder-decoder archi-
tecture with a spiral operator to regress the 3D hand mesh.
I2L-MeshNet [22] utilized a 1D heatmap for each mesh ver-
tex to model the uncertainty and preserve the spatial struc-
ture. I2UV-HandNet [4] proposed UV-based 3D hand shape
representation and 3D hand super-resolution module to ob-
tain high-fidelity hand meshes. Pose2Pose [21] introduced
joint features and proposed a 3D positional pose-guided
3D rotational pose prediction framework. More recently,
LISA [6] captured precise hand shape and appearance while
providing dense surface correspondence, allowing for easy
animation of the outputs. SeqHAND [45] incorporated syn-
thetic datasets to train a recurrent framework with tempo-
ral movement information and consistency constraints, im-
proving general pose estimations. Meng et al. [20] decom-
posed the 3D hand pose estimation task and used the HDR
framework to handle occlusion.

After the success of the attention-based mechanism,
Transformer [42] has been adopted to recover more accurate
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3D hand meshes. METRO [16] and MeshGraphormer [17]
proposed Transformer-based architecture, which models
vertex-vertex and vertex-joint interactions. Liu et al. [19]
utilizes spatial-temporal parallel Transformer to model
inter-correlation between arm and hand. HandOccNet [31]
proposed a Transformer-based feature injection mechanism
to robustly reconstruct 3D hand mesh when occlusions are
severe. Although the above methods showed promising re-
sults for the sharp hand images, none of them carefully con-
sidered the hand with blur scenario. As the lack of an appro-
priate dataset is the main reason for the less consideration,
we present BlurHand. Furthermore, we introduce a base-
line network, BlurHandNet, which consists of a temporal
unfolding module and kinematic temporal Transformer.
Restoring the motion from a single blurry image. Rather
than reconstructing only a single sharp image in the middle
of the motion, recent deblurring methods [1, 12, 28, 32, 47]
have witnessed predicting the sequence of sharp frames
from a single blurry image, which constructs the blurry in-
put image. Such a sequence of sharp frames can provide
useful temporal information. Jin et al. [12] proposed tem-
poral order invariant loss to overcome the temporal order
ambiguity problem. Purohit et al. [32] proposed an RNN-
based solution without constraining the number of frames
in sequence. Argaw et al. [1] proposed an encoder-decoder-
based spatial Transformer network with regularizing terms.
Unlike previous methods that proposed to restore a single
sharp image, our BlurHandNet aims to recover 3D hand
mesh sequences from a single blurry image.

3. BlurHand dataset
Figure 2 shows the overall pipeline for constructing our

BlurHand. Our BlurHand dataset is synthesized using 30
frames per second (fps) version of InterHand2.6M [23],
which contains large-scale hand videos with diverse poses.
We first apply a video interpolation method [27] to in-
crease 30 fps videos to 240 fps ones. Then, a single
blurry hand image is synthesized by averaging 33 sequen-
tial frames, which are interpolated from 5 sharp sequential
frames, following the conventional deblurring dataset man-
ufacture [25,37,49]. We note that video interpolation is nec-
essary when synthesizing blurs, as averaging frames from a
low frame rate induces unnatural artifacts such as spikes and
steps [24]. For each synthesized blurry image, 3D GTs of
1st, 3rd, and 5th sharp frames from InterHand2.6M 30fps
are assigned as 3D GTs of initial, middle, and final, re-
spectively. In the end, the presented BlurHand consists of
121,839 training and 34,057 test samples containing single
and interacting blurry hand images. During the synthesis of
blurry frames, we skip the frames if two neighboring frames
are not available, and further adopt camera view sampling
to mitigate the redundancy of samples. We report sample
statistics of the BlurHand in the supplementary materials.

Figure 2. Pipeline for constructing our BlurHand dataset. We
synthesize the blurry hand from five sequential sharp hand frames
by adopting video interpolation and averaging them.

4. BlurHandNet
Figure 3 shows the overall architecture of our BlurHand-

Net. Our BlurHandNet, which consists of three modules;
Unfolder, KTFormer, and Regressor, reconstructs sequen-
tial hand meshes from a single blurry hand image. We de-
scribe the details of each module in the following sections.

4.1. Unfolder

Unfolding a blurry hand image. Given a single RGB
blurry hand image I ∈ RH×W×3, Unfolder outputs fea-
ture maps and 3D joint coordinates of the three sequen-
tial hands, i.e., temporal unfolding, where each corresponds
to the hand from both ends and the middle of the motion.
Here, H = 256 and W = 256 denote the height and
width of the input image, respectively. The temporal un-
folding could extract useful temporal information from a
single blurry image, and we note that effectively utilizing
them is one of the core ideas of our methods. To this end,
we first feed the blurry hand image I into ResNet50 [9], pre-
trained on ImageNet [7], to extract the blurry hand feature
map FB ∈ RH/32×W/32×C , where C = 2048 denotes the
channel dimension of FB. Then, we predict three temporal
features from a blurry hand feature FB through correspond-
ing separate decoders, as shown in Figure 3. As a result, we
obtain three sequential hand features FE1, FE2, and FM with
dimension Rh×w×c, where each corresponds to the hand at
both ends and the middle of the motion. Here, h = H/4,
w = W/4, and c = 512 denote the height, width, and chan-
nel dimension of each hand feature, respectively.
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Figure 3. Overall architecture of BlurHandNet. BlurHandNet first unfolds input image I into three temporal joint features FJE1 , FJE2 ,
and FJM . The following kinematic temporal Transformer (KTFormer) refines each joint feature by leveraging the attentive correlation
between them. Finally, Regressor produces MANO [35] parameters for each time step, resulting in temporal 3D hand meshes.

(a) (b) (c) (d)

Figure 4. The ambiguity on temporal ordering. Hand im-
age sequences of the extending <(a)−→(b)−→(c)> and the folding
<(c)−→(b)−→(a)> make the same result blur image (d).

Among the three sequential features, the hand feature at
the middle of the motion FM can be specified as similar to
the conventional deblurring approaches [25, 46]. However,
we can not identify whether the hand at each end (i.e., FE1
or FE2) is come from the initial or final location of the mo-
tion due to the temporal ambiguity [12, 28, 33, 47]. For ex-
ample, suppose that we obtain the blurry hand image shown
in Figure 4d. Then we can not determine whether the blurry
hand image comes from the motion of extending or fold-
ing. In that regard, Unfolder outputs hand features from
both ends of the motion (i.e., FE1 and FE2) without consid-
ering temporal order. We note that exploiting the temporal
information still benefits without explicitly considering the
temporal order, and can further be stably optimized with the
training loss introduced in Section 4.4.
Extracting temporal joint features. From produced three
sequential hand features, we extract the corresponding joint
features, which contain essential hand articulation informa-
tion [21] that helps to recover 3D hand meshes. We first
project the sequential hand features FE1, FE2, and FM into
dJ dimensional feature through 1 × 1 convolution layer,
and reshape them into 3D heatmaps with the dimension of
RJ×h×w×d, where d = 32 is a depth discretization size and
J = 21 is a number of hand joints. Then, we perform a
soft-argmax operation [41] on each heatmap to obtain the
3D joint coordinates of three temporal hands, JE1, JE2, and
JM with dimension of RJ×3. Using 3D joint coordinates
in each temporal hand, we perform grid sampling [10, 21]

Fully-connected

C

Kinematic positional 
embedding

Temporal positional 
embedding

SoftmaxLayer 
normalization

ReLU

Divide operation Matrix-matrix
mult.

Element-wise
add.Concat.C

Figure 5. Overall architecture of KTFormer. KTFormer refines
temporal joint features FJE1 , FJE2 , and FJM . First, kinematic and
temporal positional embeddings are introduced. Then, the follow-
ing self-attention mechanism refines joint features by leveraging
attentive correlation between them, producing F′

JE1 , F′
JE2 , and F′

JM .

on the corresponding feature map. By doing so, we obtain
temporal joint features FJE1 , FJE2 , and FJM with a dimen-
sion of RJ×c, which enable the following module to exploit
temporal information effectively.

4.2. KTFormer

Kinematic-temporal positional embedding. The illustra-
tion of KTFormer is shown in Figure 5. KTFormer is the
Transformer [42]-based module that refines the joint fea-
ture FJE1 , FJE2 , and FJM by considering the correlation be-
tween not only joints at the same time step but also joints
at different time steps. To utilize the temporal joint features
as an input of Transformer, we first concatenate the three
features along the joint dimension, producing FJ ∈ R3J×c.
Then, a learnable positional embedding, namely kinematic
and temporal positional embeddings, is applied to FJ. The
kinematic positional embedding ∈ RJ×c is applied along
the joints dimension, while the temporal positional embed-
ding ∈ R3×c is applied along the temporal dimension. The
kinematic and temporal positional embedding provide rela-
tive positions in kinematic and temporal space, respectively.
Joint feature refinement with self-attention. KTFormer
performs self-attention within FJ by extracting query q,
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key k, and value v through three fully-connected layers.
Following the formulation of the standard Transformer [42],
refined joint features for sequential hands F′

JE1
, F′

JE2
, and

F′
JM

are formulated as follows:

Att(q,k,v) = softmax(
qkT

√
dk

)v, (1)

R = FJ + Att(q,k,v), (2)

F′
JE1
,F′

JE2
,F′

JM
= ψ(FJ +MLP(R)), (3)

where dk = 512 is the feature dimension of the key k, and
R is the residual feature. MLP denotes multi-layer percep-
tron, and ψ denotes a dividing operation, which separates
features in dimension R3J×c to three RJ×c. Consequently,
three joint features F′

JE1
, F′

JE2
, and F′

JM
are obtained by at-

tentively utilizing kinematic and temporal information.

4.3. Regressor

The Regressor produces MANO [35] shape (i.e., βE1,
βE2, and βM) and pose (i.e., θE1, θE2, and θM) parame-
ters, which correspond to sequential hands. We describe
the regression process of the middle hand (i.e., βM and θM)
as a representative procedure, and note that the process at
different timesteps can be obtained in the same manner.
First, the shape parameter βM is obtained by forwarding
the hand feature FM to a fully-connected layer after global
average pooling [18]. Second, the pose parameter θM is
obtained by considering the kinematic correlation between
hand joints. To this end, we first concatenate refined joint
feature F′

JM
with corresponding 3D coordinates JM. Then,

we flatten the concatenated feature into one-dimensional
vector fM ∈ RJ(c+3). Instead of regressing poses of en-
tire joints from fM at once, the Regressor gradually esti-
mates pose for each joint along the hierarchy of hand kine-
matic tree, following [43]. In detail, for a specific joint,
its ancestral pose parameters and fM are concatenated, and
forwarded to a fully-connected layer to regress the pose pa-
rameters. By adopting the same process for both ends, three
MANO parameters are obtained from the Regressor. Then,
the MANO parameters are forwarded to the MANO layer to
produce 3D hand meshes VE1, VE2, and VM, where each
denotes to meshes at both ends and middle, respectively.

4.4. Training loss

During the training, a prediction on the middle of the mo-
tion can be simply supervised with GT of the middle frame.
On the other hand, it is ambiguous to supervise both ends
of motion as the temporal order is not uniquely determined,
as shown in Figure 4. To resolve such temporal ambiguity
during the loss calculation, we propose two items. First, we
employ temporal order-invariant loss, which is invariant to
GT temporal order [36]. To be specific, the temporal order

in our loss function is determined in the direction that mini-
mizes loss functions, not by the GT temporal order. Second,
we propose to use a Unfolder-driven temporal ordering. It
determines the temporal order based on the output of Un-
folder, then uses the determined temporal order to supervise
the outputs of Regressor rather than determining the tempo-
ral order of two modules separately. The effectiveness of
the two items is demonstrated in the experimental section.

The overall loss function L is defined as follows:
L = LU + LR

= LU,M + LU,E + LR,M + LR,E,
(4)

where LU and LR are loss functions applied to outputs of the
Unfolder and the Regressor, respectively. The subscripts M
and E stand for prediction of the middle and both ends.

To supervise outputs of Unfolder, we define LU,M and
LU,E as follows:

LU,M = Ljoint(JM,J
∗
middle), (5)

LU,E = min( Ljoint(JE1,J
∗
initial)+ Ljoint(JE2,J

∗
final),

Ljoint(JE1,J
∗
final) + Ljoint(JE2,J

∗
initial) ),

(6)

where J∗
middle, J∗

initial, and J∗
final are GT 3D joint coordinates

of the middle, initial and final frame, respectively. Ljoint
is L1 distance between predicted and GT joint coordinates.
The temporal order is determined to forward if the first term
in min of Eq. 6 is selected as minimum and backward oth-
erwise. Therefore, our loss function is invariant to the tem-
poral order of GT.

To supervise the outputs of the Regressor, we define the
loss function LR,M and LR,E as follows:

LR,M = Lmesh(ΘM,Θ
∗
middle), (7)

LR,E =1f ( Lmesh(ΘE1,Θ
∗
initial)+ Lmesh(ΘE2,Θ

∗
final) )

+1b ( Lmesh(ΘE1,Θ
∗
final) + Lmesh(ΘE2,Θ

∗
initial) ),

(8)

where 1f = 1 when the temporal order is determined to for-
ward in Eq. 6 otherwise 0, and 1b = 1−1f. In other words,
the temporal order of Eq. 8 follows that of Eq. 6, which we
call Unfolder-driven temporal ordering. Θ• = {θ•, β•} is
GT or predicted MANO parameters, where the superscript
∗ denotes GT. Lmesh is the summation of three L1 distances
between GT and prediction of: 1) MANO parameters 2) 3D
joint coordinates obtained by multiplying joint regression
matrix to hand mesh 3) 2D joint coordinates projected from
3D joint coordinates.

5. Experiments
5.1. Datasets and evaluation metrics

BlurHand. The BlurHand (BH) is our newly presented 3D
hand pose dataset containing realistic blurry hand images as
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Methods Train set
Test set

IH2.6M BH

I2L-MeshNet [22]
IH2.6M 22.27 29.16

BH 24.30 24.32

METRO [16]
IH2.6M 18.44 35.43

BH 20.19 20.54

Pose2Pose [21]
IH2.6M 16.85 25.36

BH 18.40 18.80

BlurHandNet (Ours) IH2.6M 15.33 24.57
BH 16.12 16.80

Table 1. Effectiveness of BlurHand on handling blurry hand.
We calculate MPJPE (mm) on hand meshes located in the middle
of the motion.

Blurry 
images

Deblurred 
images

Figure 6. Examples of deblurred images. Since the blurry hand
undergoes challenging blur from complex articulation, even the
state-of-the-art deblurring method [3] cannot fully restore and blur
artifact remains, highlighted with red circles.

introduced in Section 3. We train and test the 3D hand mesh
estimation networks on the train and test splits of the BH.
InterHand2.6M. InterHand2.6M [23] (IH2.6M) is a re-
cently presented large-scale 3D hand dataset. It is captured
under highly calibrated camera settings and provides accu-
rate 3D annotations for hand images. We employ IH2.6M
as a representative of sharp hand frames, as the hand images
in IH2.6M do not contain blur. We use a subset of IH2.6M
for training and testing purposes, where the subset is a set
of the third sharp frame in Figure 2 for each image of BH.
YT-3D. YouTube-3D-hands (YT-3D) [13] is a 3D hand
dataset with diverse and non-laboratory videos collected
from youtube. We utilize the YT-3D as an additional train-
ing dataset when testing on YT-3D. Since YT-3D does not
provide 3D GTs, we only provide a qualitative comparison
of this dataset without quantitative evaluations.
Evaluation metrics. We use mean per joint position error
(MPJPE) and mean per vertex position error (MPVPE) as
our evaluation metrics. The metrics measure Euclidean dis-
tance (mm) between estimated coordinates and groundtruth
coordinates. Before calculating the metrics, we align the
translation of the root joint (i.e., wrist).

5.2. Ablation study

Benefit of BlurHand dataset. Directly measuring how
much synthesized blur is close to the real one is still an open
research problem in the deblurring community [11, 48].
Hence, we justify the usefulness of the presented BlurHand

Methods Train set Test set
MPJPE MPVPE
(mm) (mm)

I2L-MeshNet [22]
IH2.6M BH+Deblur 26.56 25.23

BH+Deblur BH+Deblur 26.13 25.00
BH BH 24.32 23.08

METRO [16]
IH2.6M BH+Deblur 26.07 32.05

BH+Deblur BH+Deblur 20.11 26.55
BH BH 20.54 27.03

Pose2Pose [21]
IH2.6M BH+Deblur 22.43 21.04

BH+Deblur BH+Deblur 18.81 17.43
BH BH 18.80 17.42

BlurHandNet (Ours)
IH2.6M BH+Deblur 21.37 19.93

BH+Deblur BH+Deblur 17.28 15.82
BH BH 16.80 15.30

Table 2. Effectiveness of BlurHand compared to deblurring
baseline. MPJPE and MPVPE are calculated at hand meshes lo-
cated in the middle of the motion.

(a) Blurry (b) Deblurred (c) IH2.6M (d) BH+D (e) BH+YT3D
AAAAimageAAAAAAimageAAAAA+YT3DAAAAA+YT3DAAAAASAAAAAA

Figure 7. Qualitative comparison on real-world blurry hand
images. The captions below figures describe datasets used to train
3D hand mesh estimation networks. A setting with D represents
that the network is trained on deblurred BH and tested on (b).

using indirect commonly used protocols [11], i.e., train the
model with the presented dataset and test it on unseen blurry
images. Table 1 shows that all 3D hand mesh recovery net-
works trained on InterHand2.6M suffer severe performance
drops when they are tested on BlurHand, while networks
trained on BlurHand perform well. These experimental re-
sults validate that training on BlurHand is necessary when
handling the blurry hand. In addition, networks trained on
BlurHand also perform well on InterHand2.6M, which con-
sists of sharp images. This shows the generalizability of our
dataset to sharp images.

Table 2 shows that utilizing presented BlurHand is more
valuable than applying deblurring methods [3]. The deblur-
ring method [3], trained on our BlurHand as a pre-trained
deblurring network, performs poorly on our BlurHand.
Moreover, the networks trained on sharp images (IH2.6M)
or deblurred images and tested on deblurred images perform
worse than those trained and tested on our BlurHand. Such
comparisons demonstrate the usefulness of our BlurHand
dataset compared to applying deblurring methods. One rea-
son is that, as Figure 6 shows, deblurring methods often fail
to restore sharp hand images due to complicated hand mo-
tions. Another reason is that deblurring removes temporal
information from the blurry image, which is helpful for re-
constructing accurate 3D hand mesh sequences.
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Deblur Unfolder KTFormer
MPJPE

initial middle final
✗ ✗ ✗ - 17.89 -
✗ ✗ ✓ - 17.41 -
✗ ✓ ✗ 18.94 17.55 19.05
✗ ✓ ✓ 18.08 16.80 18.21
✓ ✗ ✗ - 17.28 -
✓ ✓ ✓ 18.95 17.28 19.10

Table 3. Ablation study on proposed Unfolder and KTFormer.
(✓ in Deblur): The experiments with the Deblur item checked are
trained and tested on deblurred BlurHand. (Second row): We only
employ features from a single time step when applying KTFormer,
as temporal information does not exist without Unfolder.

# of unfolding
MPJPE

initial initial∗ middle final∗ final
1 - - 17.41 - -
3 (BlurHandNet) 18.08 - 16.80 - 18.21
5 18.06 17.18 16.78 17.36 18.18

Table 4. Ablation study on the number of unfolded hands. The
initial∗ and final∗ denote hands between the initial and middle, and
the middle and final, respectively.

Figure 7 provides a qualitative comparison of real-world
blurry images in YT-3D, which further demonstrates the
usefulness of our BlurHand. We train BlurHandNet on three
different combinations of datasets: 1) InterHand2.6M and
YT-3D (7b), 2) deblurred BlurHand and YT-3D (7c), and
3) BlurHand and YT-3D (7d). The comparison shows that
networks trained on BlurHand produce the most robust 3D
meshes, demonstrating the generalizability of BlurHand.
Effectiveness of Unfolder and KTFormer. Table 3 shows
that using both Unfolder and KTFormer improves 3D mesh
estimation accuracy by a large margin. As the proposed
Unfolder allows a single image to be regarded as three se-
quential hands, we evaluate hands in both ends and middle
of the motion. Since the temporal order of hand meshes
in both ends (i.e., VE1 and VE2) is not determined, we re-
port better MPJPE among the initial-final and final-initial
pairs following [1, 36]. Solely employing one of Unfolder
or KTFormer (the second and third rows) shows a slight
improvement over the baseline network, which is designed
without any of the proposed modules (the first row). On
the other hand, our BlurHandNet (the fourth row) results in
great performance boosts, by benefiting from the combina-
tion of two modules that effectively complement each other.
In particular, KTFormer benefits from temporal information
which is provided by Unfolder. Consequently, introducing
both Unfolder and KTFormer, which have strong synergy,
consistently improves the 3D errors in all time steps.

In the point of the baseline (the first row), using our two
proposed modules, Unfolder and KTFormer, leads to more
performance gain (the fourth row) than training and test-
ing a network on deblurred BlurHand (the fifth row). This
comparison shows that utilizing proposed modules is more
effective than using deblurring methods. Interestingly, us-

Kinematic Temporal
MPJPE

initial middle final
✗ ✗ 18.99 17.79 19.06
✓ ✗ 18.28 16.92 18.34
✗ ✓ 18.79 17.41 18.92
✓ ✓ 18.08 16.80 18.21

Table 5. Ablation study on the kinematic and temporal posi-
tional embeddings.

Temporal order Unfolder-driven MPJPE
invariant loss temporal ordering initial middle final

✗ ✗ 18.72 16.98 18.86
✓ ✗ 18.44 17.14 18.55
✓ ✓ 18.08 16.80 18.21

Table 6. Ablation study on proposed loss functions.

ing our two modules does not bring performance gain when
training and testing on deblurred BlurHand (the last row)
compared to the deblur baseline (the fifth row). This vali-
dates our statement that deblurring prohibits networks from
utilizing temporal information.
Effect of the number of unfolded hands. Table 4 shows
that unfolding more sequential hands further improves the
3D errors. As our KTFormer utilizes temporal information
to enhance the joint feature, the number of hand sequences
can affect the overall performance. Although unfolding a
blurry hand into five sequential hands shows the best results,
the performance is nearly saturated when a blurry hand is
unfolded into three sequential hands. Considering the in-
creased computational costs of producing additional hands
and the temporal input size of KTFormer, we design our
Unfolder to produce three sequential hands. We note that
our BlurHandNet can be easily extended if more number of
unfolding is needed for some applications.
Effect of the kinematic and temporal positional embed-
dings. Table 5 shows that our positional embedding setting,
which uses both kinematic and temporal positional embed-
ding, achieves the best performance. We design four vari-
ants with different positional embedding settings. The sec-
ond and third rows, where either one of kinematic and tem-
poral positional embedding is applied, achieve better results
than a baseline without any positional embedding (the first
row), but worse results than ours (the last row). This in-
dicates that positional information of both kinematic and
temporal dimensions is necessary for KTFormer.
Effectiveness of the proposed loss functions. Table 6
shows that two proposed items in our loss function, tempo-
ral order-invariant loss and Unfolder-driven temporal or-
dering as introduced in Section 4.4, are necessary for the
high performance. We compare three variants for loss de-
sign at both ends of the motion, while keeping the loss func-
tion for the middle of the motion the same. In detail, the set-
tings without temporal order-invariant loss are supervised
with 3D meshes following the GT temporal order instead of
determining the order based on Eq. 6. On the other hand,
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(a) Input image (b)  GT  (c) METRO (d) Pose2Pose (e) BlurHandNet (Ours)

  Front view Other view  Other view  Front view   Front view Other view   Front view Other view

Figure 8. Visual comparison of the BlurHandNet and state-of-the-art 3D hand mesh estimation methods [16, 21] on BlurHand.

(a) Input image (b) Attention map

Figure 9. Visualization of attention map from KTFormer. The
pixel at location (i,j) represents the correlation between i-th joint
feature and j-th joint feature. The attention map is obtained after
performing a softmax operation across each row (query).

the setting without Unfolder-driven temporal ordering su-
pervises Regressor with Regressor-driven temporal order-
ing, which indicates that Unfolder and Regressor can be su-
pervised with different temporal ordering. Since inferring
the temporal order of GT is ambiguous, the setting without
temporal order-invariant loss degrades the performance as
it forces to strictly follows the temporal order of GT. Uti-
lizing the proposed Unfolder-driven temporal ordering per-
forms the best, as it provides consistent temporal order to
both Unfolder and Regressor, making the training stable.
Visualization of attention map from KTFormer. Fig-
ure 9 shows a visualized attention map, obtained by the
self-attention operation in KTFormer. Here, query and key
are obtained from a combination of temporal joint features
FJE1 , FJC , and FJE1 , as described in Section 4.2. The figure
shows that our attention map produces two diagonal lines,
representing a strong correlation between the corresponding
query and key. Specifically, features from both ends of mo-
tion, FJE1 and FJE2 (the first and third queries), show high
correlation with the middle hand feature FJM (the second
key), and FJM (the second query) shows high correlation
with FJE1 and FJE2 (the first and third keys). This indicates

that temporal information is highly preferred to compen-
sate for insufficient joint information in a certain time step.
This is also consistent with the result in Table 3. In the sec-
ond row of Table 3, solely employing KTFormer without
Unfolder shows slight performance improvement over the
baseline due to the lack of opportunity to exploit temporal
information from both ends.

5.3. Comparison with state-of-the-art methods

Table 1 and 2 show that our BlurHandNet outperforms
the previous state-of-the-art 3D hand mesh estimation meth-
ods in all settings. As the previous works [16,21,22] do not
have a special module to address blurs, they fail to produce
accurate 3D meshes from blurry hand images. On the con-
trary, by effectively handling the blur using temporal infor-
mation, our BlurHandNet robustly estimates the 3D hand
mesh, even under abrupt motion. Figure 8 further shows
that our BlurHandNet produces much better results than
previous methods on BlurHand.

6. Conclusion
We present the BlurHand dataset, containing realistic

blurry hand images with 3D GTs, and the baseline network
BlurHandNet. Our BlurHandNet regards a single blurry
hand image as sequential hands to utilize the temporal in-
formation from sequential hands, which makes the network
robust to the blurriness. Experimental results show that
BlurHandNet achieves state-of-the-art performance in esti-
mating 3D meshes from the newly proposed BlurHand and
real-world test sets.
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