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Abstract

The current approach for testing the robustness of object
detectors suffers from serious deficiencies such as improper
methods of performing out-of-distribution detection and us-
ing calibration metrics which do not consider both locali-
sation and classification quality. In this work, we address
these issues, and introduce the Self Aware Object Detection
(SAOD) task, a unified testing framework which respects
and adheres to the challenges that object detectors face in
safety-critical environments such as autonomous driving.
Specifically, the SAOD task requires an object detector to
be: robust to domain shift; obtain reliable uncertainty es-
timates for the entire scene; and provide calibrated con-
fidence scores for the detections. We extensively use our
framework, which introduces novel metrics and large scale
test datasets, to test numerous object detectors in two dif-
ferent use-cases, allowing us to highlight critical insights
into their robustness performance. Finally, we introduce
a simple baseline for the SAOD task, enabling researchers
to benchmark future proposed methods and move towards
robust object detectors which are fit for purpose. Code is
available at: https://github.com/fiveai/saod.

1. Introduction

The safe and reliable usage of object detectors in safety
critical systems such as autonomous driving [10,65,73], de-
pends not only on its accuracy, but also critically on other
robustness aspects which are often only considered in addi-
tion or not all. These aspects represent its ability to be ro-
bust to domain shift, obtain well-calibrated predictions and
yield reliable uncertainty estimates at the image-level, en-
abling it to flag the scene for human intervention instead of
making unreliable predictions. Consequently, the develop-
ment of object detectors for safety critical systems requires
a thorough evaluation framework which also accounts for
these robustness aspects, a feature lacking in current evalu-
ation methodologies.

Figure 1. (Top) The vanilla object detection task vs. (Bottom)
the self-aware object detection (SAOD) task. Different from the
vanilla approach; the SAOD task requires the detector to: predict
â ∈ {0, 1} representing whether the image X is accepted or not
for further processing; yield accurate and calibrated detections;
and be robust to domain shift. Accordingly, for SAOD we evaluate
on ID, domain-shift and OOD data using our novel DAQ measure.
Here, {ĉi, b̂i, p̂i}N are the predicted set of detections.

Whilst object detectors are able to obtain uncertainty at
the detection-level, they do not naturally produce uncer-
tainty at the image-level. This has lead researchers to of-
ten evaluate uncertainty by performing out-of-distribution
(OOD) detection at the detection-level [13, 21], which can-
not be clearly defined. Thereby creating a misunderstanding
between OOD and in-distribution (ID) data. This leads to
an improper evaluation, as defining OOD at the detection
level is non-trivial due to the presence of known-unknowns
or background objects [12]. Furthermore, the test sets for
OOD in such evaluations are small, typically containing
around 1-2K images [13, 21].

Moreover, as there is no direct access to the labels of the
test sets and the evaluation servers only report accuracy [18,
43], researchers have no choice but to use small validation
sets as testing sets to report robustness performance, such
as calibration and performance under domain shift. As a
result, either the training set [11, 59]; the validation set [13,
21]; or a subset of the validation set [36] is employed for
cross-validation, leading to an unideal usage of the dataset
splits and a poor choice of the hyper-parameters.

Finally, prior work typically focuses on only one of: cal-
ibration [35, 36]; OOD detection [13]; domain-shift [45,
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68, 71, 72]; or leveraging uncertainty to improve accuracy
[5, 9, 20, 23, 70], with no prior work taking a holistic ap-
proach by evaluating all of them. Specifically for calibra-
tion, previous studies either consider classification calibra-
tion [35], or localisation calibration [36], completely disre-
garding the fact that object detection is a joint problem.

In this paper, we address the critical need for a ro-
bust testing framework which evaluates object detectors
thoroughly, thus alleviating the aforementioned deficien-
cies. To do this, we introduce the Self-aware Object De-
tection (SAOD) task, which considers not only accuracy,
but also calibration using our novel Localisation-aware Ex-
pected Calibration Error (LAECE) as well as the reliability
of image-level uncertainties. Furthermore, the introduction
of LAECE addresses a critical gap in the literature as it re-
spects both classification and localisation quality, a feature
ignored in previous methods [35,36]. Moreover, the SAOD
task requires an object detector to either perform reliably or
reject images outside of its training domain.

We illustrate the SAOD task in Fig. 1, which not only
evaluates the accuracy, but also the calibration and perfor-
mance under OOD or domain-shifted data. We can also
see the functionality to reject an image, and to only produce
detections which have a high confidence; unlike for a stan-
dard detector which has to accept every image and produce
detections. To summarise, our main contributions are:

• We introduce the SAOD task, which evaluates: accu-
racy; robustness to domain shift; ability to accept of re-
ject an image; and calibration in a unified manner. We
further construct large datasets totaling 155K images
and provide a simple baseline for future researchers to
benchmark against.

• We explore how to obtain image-level uncertainties
from any object detector, enabling it to reject the entire
scene for the SAOD task. Through our investigations,
we discover that object detectors are inherently strong
OOD detectors and provide reliable uncertainties.

• Finally, we define the LAECE as a novel calibration
measure for object detectors in SAOD, which requires
the confidence of a detector to represent both its clas-
sification as well as its localisation quality.

2. Notations and Preliminaries
Object Detection Given that the set of M objects in an

image X is represented by {bi, ci}M where bi ∈ R4 is a
bounding box and ci ∈ {1, . . . ,K} its class; the goal of
an object detector is to predict the bounding boxes and the
class labels for the objects in X , f(X) = {ĉi, b̂i, p̂i}N ,
where ĉi, b̂i, p̂i represent the class, bounding box and con-
fidence score of the ith detection respectively and N is the
number of predictions. Conventionally, the detections are
obtained in two steps, f(X) = (h ◦ g)(X) [6, 42, 61, 66]:
where g(X) = {b̂rawi , p̂rawi }Nraw is a deep neural net-

work predicting raw detections with bounding boxes b̂rawi

and predicted class distribution p̂rawi . Given these raw-
detections h(·) applies post-processing to obtain the fi-
nal detections1. In general, h(·) comprises removing
the detections predicted as background; Non-Maximum-
Suppression (NMS) to discard duplicates; and keeping use-
ful detections, normally achieved through top-k survival,
where in practice k = 100 for COCO dataset [43].

Evaluating the Performance of Object Detectors Av-
erage Precision (AP) [15, 18, 43], or the area under the
precision-recall (PR) curve, has been the common perfor-
mance measure of object detection. Though widely ac-
cepted, AP suffers from the following three main draw-
backs [58]. First, it only validates true-positives (TPs) us-
ing a localisation quality threshold, completely disregarding
the continuous nature of localisation. Second, as an area-
under-curve (AUC) measure, AP is difficult to interpret, as
PR curves with different characteristics can yield the same
value. Also, AP rewards a detector that produces a large
number of low scoring detections than actual objects in the
image, which becomes a significant issue when relying on
top-k survival as shown in Fig. 1. App. D includes details.

Alternatively, the recently proposed Localisation-Recall-
Precision Error (LRP) [53,58] combines the number of TP,
false-positive (FP), false-negative (FN), denoted by NTP,
NFP, NFN, respectively, as well as the Intersection-over-
Union (IOU) of TPs with the objects that they match with:

1

NFP +NFN +NTP

NFP +NFN +
∑
ψ(i)>0

(1− lq(i))

 (1)

where lq(i) =
IoU(b̂i,bψ(i))−τ

1−τ is the localisation quality
with τ being the TP assignment threshold, ψ(i) is the in-
dex of the object that a TP i matches to; else i is a FP and
ψ(i) = −1. LRP can be decomposed into components pro-
viding insights on: the localisation quality; the precision;
and the recall error. Besides, low-scoring detections are de-
moted by the term NFP in Eq. (1). Thus, LRP arguably
alleviates the aforementioned drawbacks of AP.

3. An Overview to the SAOD Task
For object detectors to be deployed in safety critical sys-

tems it is imperative that they perform in a robust manner.
Specifically, we would expect the detector to be aware of sit-
uations when the scene differs substantially from the train-
ing domain and to include the functionality to flag the scene
for human intervention. Moreover, we also expect that the
confidence of the detections matches the performance, re-
ferred to as calibration. With these expectations in mind,
we characterise the crucial elements needed to evaluate and

1for probabilistic detectors [5, 19–21, 23], b̂rawi follows a probabil-
ity distribution mostly of the form g(X) = {N (µi,Σi), p̂

raw
i }Nraw ,

where Σi is either a diagonal [5, 23] or full covariance matrix [20]
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perform the SAOD task. Specifically, the SAOD task re-
quires an object detector to:

• Have the functionality to reject a scene based on its
image-level uncertainties through a binary indicator
variable â ∈ {0, 1}.

• Produce detection-level confidences that are calibrated
in terms of classification and localisation.

• Be robust to domain-shift.
For brevity, and to enable future researchers to adopt the
SAOD framework, the explicit practical specification for
Self-aware Object Detectors (SAODETs) is

fA(X) = {â, {ĉi, b̂i, p̂i}N}, (2)

where â ∈ {0, 1} implies if the image should be accepted or
rejected and that the predicted confidences p̂i are calibrated.

Evaluation Datasets As the SAOD emulates challeng-
ing real-life situations, the evaluation needs to be performed
using large-scale test datasets. Unlike previous approaches
on OOD detection using around 1-2K OOD images [13,21]
for testing or calibration methods [36] relying on 2.5K ID
test images, our test set totals to 155K individual images for
each of our two use-cases when combining ID and OOD
data. Specifically, we construct two test datasets, where
each DTest in our case is the union of the following datasets:

• DID (45K Images): ID dataset with images containing
the same foreground objects as were present in DTrain.

• T (DID) (3 × 45K Images): domain-shift dataset ob-
tained by applying transformations to the images from
DID, which preserve the semantics of the image.

• DOOD (110K Images): OOD dataset with images that
do not contain any foreground object from DID. These
images tend to include objects not present in DTrain.

We present exact splits in Tab. 1 for object detection in
General and Autonomous Vehicles (AV) use-cases (refer
App. A for further details). Collected from a different
dataset, our DID differs from DTrain, but is still semanti-
cally similar; which is reflective of a challenging real-word
scenario, as domains change over time and scenes differ in
terms of appearance. For T (DID), we apply ImageNet-C
style corruptions [25] to DID, where for each image we ran-
domly choose one of 15 corruption types (fog, blur, noise,
etc.) at severity levels 1, 3 and 5 as is common in prac-
tice [21]. Then, we expect that for a given inputX ∈ DTest,
a SAODET makes the following decisions:

• ifX ∈ DID∪T (DID) for corruption severities 1 and 3,
‘accept’ the input and provide accurate and calibrated
detections. Penalize a rejection.

• if X ∈ T (DID) at corruption severity 5, provide the
choice to ‘accept’ and evaluate but do not not penalize
a ‘rejection’ as the transformed images might not con-
tain enough cues to perform object detection reliably.

• if X ∈ DOOD, ‘reject’ the image and provide no de-
tections as, by design, the predictions would be wrong.

Table 1. Our dataset splits for SAOD. We design test sets for
COCO [43] and nuImages [4] as ID data (train & val). We ex-
ploit Objects365 [63] and BDD100K [73] for DID and T (DID),
and use Objects365, iNaturalist [27] and SVHN [50] for DOOD.

Dataset DTrain DVal
DTest

DID T (DID) DOOD

SAOD-Gen COCO(train) COCO(val) Obj45K Obj45K-C SiNObj110K-OOD
SAOD-AV nuImages(train) nuImages(val) BDD45K BDD45K-C SiNObj110K-OOD

An ‘accept’ should be penalized in this case.
Models In terms of evaluating SAOD on common object

detectors, it would prove useful at this point to introduce
the models used in our investigation. We mainly exploit a
diverse set of four object detectors:

1. Faster R-CNN (F-RCNN) [61] is a two-stage detector
with a softmax classifier

2. Rank & Sort R-CNN (RS-RCNN) [55] is another two-
stage detector but with a ranking-based loss function
and sigmoid classifiers

3. Adaptive Training Sample Selection (ATSS) [77] is a
common one-stage baseline with sigmoid classifiers

4. Deformable DETR (D-DETR) [79] is a transformer-
based model, again using sigmoid classifiers

We also evaluate two probabilistic detectors with a diag-
onal covariance matrix minimizing the negative log likeli-
hood [23] (NLL-RCNN) or energy score [21] (ES-RCNN),
allowing us to obtain uncertainty estimates for localisation.
Please see App. B for the training details of the methods as
well as their accuracy on DVal, T (DVal), DID and T (DID).

As we have now outlined clear requirements for a
SAODET, it is natural to ask how well the aforementioned
object detectors perform under these requirements. We will
extensively investigate this by first introducing a simple
method to extract image-level uncertainty enabling the ac-
ceptance or rejection of an image in Sec. 4; evaluate the
calibration and provide methods to calibrate such detectors
in Sec. 5; before finally providing a complete analysis of
them using the SAOD framework in Sec. 6.

4. Obtaining Image-level Uncertainty

As there is no clear distinction between background and
an OOD object unless each pixel in DTrain is labelled
[12], evaluating uncertainties of detectors is nontrivial at
detection-level. Thus, different from prior work [13, 21]
conducting OOD detection at detection-level, we evalu-
ate the uncertainties on image-level OOD detection task.
Thereby aligning the evaluation and the definition of an
OOD image. Please see App. C.1 for further discussion.

Practically, one method to accept or reject an image is to
obtain an estimate of uncertainty at the image-level through
a function G : X → R and a threshold ū ∈ R, where the
image is accepted if G(X) < ū and â = 1; and rejected
vice-versa. We take this approach when constructing our
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Table 2. AUROC scores (in %) for image-level uncertainties when
aggregating through different methods, where we use the uncer-
tainty score of 1− p̂i for the detections. Here, top-m refers to the
average of the lowest m uncertainties for the detections. As we
can see, using the most certain detections performs better. Bold
and underline are best and second best respectively.

Dataset Detector sum mean top-5 top-3 top-2 min

SAOD-Gen

F-RCNN 20.9 84.1 93.4 94.1 94.4 93.8
RS-RCNN 85.8 85.8 94.3 94.8 94.8 93.5

ATSS 66.2 86.3 93.8 94.2 94.0 92.6
D-DETR 85.2 85.2 94.4 94.7 94.6 93.3

SAOD-AV
F-RCNN 27.1 84.1 96.4 97.3 97.4 96.0

ATSS 18.8 92.2 97.7 97.6 97.3 95.7

Table 3. AUROC scores (in %) of different detection-level uncer-
tainty estimates. Classification-based uncertainties perform better
compared to localization and 1− p̂i performs generally the best.

Dataset Detector
Classification Localisation

H(p̂rawi ) DS 1− p̂i |Σ| tr(Σ) H(Σ)

F-RCNN 92.6 89.7 94.1 N/A N/A N/A
RS-RCNN 93.7 30.0 94.8 N/A N/A N/A

SAOD ATSS 94.3 36.9 94.2 N/A N/A N/A
Gen D-DETR 93.9 73.8 94.4 N/A N/A N/A

NLL-RCNN 92.4 89.0 94.1 87.6 87.5 87.7
ES-RCNN 92.8 89.9 94.1 85.0 85.2 86.4

SAOD F-RCNN 97.3 96.0 97.3 N/A N/A N/A
AV ATSS 97.2 97.1 97.6 N/A N/A N/A

baseline and now specifically outline the method to do so.
Obtaining Image-level Uncertainties This can be

achieved through aggregating the detection-level uncertain-
ties. We hypothesise that there is implicitly enough uncer-
tainty information in the detections to produce image-level
uncertainty, they just need to be extracted and aggregated
in an appropriate way. In terms of the extraction, we can
obtain detection level uncertain through: the uncertainty
score (1 − p̂i); the entropy of the predictive classification
distribution of the raw detections (H(p̂rawi )); and Dempster-
Shafer [14,62] (DS). In addition, for probabilistic detectors,
we can extract uncertainty from Σ by taking the: determi-
nant, trace, or entropy of the multivariate normal distribu-
tion [49]. In terms of the aggregation strategy, given the
uncertainties for the detections after top-k survival, we let
G either take their: sum, mean, minimum, or their mean
of the m smallest uncertainty values, i.e. the most certain
top-m detections. For further details, please see App. C.
Whilst these strategies are simple, as we will now show,
they provide a suitable method to obtain image-level uncer-
tainty, enabling effective performance on OOD detection, a
common task for evaluating uncertainty quantification.

To do this, we evaluate the Area-under ROC Curve
(AUROC) score between the uncertainties of the data from
DID and DOOD and display the results in Tab. 2; which
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Figure 2. The distribution of image-level uncertainties obtained
from F-RCNN (SAOD-Gen) on DID, different severities 1, 3, 5
(C1, C3, C5) of T (DID) and DOOD vs. the accuracy in COCO-
Style AP in % (AP in short). App. C includes more examples.

Table 4. AUROC scores (in %) on subsets of DOOD. In all cases,
near-OOD (Obj365) has a lower AUROC than far-OOD (SVHN).

Dataset Detector
near to far OOD

all OOD
Obj365 iNat SVHN

F-RCNN 83.7 97.6 99.8 94.1
SAOD RS-RCNN 85.6 97.8 99.8 94.8

Gen ATSS 84.5 97.4 99.5 94.2
D-DETR 85.7 98.1 99.4 94.4

SAOD F-RCNN 95.2 97.4 98.8 97.3
AV ATSS 95.0 97.3 99.7 97.7

shows that high AUROC scores are obtained when G is
formed by considering up to the mean(top-5) detections,
with the mean(top-3) aggregation strategy of 1−p̂i performs
the best. This highlights that the detections with lowest un-
certainty in each image provide useful information to reli-
ably estimate image-level uncertainty. We believe the poor
performance for mean and sum stem from the fact that there
are typically too many noisy detections (up to k = 100) for
only a few objects in the image. We further provide assur-
ance that 1 − p̂i is the most appropriate method to extract
detection-level uncertainty in Tab. 3, where we can see that
1− p̂i obtains higher AUROC scores compared to H(p̂rawi )
and DS. We also note that classification uncertainties (ex-
cept DS) perform consistently better than localisation ones
for probabilistic detectors. We believe one of the reasons
for that is the classifier is trained using both the proposals
matching and not matching with any object, preventing the
detector from becoming over-confident everywhere.

How Reliable are these Image-level Uncertainties?
Though the aforementioned results show that the image-
level uncertainties are effective, we now see how reliable
these uncertainties are in practice. For this, we first eval-
uate the detectors on different subsets of our SiNObj110K
OOD set. Tab. 4 shows that for all detectors, the AUROC
score is lower for near-OOD subset (Obj365) than for far-
OOD (iNat and SVHN) and is consistently very high for
far-OOD subsets (up to 99.8 on SVHN).

We then consider the uncertainties of DID, T (DID) and
DOOD by plotting histograms of the image-level uncertain-
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ties in 10 equally-spaced bins in the range of [0, 1]. In
Fig. 2 we see that the uncertainties from DID have a signif-
icant amount of mass in the smaller bins and vice versa for
DOOD, moreover the uncertainties get larger as the sever-
ity of corruption increases. We also display AP (black
line), where it can be clearly seen that as the uncertainty in-
creases AP decreases, implying that the uncertainty reflects
the performance of the detector. Thereby suggesting that
the image-level uncertainties are reliable and effective. As
already pointed out, this conclusion is not necessarily very
surprising, since the classifiers of object detectors are gen-
erally trained not only by proposals matching the objects
but also by a very large number of proposals not matching
with any object, which can be ∼ 1000 times more [57]. This
composition of training data prevents the classifier from be-
coming drastically over-confident for unseen data, enabling
the detector to yield reliable uncertainties.

Thresholding Image-level Uncertainties For our
SAOD baseline, we can obtain an appropriate value for ū
through cross-validation. Ideally, this will require a val-
idation set including both ID and OOD images, but un-
fortunately DVal consists of only ID images. However,
given that in this case our image-level uncertainty is ob-
tained by aggregating detection-level uncertainties, the im-
ages which have detections with high uncertainty will pro-
duce high image-level uncertainty and vice-versa. Using
this fact, if we remove the ground-truth objects from the im-
ages in DVal, the resulting image-level uncertainties should
be high. We leverage this approach to construct a pseudo
OOD dataset out of DVal, by replacing the pixels inside the
ground-truth bounding boxes with zeros, thereby removing
them from the image and enabling us to cross-validation.

As for the metric to cross-validate ū against, we observe
that existing metrics such as: AUC metrics are unsuitable
to evaluate binary predictions, F-Score is sensitive to the
choice of the positive class [60] and TPR@0.952 [13,24] re-
quires a fixed threshold. As an attractive candidate, Uncer-
tainty Error [46] computes the arithmetic mean of FP and
FN rates. However, the arithmetic mean does not heavily
penalise choosing ū on extreme values, potentially leading
to the situation where â = 1 or â = 0 for all images. To ad-
dress this, we instead leverage the harmonic mean, which is
sensitive to these extreme values. Specifically, we define the
Balanced Accuracy (BA) as the harmonic mean of TP rate
(TPR) and FP rate (FPR), addressing the aforementioned
issue and enabling us to use it to obtain a suitable ū.

5. Calibration of Object Detectors

Accepting or rejecting an image is only one component
of the SAOD task, in situations where the image is accepted
SAOD then requires the detections to be calibrated. Here

2Which is the FPR for a fixed threshold set when TPR=0.95.
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Figure 3. (a) Calibrated classifier; (b) Calibrated Bayesian re-
gressor, where empirical and predicted CDFs match; (c) Loci of
constant IOU boundary, e.g. any predicted box with top-left and
bottom-right corners obtained from within the green loci has an
IOU > 0.2 with the blue box. The detector is calibrated if its con-
fidence matches the classification and the localisation quality.

we define calibration as the alignment of performance and
confidence of a model; which has already been extensively
studied for the classification task [8,17,34,47,52,69]. How-
ever, existing work which studies the calibration properties
of an object detector [35, 36, 48, 51] is limited. For object
detection, the goal is to align a detector’s confidence with
the quality of the joint task of classification and localisa-
tion (regression). Arguably, it is not obvious how to ex-
tend merely classification-based calibration measures such
as Expected Calibration Error (ECE) [17] for object de-
tection. A straightforward extension would be to replace
the accuracy in such measures by the precision of the de-
tector, which is computed by validating TPs from a spe-
cific IoU threshold. However, this perspective, as employed
by [35], does not account for the fact that two object detec-
tors, while having the same precision, might differ signifi-
cantly in terms of localisation quality.

Hence, as one of the main contributions of this work, we
consider the calibration of object detectors from a funda-
mental perspective and define Localisation-aware Calibra-
tion Error (LAECE) which accounts for the joint nature of
the task (classification and localisation). We further analyse
how calibration measures should be coupled with accuracy
in object detection and adapt common post hoc calibration
methods such as histogram binning [74], linear regression,
and isotonic regression [75] to improve LAECE.

5.1. Localisation-aware ECE

To build an intuitive understanding and to appreciate the
underlying complexity in developing a metric to quantify
the calibration of an object detector, we first revisit its sub-
tasks and briefly discuss what a calibrated classifier and a
calibrated regressor correspond to. For the former, a classi-
fier is calibrated if its confidence matches its accuracy as
illustrated in Fig. 3(a). For calibrating Bayesian regres-
sors, there are different definitions [33, 37, 38, 64]. One
notable definition [33] requires aligning the predicted and
the empirical cumulative distribution functions (cdf), im-
plying p% credible interval from the mean of the predictive
distribution should include p% of the ground truths for all
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p ∈ [0, 1] (Fig. 3(b)). Extending this definition to object de-
tection is nontrivial due to the increasing complexity of the
problem. For example, a detection is represented by a tuple
{ĉi, b̂i, p̂i} with b̂i ∈ R4, which is not univariate as in [33].
Also, this definition to align the empirical and predicted
cdfs does not consider the regression accuracy explicitly,
and therefore not fit for our purpose. Instead, we take in-
spiration from an alternative definition that aims to directly
align the confidence with the regression accuracy [37, 38].

To this end, without loss of generality, we use IOU as
the measure of localisation quality for the detection boxes.
Therefore, broadly speaking, if the detection confidence
score p̂i = 0.8, then the localisation task is calibrated (ig-
noring the classification task for now) if the average locali-
sation performance (IOU in our case) is 80% over the entire
dataset. To demonstrate, following [56] we plot the loci for
fixed values of IOU in Fig. 3(c). In this example, consid-
ering the blue-box to be the ground-truth, p̂i = 0.2 implies
that a detector is calibrated if the detection box lie on the
‘green’ loci corresponding to IOU = 0.2.

Focusing back onto the joint nature of object detection,
we say that an object detector f : X 7→ {ĉi, b̂i, p̂i}N is cali-
brated if the classification and the localisation performances
jointly match its confidence p̂i. More formally,

P(ĉi = ci|p̂i)︸ ︷︷ ︸
Classification perf.

Eb̂i∈Bi(p̂i)[IoU(b̂i, bψ(i))]︸ ︷︷ ︸
Localisation perf.

= p̂i, ∀p̂i ∈ [0, 1] (3)

where Bi(p̂i) is the set of TP boxes with the confidence
score of p̂i, and bψ(i) is the ground-truth box that b̂i matches
with. Note that in the absence of localisation quality, the
above calibration formulation boils down to the standard
classification calibration definition.

For a given Bi(p̂i), the first term in Eq. (3), P(ĉi =
ci|p̂i), is the ratio of the number of correctly-classified to
the total number of detections, which is simply the preci-
sion. Whereas, the second term represents the average lo-
calisation quality of the boxes in Bi(p̂i).

Following the approximations used to define the well-
known ECE, we use Eq. (3) to define LAECE. Precisely,
we discretize the confidence score space into J = 25
equally-spaced bins [17, 34], and to prevent more frequent
classes to dominate the calibration error, we compute the
average calibration error for each class separately [34, 47].
Thus, the calibration error for the c-th class is obtained as

LaECEc =

J∑
j=1

|D̂c
j |

|D̂c|
∣∣p̄cj − precisionc(j)× ¯IoU

c
(j)

∣∣ , (4)

where D̂c denotes the set of all detections, D̂c
j ⊆ D̂c is the

set of detections in bin j and p̄cj is the average of the de-
tection confidence scores in bin j for class c. Furthermore,
precisionc(j) denotes the precision of the j-th bin for c-
th class and ¯IoU

c
(j) the average IOU of TP boxes in bin

j. Then, LaECE is computed as the average of LaECEc

over all the classes. We highlight that for the sake of bet-
ter accuracy the recent detectors [2,23,28–30,39,40,44,54,
55, 67, 76] tend to obtain p̂i by combining the classification
confidence with the localisation confidence (e.g., obtained
from an auxiliary IoU prediction head), which is very well
aligned with our LaECE formulation, enforcing p̂i to match
with the joint performance in Eq. (4).

Reliability Diagrams We also produce reliability dia-
grams to provide insights on the calibration properties of a
detector (Fig. 4(a)). To obtain a reliability diagram, we first
obtain the performance, measured by the product of preci-
sion and IOU (Eq. (4)), for each class over bins and then
average the performance over the classes by ignoring the
empty bins. Note that if a detector is perfectly calibrated
with LaECE = 0, then all the histograms will lie along
the diagonal in the reliability diagram since LaECEc = 0.
Similar to classification, if the performance tends to be
lower than the diagonal, then the detector is said to be
over-confident as in Fig. 4(a), and vice versa for an under-
confident detector. Please see Fig. A.14 for more examples.

5.2. Impact of Top-k Survival on Calibration

Top-k survival, a critical part of the post-processing step,
selects k detections with the highest confidence in an im-
age. The value of k is typically significantly larger than the
number of objects, for example, k = 100 for COCO where
an average of only 7.3 ground-truth objects exist per image
on the val set. Therefore, the final detections may contain
numerous low-scoring noisy detections. In fact, ATSS on
COCO val set, for example, produces 86.4 detections on
average per image after postprocessing, far more than the
average number of objects per image.

Since these extra noisy detections do not impact on the
widely used AP, most works do not pay much attention to
them, however, as we show below, they do have a negative
impact on the calibration metric. Thus, this may mislead a
practitioner in choosing the wrong model when it comes to
calibration quality.

We design a synthetic experiment to show the impact
of low-scoring noisy detections on AP and calibration
(LAECE). Specifically, if the number of final detections
is less than k in an image, we insert “dummy” detections
into the remaining space. These dummy detections are ran-
domly assigned a class ĉi, p̂i = 0, and only one pixel to en-
sure that they do not match with any object. Hence, by de-
sign, they are “perfectly calibrated”. As shown in Fig. 5(a),
though these dummy detections have no impact on the AP
(mathematical proof in App. D), they do give an impression
that the model becomes more calibrated (lower LAECE) as
k increases. Therefore, considering that extra noisy detec-
tions are undesirable in practice, we do not advocate top-k
survival, instead, we motivate the need to select a detec-
tion confidence threshold v̄, where detections are rejected if
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Figure 4. Reliability diagrams of F-RCNN on DID for SAOD-
Gen before and after calibration.

their confidence is lower than v̄.
An appropriate choice of v̄ should produce a set of

thresholded-detections with a good balance of precision, re-
call and localisation errors3. In Fig. 5(b), we present the ef-
fect of v̄ on LRP, where the lowest error is obtained around
0.30 for ATSS and 0.70 for F-RCNN, leading to an average
of 6 detections/image for both detectors, far closer to the av-
erage number of objects compared to using k = 100. Con-
sequently, to obtain v̄ for our baseline, we use LRP-optimal
thresholding [53, 58], which is the threshold achieving the
minimum LRP for each class on the val set.

5.3. Post hoc Calibration of Object Detectors
For our baseline, given that LAECE provides the calibra-

tion error of the model, we can calibrate an object detector
using common calibration approaches from the classifica-
tion and regression literature. Precisely, for each class, we
train a calibrator ζc : [0, 1] → [0, 1] using the input-target
pairs ({p̂i, tcali }) from DVal, where tcali is the target confi-
dence. As shown in App D, LAECE for bin j reduces to∣∣∣∣∣ ∑

b̂i∈D̂cj
ψ(i)>0

(
tcali − IoU(b̂i, bψ(i))

)
+

∑
b̂i∈D̂cj
ψ(i)≤0

tcali

∣∣∣∣∣. (5)

Consequently, we seek tcali which minimises this value as-
suming that p̂i resides in the jth bin. In situations where the
prediction is a TP (ψ(i) > 0), Eq. (5) is minimized when
p̂i = tcali = IoU(b̂i, bψ(i)) and conversely, if ψ(i) ≤ 0, it is
minimised when p̂i = tcali = 0. We then train linear regres-
sion (LR); histogram binning (HB) [74]; and isotonic re-
gression (IR) [75] models with such pairs. Tab. 5 shows that
these calibration methods improve LAECE in five out of six
cases, and in the case where they do not improve (ATSS on
SAOD-Gen), the calibration performance of the base model
is already good. Overall, we find IR and LR perform better
than HB and consequently we employ LR for SAODETs
since LR performs the best on three detectors. Fig. 4(b)
shows an example reliability histogram after applying LR,
indicating the improvement to calibration.

3Using properly-thresholded detections is in fact similar to the Panoptic
Segmentation, which is a closely-related task to object detection [31, 32]
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Figure 5. Red: ATSS, green: F-RCNN, histograms present de-
t/img using right axes, results are on COCO val set with 7.3 ob-
jects/img. (a) Dummy detections decrease LAECE (solid line)
artificially with no effect on AP (dashed line). LRP (dotted line),
on the other hand, penalizes dummy detections. (b) AP is max-
imized with more detections (threshold ‘none’) while LRP Error
benefits from properly-thresholded detections. (refer App. D)

6. Baseline SAODETs and Their Evaluation

Using the necessary features developed in Sec. 4 and
Sec. 5, namely, obtaining: image-level uncertainties, cali-
bration methods as well as the thresholds ū and v̄, we now
show how to convert standard detectors into ones that are
self-aware. Then, we benchmark them using the SAOD
framework proposed in Sec. 3 whilst leveraging our test
datasets and LAECE.

Baseline SAODETs To address the requirements of a
SAODET, we make the following design choices when con-
verting an object detector into one which is self aware: The
hard requirement of predicting whether or not to accept an
image is achieved through obtaining image-level uncertain-
ties by aggregating uncertainty scores. Specifically, we use
mean(top-3) and obtain an uncertainty threshold ū through
cross-validation using pseudo OOD set approach (Sec. 4).
We only keep the detections with higher confidence than v̄,
which is set using LRP-optimal thresholding (Sec. 5.2). To
calibrate the detection scores, we use linear regression as
discussed in Sec. 5.3. Thus, we convert all four detectors
that we use (Sec. 3) into ones that are self-aware, prefixed
by a SA in the tables. For further details, please see App. E.

The SAOD Evaluation Protocol The SAOD task is a
robust protocol unifying the evaluation of the: (i) reliabil-
ity of uncertainties; (ii) the calibration and accuracy; (iii)
and performance under domain shift. To obtain quantita-
tive values for the above, we leverage the Balanced Accu-
racy (Sec. 4) for (i). For (ii) we evaluate the calibration
and accuracy using LAECE (Sec. 5) and the LRP [53] re-
spectively, but combine them through the harmonic mean
of 1 − LRP and 1 − LaECE on X ∈ DID, which we de-
fine as the In-Distribution Quality (IDQ). Similarly, for (iii)
we compute the IDQ for X ∈ T (DID), denoted by IDQT,
but with the principal difference that the detector is flexible
to accept or reject severe corruptions (C5) as discussed in
Sec. 3. Considering that all of these features are crucial in
a safety-critical application, a lack of performance in one
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Table 5. Effect of post hoc calibration on LaECE and LRP (in %). ✗: Uncalibrated, HB: Histogram binning, IR: Isotonic Regresssion, LR:
Linear Regression. ATSS, combining localisation and classification confidences using multiplication as in our LaECE (Eq. (4)), performs
the best on both datasets before/after calibration. Aligned with [47], uncalibrated F-RCNN using cross-entropy loss performs the worst.

Dataset SAOD-Gen SAOD-AV

Detector F-RCNN RS-RCNN ATSS D-DETR F-RCNN ATSS
Calibrator ✗ LR HB IR ✗ LR HB IR ✗ LR HB IR ✗ LR HB IR ✗ LR HB IR ✗ LR HB IR

LaECE 43.3 17.7 18.6 16.9 32.0 17.4 19.6 17.2 15.7 16.8 18.7 16.7 15.9 15.7 17.7 15.9 26.5 9.8 10.2 10.2 16.8 9.0 9.7 9.7
LRP 74.7 74.7 74.7 74.7 73.6 73.6 73.6 73.6 74.0 74.0 74.1 74.0 71.9 71.9 71.9 71.9 73.5 73.5 73.5 73.5 70.6 70.6 70.6 70.6

Table 6. Evaluating SAODETs. With higher BA and IDQs, SA-
D-DETR achieves the best DAQ on SAOD-Gen. For SAOD-AV
datasets, SA-ATSS outperforms SA-F-RCNN thanks to its higher
IDQs. Bold: SAODET achieves the best, values are in %.

Self-aware
DAQ↑

DOOD DID T (DID) DVal

Detector BA↑ IDQ↑ LaECE↓ LRP↓ IDQ↑ LaECE↓ LRP↓ LRP↓ AP↑

G
en

SA-F-RCNN 39.7 87.7 38.5 17.3 74.9 26.2 18.1 84.4 59.5 39.9
SA-RS-RCNN 41.2 88.9 39.7 17.1 73.9 27.5 17.8 83.5 58.1 42.0

SA-ATSS 41.4 87.8 39.7 16.6 74.0 27.8 18.2 83.2 58.5 42.8
SA-D-DETR 43.5 88.9 41.7 16.4 72.3 29.6 17.9 81.9 55.9 44.3

AV

SA-F-RCNN 43.0 91.0 41.5 9.5 73.1 28.8 7.2 83.0 54.3 55.0
SA-ATSS 44.7 85.8 43.5 8.8 71.5 30.8 6.8 81.5 53.2 56.9

Table 7. Ablation study by removing: LRP-Optimal threshold-
ing (Sec. 5.2) for v̄ = 0.5; LR calibration (Sec. 5.3) for uncali-
brated model; and image-level threshold ū (Sec. 4) for the thresh-
old corresponding to TPR = 0.95.

v̄ LR ū DAQ↑ BA↑ LaECE↓ LRP↓ LaECET↓ LRPT↓

36.0 83.2 42.7 76.2 44.1 84.7
✓ 36.5 83.2 41.7 74.8 43.9 84.7
✓ ✓ 39.1 83.2 17.2 74.8 18.1 84.7
✓ ✓ ✓ 39.7 87.7 17.3 74.9 18.1 84.4

them needs to be heavily penalized. To do so, we introduce
the Detection Awareness Quality (DAQ), a unified perfor-
mance measure to evaluate SAODETs, constructed as the
the harmonic mean of BA, IDQ and IDQT. The resulting
DAQ is a higher-better measure with a range of [0, 1].

Main Results Here we discuss how our SAODETs per-
form in terms of the aforementioned metrics. In terms of our
hypotheses, the first evaluation we wish observe is the effec-
tiveness of our metrics. Specifically, we observe in Tab. 6
that a lower LAECE and LRP lead to a higher IDQ; and
that a higher BA, IDQ and IDQT lead to a higher DAQ, in-
dicating that the constructions of these metrics is appropri-
ate. To justify that they are reasonable, we observe that typi-
cally more complex and better performing detectors (DETR
and ATSS) outperform the simpler F-RCNN, indicating that
these metrics reflect the quality of the object detectors.

In terms of observing the performance of these self-
aware variants, we can see that while recent state-of-the-art
detectors perform very well in terms of LRP and AP on
DVal, their performance drops significantly as we expose
them to our DID and T (DID) which involves domain shift,
corruptions and OOD. We would also like to note that the
best DAQ corresponding to the best performing model SA-

D-DETR still obtains a low score of 43.5% on the SAOD-
Gen dataset. As this performance does not seem to be con-
vincing, extra care should be taken before these models are
deployed in safety-critical applications. Consequently, our
study shows that a significant amount of attention needs to
be provided in building self-aware object detectors and ef-
fort to reduce the performance gap needs to be undertaken.

Ablation Analyses To test which components of the
SAODET contribute the most to their improvement, we
perform a simple experiment using SA-F-RCNN (SAOD-
Gen). In this experiment, we systematically remove the
LRP-optimal thresholds; LR calibration; and pseudo-set ap-
proach and replace these features, with a detection-score
threshold of 0.5; no calibration; and a threshold correspond-
ing to a TPR of 0.95 respectively. We can see in Tab. 7 that
as hypothesized, LRP-optimal thresholding improves accu-
racy, LR yields notable gain in LAECE and using pseudo-
sets results in a gain for OOD detection. In App. E, we
further conduct additional experiments to (i) investigate the
effect of ū and v̄ on reported metrics and (ii) how common
improvement strategies for object detectors affect DAQ.

Evaluating Individual Robustness Aspects We finally
note that our framework provides the necessary tools to
evaluate a detector in terms of reliability of uncertainties,
calibration and domain shift. Thereby enabling the re-
searchers to benchmark either a SAODET using our DAQ
measure or one of its individual components. Specifically,
(i) uncertainties can be evaluated on DID ∪ DOOD using
AUROC or BA (Tab. 2); (ii) calibration can be evalu-
ated on DID ∪ T (DID) using LAECE (Tab. 5); and (iii)
DID ∪ T (DID) can be used to test detectors developed for
single domain generalization [68, 72].

7. Conclusive Remarks
In this paper, we developed the SAOD task, which re-

quires detectors to obtain reliable uncertainties; yield cali-
brated confidences; and be robust to domain shift. We cu-
rated large-scale datasets and introduced novel metrics to
evaluate detectors on the SAOD task. Also, we proposed
a metric (LAECE) to quantify the calibration of object de-
tectors which respects both classification and localisation
quality, addressing a critical shortcoming in the literature.
We hope that this work inspires researchers to build more
reliable object detectors for safety-critical applications.
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