
Detection of out-of-distribution samples using binary neuron activation patterns

Bartłomiej Olber1,2, Krystian Radlak1,2, Adam Popowicz2,
Michal Szczepankiewicz3, Krystian Chachuła1

1Warsaw University of Technology 2Silesian University of Technology 3NVIDIA
{bartlomiej.olber.stud, krystian.radlak, krystian.chachula}@pw.edu.pl

adam.popowicz@polsl.pl msz@nvidia.com

Abstract

Deep neural networks (DNN) have outstanding perfor-
mance in various applications. Despite numerous efforts of
the research community, out-of-distribution (OOD) samples
remain a significant limitation of DNN classifiers. The abil-
ity to identify previously unseen inputs as novel is crucial
in safety-critical applications such as self-driving cars, un-
manned aerial vehicles, and robots. Existing approaches to
detect OOD samples treat a DNN as a black box and evalu-
ate the confidence score of the output predictions. Unfortu-
nately, this method frequently fails, because DNNs are not
trained to reduce their confidence for OOD inputs. In this
work, we introduce a novel method for OOD detection. Our
method is motivated by theoretical analysis of neuron ac-
tivation patterns (NAP) in ReLU-based architectures. The
proposed method does not introduce a high computational
overhead due to the binary representation of the activation
patterns extracted from convolutional layers. The extensive
empirical evaluation proves its high performance on vari-
ous DNN architectures and seven image datasets.

1. Introduction
Even the most efficient deep neural network (DNN) ar-

chitectures, designed for image recognition tasks, cannot
ensure that they will not malfunction during their opera-
tion. Thus, deployment of those safety-critical applications,
such as in self-driving cars, unmanned aerial vehicles, and
robots, is still an unresolved problem [9, 35]. The use of
safety mechanisms, such as runtime monitors, is a viable
strategy to keep the system in a safe state despite of DNN
failure. The design and development of such monitors in the
context of safety-critical applications is a significant chal-
lenge [10,48]. Therefore, it is required to define robust met-
rics that can allow to detect and control of DNN’s failures
at runtime and mitigate potential hazards caused by their
performance limitations.

DNNs are trained over a set of inputs sampled from real-

world scenarios. However, due to the large variation of the
input images, the training dataset cannot contain all possi-
ble variants of input samples. Although it is expected that
the trained models can perform well on unknown inputs, es-
pecially those that are similar to the training data, it cannot
be guaranteed that they will perform well for OOD noisy
samples that present the objects not considered before [15].
While DNN training techniques should allow a network to
achieve high generalization capabilities, it is also crucial to
ensure the dependability of safety-critical systems to train
a model so that any outlying input will result in low confi-
dence of the network’s decision.

The fundamental challenge to ensure the safety of DNNs
is to estimate if a given input sample comes from the same
data distribution for which a DNN was trained. This is very
hard to estimate because the network usually extrapolates
its decision while receiving new image samples. Another
cause of the incorrect recognition of outlying samples can
be the distributional shift of input data over time (e.g. the
time-dependent variations of an object’s appearance) [19].

In the vast literature, this problem has been formulated
as a problem of detecting whether input data are from an
in-distribution (ID) or out-of-distribution (OOD). This has
been studied for many years and discussed in the follow-
ing aspects: sample rejection, anomaly detection, open-set
samples recognition, familiar vs unfamiliar samples or un-
certainty estimation [2, 24, 38].

In this work, we present a novel algorithm for the identi-
fication of OOD image samples. In our method, we extract
the binary neuron activation patterns on various hidden lay-
ers of a DNN and compare them with the ones collected
in the training procedure. By measuring the Hamming dis-
tances between extracted binary patterns of any test sample
and the patterns extracted during the training, we can iden-
tify OOD samples.

The main contributions of this paper are the following:

• We introduce NAP - an algorithm that extracts bi-
nary patterns from both fully connected and convolu-
tional layers and estimates a classifier’s predictive un-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3378



certainty based on the patterns. The proposed method
outperforms state-of-the-art OOD detection methods.
Moreover, the algorithm is straightforward, making it
simple to incorporate into existing DNN architectures.

• We provide an extended empirical evaluation compar-
ing the impact of the activation patterns collected from
different layers of DNN which may inspire future re-
search in this area.

• We publish the largest evaluation framework for OOD
detection. This framework contains 17 OOD methods
(including the proposed NAP-based method) that can
be directly tested on two state-of-the-art DNN archi-
tectures and 7 datasets allowing for simple extension
of the framework for new methods, architectures, and
datasets.1

2. Related work
In the literature, a plethora of algorithms designed for

the detection of OOD samples for DNNs have been pro-
posed [50]. One of the most promising groups of meth-
ods is based on a hidden layers’ activation analysis. This
type of method has found its use in specialized problem do-
mains such as cybersecurity malware classification [7], au-
tonomous driving safety monitors [4, 17, 22] or in explain-
ing patient medical diagnosis decision [46]. Also, from a
domain-agnostic point of view, there are several topics into
which the activation analysis can be incorporated.

In this group, some methods primarily derive OOD
scores based on an analysis of activations. Authors in [46]
focus on explainable AI. They derive binary patterns from
the activation layers of a DNN, then compute the Hamming
distance to find the most perceptually similar and dissimi-
lar known ground-truth images which are then used to ex-
plain the decision made by the DNN model. The authors
of [39] expressed a need for detecting rare subclasses in
datasets because they might reduce a DNN’s performance.
They proposed a method based on a simple statistical anal-
ysis of penultimate layer activations dealing with the issue.
In the works [22], [17], [4], the activation outputs of the
hidden layers are processed to build a safety monitor. The
paper [22] shows the utilization of the k-means clustering
and abstraction boxes. In [17] the authors build a GMM
for every neuron independently and establish safety inter-
vals for every neuron based on the mean and the standard
deviation of the previously built models. Moreover, they
use a voting system to improve the decision’s correctness.
The method given in [4] makes use of the binary activa-
tion patterns and the Hamming distance for OOD sample
detection. However, the presented approach has significant
efficiency issues that make the approach unscalable to any

1https://github.com/safednn-group/nap-ood

modern DNN architecture. In [34], the authors proved that
activation function choice itself is of great importance for
OOD uncertainty calibration methods. They propose the
Matérn activation function which improves the Monte Carlo
Dropout [11] uncertainty estimation.

There are also uncertainty estimation methods that oper-
ate strictly on internal activations. The work [33] brought
up an interesting technique of uncertainty measurement that
leverages aggregated, statistical properties of hidden-layers
activations that capture cross-class discrimination capabil-
ity. The approach given in [40] is based on the density of
latent representations. Applying reconstruction loss to the
density yields a high-quality uncertainty estimation that en-
ables OOD detection. The authors, like in the papers [41]
and [37], conclude that there are benefits from using the out-
put of various hidden layers (shallow, medium, deep, etc.)
instead of focusing only on the last layer of a DNN.

In the paper describing the ODIN method [31], authors
proved both empirically and theoretically that temperature
rescaling [13] and input perturbation [12] can provide well-
calibrated softmax scores on which the OOD detector can
be constituted. In the work [30], authors measure the
probability density of a test sample on feature spaces and
take Mahalanobis distance with respect to the closest class-
conditional distribution. The method achieves outstanding
OOD detection efficiency. The previous work of [21] shows
the Outlier Exposure technique which tackles a widely en-
countered problem of classifier overconfidence on OOD
samples. They propose to incorporate an OOD penalty into
a loss function during the training phase of a DNN. Also,
the algorithms based on Helmholtz energy score [28] have
recently become very popular, with the EnergyOOD [32]
and its upgraded versions - ReAct [47] and ASH [8] estab-
lishing the state-of-the-art performance level.

A completely different approach is introduced in the
work of [23] where the authors focus on a gradient space
as adequate for the OOD detection task. State-of-the-art
anomaly detection methods [43], [42] adapt pretrained fea-
tures with a center loss and combine it with contrastive
learning. Although the focus was put on one-class classifi-
cation, the introduced methods are effective OOD detectors
considering a known distribution as the normal class and a
semantic-shifted distribution as the OOD samples.

3. Binary Neuron Activation Patterns
In comparison to simple linear classifiers, DNNs have a

much higher expressive power arising from non-linear ac-
tivation functions between linear layers. One of the most
significant is the ReLU non-linearity introduced in [36].
ReLU-based neural networks have led to state-of-the-art re-
sults in many fields, but the computational structure of the
ReLU activation is straightforward. ReLU non-linearity has
only two states: ”inactive” and ”activated”. The expressiv-

3379



ity of a fully trained network depends on the ability to select
appropriate activations for different inputs. It was theoreti-
cally proven in [14] that a DNN uses much fewer activation
patterns during training than theoretically possible. More-
over, in [16], the authors presented that the non-linear struc-
ture converges bottom-up (lower layers stabilize first) dur-
ing training in ReLU-based architectures and shows stable
distribution over pattern set changes.

These findings naturally inspire a simple, yet surpris-
ingly effective, method in which the comparison of NAPs
allows prediction uncertainty to be measured in the infer-
ence stage. In this approach, each layer l in a DNN gen-
erates an activation vector Al based on the processed in-
put data. We define the activation pattern Al on layer l of
DNN with a vector of trainable parameters θ for an input
xi, i = 1, . . . , n as an assignment of a sign to each neuron
zj , j = 1, . . . ,m

Al(xi, θ) := {azj , j = 1, . . . ,m} ∈ {0, 1},where (1)

azj =

{
1, if zj(xi, θ) >= 0.

0, otherwise.
(2)

Each unit of the activation vector can be used as a fea-
ture to represent the part of the DNN that was activated by
a certain sample from the training dataset. We collect those
binary patterns Al(xi, θ) for all samples during the train-
ing procedure and we compare the binary pattern extracted
from a test sample in order to decide whether a tested sam-
ple is OOD or not. Fig 1 shows a simplified diagram sum-
marizing our approach. In the presented chart, the red color
indicates NAPs extraction for the training dataset, while the
blue refers to the testing process of whether a new sample
comes from the known distribution.

While extraction of NAP for a feedforward network and
a fully connected layer is straightforward, the method of
NAP extraction for a convolutional layer is presented in sec-
tion 3.2.

For ReLU-based architectures, it can be noticed that for
each neuron zj of every layer l, the gradients applied to its
weights are null if the neuron is not activated.2 This prop-
erty proves that simplified binary patterns may be a suffi-
cient representation of ID samples and we do not need to
operate on network activation values.

3.1. Detecting OOD samples using NAP

The main expectation is that a trained model should be
more certain when predicting the output for a sample simi-
lar to the ones seen during the training phase. Therefore, the
similarity measured by the distance between the test sample
and training samples should be directly connected with the
model’s uncertainty. In the proposed approach, we com-
pute the smallest Hamming distance between the NAP of

2The proof is provided in the supplementary material

a given test sample and samples extracted from the train-
ing set. This distance for test sample v can be defined as
follows:

dmin(v, θ) = min{d(v, u),∀u ∈ Al
s(θ)}, (3)

where d(v, u) denotes the Hamming distance between bi-
nary vectors v and u (the Hamming distance between two
binary patterns is equal to the number of different bits be-
tween them); Al

s(θ) = {Al(xi, θ), i = 1, . . . , n} is the set
of all NAP extracted for the training database for a selected
layer l.

Computing the Hamming distance for a test sample re-
quires creating a set of binary activation patterns for all
known training images. Depending on the factors, such as
the number and dimensionality of activation patterns, there
are two efficient ways to compute the smallest distance. In
the first method, for every incoming pattern, the XOR oper-
ation is performed with all collected patterns in the training
stage. The example for which the XOR result has the lowest
number of positives is selected as the most similar sample.
Although this method requires computing and comparing
the results for every pattern from the training set, modern
libraries can parallelize simple XOR operations very well.
Still, the number of operations is rather large because a typ-
ical dataset contains tens or even hundreds of thousands of
samples, but it still can be efficiently calculated on a GPU.

In the second method, patterns from the training set need
to be stored in a data structure that is dedicated to quickly
solving the nearest neighbor search problem (e.g., the ball
tree or binary hashing-based approximate nearest neighbor
search methods [3]). These methods provide fast query
speed and drastically reduced storage, which allows us to
efficiently apply the proposed NAP method even for very
large training datasets. In this work, we used the first ap-
proach, which provides sufficient efficiency to implement a
NAP-based detector as a runtime monitor in real-time ap-
plications, which was proven in the Experiments section.

3.2. NAP extraction from convolutional layers

Convolutional layers are the backbone of most modern
DNN architectures utilized in computer vision tasks. They
forward multi-dimensional feature representations from one
layer to another until the features are eventually represented
by a one-dimensional vector. Extracting relevant activation
patterns out of a convolutional layer is more complex than
for fully connected layers. One of the main novelties in our
approach is that we are proposing how to extract the binary
activation patterns for convolutional layers in DNN. Simple
flattening of multi-dimensional layers would lead to NAPs
of an overwhelming length.

According to the best of our knowledge, it has not yet
been proposed how to extract binary activation patterns for
convolution layers. We realize that the presented method is

3380



6464 22
4

224

conv1

128128 11
2

conv2

256 256 256 56

conv3

512 512 512 28

conv4

512 512 512 14

conv5

1 40
96

fc6

1 40
96

fc7

1

fc8+ softm ax

K

Hamming distance

In-distribution
training samples

Out-of-distibution
test sample

. . .

threshold τA l(x1,θ)

A l(x2,θ)

A l(xn,θ)

As(θ)
l

Calculate 
Hamming 
distance

Neuron activation pattern 
extracted and compared

 

at inference phase

Neuron activation patterns
extracted for training data

Decide whether test 
sample is OOD or not

Yes

No

Figure 1. The idea of the proposed OOD detection method using binary neuron activation patterns.

only one of many possible ways to generate such patterns
and deeper investigation on this topic will be the subject of
future research work.

To combine the potential of hidden convolutional layers
but also to mitigate the problem of the high dimensionality
of data, we propose to perform adaptive pooling of all chan-
nels in a convolutional layer into a single value. We com-
press outputs from all channels in an extracted layer into
a vector by such a procedure. The proposed pooling with
a t-type aggregator of a convolutional layer X (H × W
elements, C channels) into a C-elements vector Y can be
expressed by the following formula:

poolt(X) → Y. (4)

In this research, we evaluated two types of pooling: av-
erage pooling and max pooling. In the performed experi-
ments, we proved that max pooling provides better results
for OOD detection, and therefore, we recommend it as the
default method for extraction of binary activation patterns
from convolutional layers. The intuition behind this type of
pooling is that we are extracting the strongest pattern from
each channel, which allows us to remove most of the non-
important values from each layer.

Next, the values received after pooling need to be con-
verted into a binary NAP. For this purpose, we propagate the
vector through a configurable, adaptive activation function
that binarizes the values using individual thresholds for each
layer. As a threshold, we use the p-percentile of values for
a given activation pattern. for each layer. As a threshold we
use the p-percentile of values in a given activation pattern.
This results in zeroing the elements of the vector that repre-

sents the least significantly activated channels. Practically,
this allows us to automatically choose the most important
subset of channels for every layer based on the activation
magnitude.

An example of extraction of a binary activation pattern
for the convolutional layer is depicted in Fig. 2. It can be
seen that the convolutional layers are first pooled for every
channel in a selected convolutional layer and then binarized.
The general formula for obtaining an activation pattern for
a network consisting of a total number of N channels in the
convolutional layers and M elements in the neural layers
region of a network can be expressed as follows:

Al(xi, p) = [α{poolt(V0), P
0
p }, ..., α{poolt(VN ), PN

p },
α{VN+1, P

N+1
p }, ..., α{VN+M , PN+M

p }],

α{x, p} =

{
1 x > p

0 x <= p,
(5)

where α is the binarization function, Vi is the i-th value in
the activation vector (before binarization), PN

p is the value
of p-percentile (within an assumed dataset) at N -th position
in the activation vector.

3.3. Uncertainty threshold estimation

In order to decide whether a new sample is an OOD or
not, it is required to define a decision criterion. In the pro-
posed NAP approach, we use the Hamming distance be-
tween a binary pattern extracted for a test sample and all bi-
nary patterns extracted from samples collected in the train-
ing dataset. If the Hamming distance to the nearest binary

3381



1

1

512

28

convolutional
layer

28 28

28

channel 1

28

28

channel 512

. . .

poolt poolt

1

1

binarization

. . .

512

binary activation pattern

Figure 2. Proposed approach for extraction of a binary activation
pattern from a convolutional layer.

pattern is higher than the assumed threshold τ , then a sam-
ple is classified as an OOD.

Let the corresponding sets of distances be called Din and
Dout, for ID and OOD samples, respectively. The distance
di for i-th image sample is calculated to the nearest neigh-
bor in an ID set as follows:

di =

{
min
j

(HD(A(xi, θ), A(xj , θ))) : j ∈ Ain, i ̸= j

}
,

(6)
where i and j are sample numbers, Al(xi, θ) is the activa-
tion pattern of i-th sample, Al

s(θ) is the set of all samples in
an ID set, and HD(a, b) is the Hamming distance between
samples a and b.

The separation threshold was estimated using an exhaus-
tive search approach in which the decision threshold τ is es-
tablished as a value that minimizes the intra-class variance
between the Hamming distances distributions calculated be-
tween NAP for training and a validation OOD dataset.

3.4. Method auto-configuration

The proposed approach needs to be tuned depending on
the following parameters: (1) layers of a neural network,
(2) p-percentile values, or (3) type of pooling t. To distin-
guish most precisely the ID pattern from the OOD pattern
for a wide range of DNN models and various dataset distri-
butions. Finding an optimal combination of these three pa-
rameters is a model-wise or even a layer-wise problem. Our
strategy is to divide the auto-configuration problem into the
following two sub-problems: (1) layer-wise optimization of
parameters p and t, (2) model-wise specification of most
relevant layers. The optimization process comes down to

selecting the described parameters based on the OOD de-
tection results obtained using the validation set Dv .

First, we grid-search the best p and t for every activa-
tion layer in a model. Each layer is analyzed independently
for its OOD detection efficiency in this step. In our initial
experiments, we noticed that there is no universally opti-
mal layer to be distinguished. Depending on network ar-
chitecture and training dataset some layers perform better
than others. Therefore, we extract NAPs from the k layers
that yield the highest OOD detection accuracy on valida-
tion datasets, where k is an arbitrary odd number. Then, we
create a majority voting classifier based on the Hamming
distances calculated for the k layers. In our experiments, k
is another parameter that needs to be tuned for the proposed
NAP-based OOD detector.
Optimization criteria In order to find optimal hyperpa-
rameters of the NAP method, it is required to define the
proper optimization criteria. In this work, we analyzed
two of them: (1) OOD validation accuracy and (2) dis-
tance threshold τ (lower is better). Whereas the justifica-
tion for the accuracy criterion is obvious, a justification for
the threshold criterion might not be. We follow the intuition
that a low threshold is more robust to a possible shift be-
tween validation and test distributions than a high threshold.
The third hybrid criterion is the combination of them both,
which tries to get a high validation accuracy while main-
taining a reasonably low τ . In our experiments, we apply
these criteria in the following scheme:

1. For each layer of a network, choose the best p parame-
ter by the hybrid criterion (in this step, the criterion is
constant).

2. Choose the optimal pooling type t for each layer and
its p parameter chosen in the previous step (here, we
experiment with different criteria).

3. Choose k layers that yield the best validation accuracy
for parameters chosen in previous steps (criterion is
constant).

Attained p, t, τ , and k parameters form together a NAP
configuration. Note that the p and τ parameters are tuned
for each layer, but t is tuned only for convolutional layers.

3.5. Combining distances of multiple layers

Assuming that the algorithm has established the configu-
ration and we can obtain the Hamming distances for binary
patterns from numerous layers, these patterns can be com-
bined into an ensemble decision-making algorithm that will
classify a test sample as an OOD. In this work, we com-
pare two decision criteria. The first decision algorithm (vote
scheme 1) combines the Hamming distances into a single

3382



Figure 3. Fallacy of the two datasets OOD evaluation. The es-
tablished threshold between source distribution Ds and validation
distribution Dv could perform poorly if unknown test distribution
Dt differs from Dv .

uncertainty score according to the following definition:

score =
∑
l∈L

dscaledl − τscaledl (7)

where dscaledl is a scaled nearest Hamming distance ob-
tained from the l-th layer; τscaledl is a scaled Hamming dis-
tance threshold established for the l-th layer; L is a set of
chosen layers to monitor.

The second decision algorithm is a simple majority vot-
ing classifier (vote scheme 2), in which each layer votes
independently whether a sample is OOD or not. The final
decision is a mode of k votes. Which imposes the k param-
eter to be an odd number.

4. Experiments
OOD evaluation protocol We evaluated the proposed bi-
nary NAP for the OOD detection task following the method-
ology proposed in the OD-test framework [44]. The as-
sumption that an OOD detector challenged with real-world
tasks would be exposed to samples belonging only to the
two distributions (ID and OOD) can be tricky. An OOD de-
tection method might not be robust enough to be engaged
in a safety-critical environment unless one can provide a
dataset that covers all possible semantic spaces. Shafaei et
al. [44] introduced an OOD test, which is a three- (instead
of two-) dataset evaluation methodology for the purpose of
assessing OOD methods more reliably. It was proven that
the results obtained with the three-set evaluation protocol
have higher confidence and are more reliable.

In this evaluation procedure, the data are split into three
sets: source training Ds, validation Dv , and test Dt subsets.
The original, ID images are included only in Ds, whereas
the OOD samples are divided into two distinctively differ-
ent groups: Dv and Dt. The datasets are presented in Fig.
3. The reliable OOD detector should be trained to discrim-
inate Ds from Dv , but its generalization capability to iden-
tify OOD should be performed on the Dt against Ds differ-
entiation task.

Models and datasets In our evaluation, we used pre-trained
VGG-16 [45] and ResNET-50 [18] and seven datasets
(MNIST [29], FashionMNIST [49], NotMNIST, CIFAR10,
CIFAR100 [26], STL10 [5] and TinyImagenet) for the eval-
uation. Each method under the OOD evaluation protocol is
tested over the same set of 308 experiments consisting of
all compatible triplets of datasets. As Ds, Dv , and Dt, we
use all possible combinations from the above set of seven
datasets.
Metrics Aside from accuracy (only this metric was calcu-
lated in the original OD-test framework), we used the area
under the receiver operating characteristic curve (AUROC)
as a main evaluation metric since it is the appropriate metric
for two-class discrimination tasks with balanced data.
Methods We compared our methods with several state-
of-the-art OOD detection methods to create the largest
OOD evaluation framework. In our comparison, we
used the methods implemented in the OD-test framework
[44]: OpenMax [1], ScoreSVM [6], LogisticSVM, Bin-
Class, PbThreshold [20], ODIN [31], ReconstThreshold,
K-NNSVM, K-MNNSVM, K-BNNSVM, K-VNNSVM [25]
(where K denotes the number of nearest neighbors), MC-
Dropout [11] and DeepEnsemble [27]. Additionally, we in-
tegrated recently proposed state-of-the-art OOD detection
methods: Mahalanobis [30], OutlierExposure [21], Energy
[32], ReAct [47], GradNorm [23], MeanShiftedAD [43] and
ASH-B [8]. For all methods, we used the parameter config-
uration provided in official papers’ implementations.
Adaptive configuration strategies In the proposed
method, we evaluated several auto-configuration strategies
and ways to score distances out of multiple layers. In Tab.
1, we present the final results for hyperparameters optimiza-
tion for the analyzed network architectures using the accu-
racy metric. The hyperparameters included in the ablation
study are as follows: the choice of the optimization crite-
rion, number of voting layers, and OOD decision-making
algorithm for the multiple voting layers. In the superscript
brackets, we annotated the best configurations for each net-
work architecture as NAP1 and NAP2, respectively. These
configurations are used in comparison with state-of-the-art
OOD detectors in the next subsection. Additionally, more
results documenting the impact of NAP hyperparameters
on OOD detection performance are presented in the sup-
plementary materials.
Time efficiency All the experiments were performed in Py-
torch v1.8 environment and Python v3.9 client, running on
a PC with Intel R CoreTM i7-3930K CPU 3.20 GHz and
GeForce GTX 1080 Ti. All methods were integrated into
the same framework and computation times were compared
on the same setup. A summary of time efficiency for evalu-
ated methods is presented in Tab. 2. The execution time
of the NAP method is comparable to other state-of-the-
art methods such as ODIN (10 and 20 ms for VGG and

3383



Table 1. OD-test performance for selected hyperparameters. The
bold result denotes the setups included in the OD-test comparison.

Model Criterion #k - nb of layers Vote scheme 1 Vote scheme 2

Accuracy

VGG

valid. acc.

3 81.39% 79.57%
5 81.94% 80.92%
7 82.01% 82.35%
9 82.23%[NAP1] 83.26%[NAP2]

threshold

3 79.74% 80.21%
5 79.55% 81.09%
7 79.87% 81.72%
9 79.91% 82.18%

ResNET

valid. acc.

3 79.05% 77.75%
5 79.03% 77.46%
7 79.15% 77.11%
9 79.15%[NAP1] 77.50%

threshold

3 79.38% 79.54%
5 79.82%[NAP2] 78.41%
7 78.71% 76.72%
9 77.95% 76.42%

Table 2. Comparison of the mean processing time per single image
for state-of-the-art OOD detectors. The results of our method are
highlighted in bold.

Method Time [s]
VGG ResNet

ASH-B 0.004 0.009
BinClass 0.002 0.007
DeepEns. 0.012 0.038
Energy 0.003 0.008
GradNorm 0.010 0.027
Log.SVM 0.003 0.006
MC-Dropout 0.003 0.007
Mahalanobis 0.217 0.086
MeanShiftedAD 0.231 0.314
ODIN 0.010 0.028
OpenMax 0.035 0.040
OutlierExposure 0.003 0.008
PbThresh 0.002 0.007
ReAct 0.003 0.008
ScoreSVM 0.002 0.006
Ours (NAP) 0.008 0.015

ResNET architectures) and significantly faster than the most
efficient Mahalanobis method, allowing it to be used in real-
time applications.
Comparison with state-of-the-art OOD detection Fi-
nally, we compared the best configurations established in
the previous experiment with competitive methods pro-
posed in the literature for OOD detection. The obtained
results are presented in Fig. 4a using the AUROC metric
and in Fig. 4b for the accuracy metric. Each method in
the presented comparison was tested over the same set of
308 experiments and then averaged, where all datasets were
respectively used as train Ds, validation Dv , and test Dt.

The performed evaluation shows that for both consid-

ered metrics, the proposed binary NAP outperforms state-
of-the-art OOD detection methods by a considerable mar-
gin. With an appropriate choice of hyperparameters, the
NAP-based method can achieve a 3.4% higher AUROC
score than the second-best Mahalanobis on VGG architec-
ture; 0.1 % higher than the second-best ODIN on ResNET;
1.2% higher accuracy on VGG than the second-best Maha-
lanobis; 1.1% higher accuracy on ResNET than the second-
best Mahalanobis. This method is tightly dependent not
only on the architecture of a classifier but also on how and
how well the underlying classifier is trained. The hyper-
parameters are universally set for all architectures and Ds

training datasets for the purpose of fair evaluation. But they
could be further optimized for each Ds vs Dv task. We
suggest one of the following strategies as by default: (1) No
of votes - 5; auto-configuration criterion - threshold. The
strategy achieves the best AUROC value for both the ar-
chitectures and the best and second-best accuracy. (2) No
of votes - 9; auto-configuration criterion - validation accu-
racy. This yields the second-best AUROC value on ResNET
(slightly lower than ODIN), but prevails in every other case,
performing especially well on VGG.

Additionally, we evaluated the performance of all meth-
ods and aggregated the results per dataset. These results are
presented in Tab. 3. While the proposed NAP variants out-
perform state-of-the-art methods when the results are aver-
aged for all datasets, we can observe that NAP may achieve
slightly worse results for specific datasets.

5. Conclusions
In this work, we introduced a novel method for the de-

tection OOD data for DNNs designed for image recognition
problems. Extensive experiments allow the optimal con-
figuration to be found for NAP-based convolutional neu-
ral networks that can efficiently identify the OOD samples.
The proposed approach significantly outperforms the results
achieved by state-of-the-art methods. Moreover, the pro-
posed approach works on binary vectors and is character-
ized by very low computational complexity due to the bi-
nary representation of the extracted features. We believe
that this work will inspire further examination of the theo-
retical properties of NAPs in the context of OOD detection.

Acknowledgements
This work was supported by the National Cen-
tre for Research and Development under the project
LIDER/51/0221/L-11/19/NCBR/2020.

3384



Op
en

M
ax

/R
es

4-
VN

NS
VM

8-
VN

NS
VM

1-
VN

NS
VM

2-
VN

NS
VM

Gr
ad

No
rm

/R
es

Op
en

M
ax

/V
GG

8-
BN

NS
VM

8-
M

NN
SV

M
4-

M
NN

SV
M

4-
BN

NS
VM

2-
M

NN
SV

M
2-

BN
NS

VM
1-

M
NN

SV
M

1-
BN

NS
VM

AS
HB

/V
GG

De
ep

En
s./

Re
s

AE
Th

re
./B

CE
Bi

nC
la

ss
/R

es
Pb

Th
re

sh
/R

es
Pb

Th
re

sh
/V

GG
Lo

g.
SV

M
/R

es
Bi

nC
la

ss
/V

GG
AE

Th
re

./M
SE

De
ep

En
s./

VG
G

Ou
tli

er
Ex

po
su

re
/R

es
8-

NN
SV

M
4-

NN
SV

M
Gr

ad
No

rm
/V

GG
2-

NN
SV

M
1-

NN
SV

M
M

C-
Dr

op
ou

t
M

ea
nS

hi
fte

dA
D/

VG
G

AS
HB

/R
es

Sc
or

eS
VM

/R
es

Re
Ac

t/V
GG

En
er

gy
/V

GG
En

er
gy

/R
es

Sc
or

eS
VM

/V
GG

Lo
g.

SV
M

/V
GG

Ou
tli

er
Ex

po
su

re
/V

GG
M

ea
nS

hi
fte

dA
D/

Re
s

M
ah

al
an

ob
is/

Re
s

Re
Ac

t/R
es

N
AP

_1
/R

es
OD

IN
/R

es
N

AP
_2

/R
es

OD
IN

/V
GG

M
ah

al
an

ob
is/

VG
G

N
AP

_1
/V

G
G

0.0

0.2

0.4

0.6

0.8

0.
60

54
0.

61
49

0.
61

55
0.

61
65

0.
61

75
0.

63
11

0.
64

00
0.

66
29

0.
66

41
0.

66
59

0.
66

62
0.

66
71

0.
66

73
0.

66
78

0.
66

80
0.

69
35

0.
72

14
0.

73
15

0.
74

51
0.

76
15

0.
76

15
0.

77
10

0.
77

21
0.

77
39

0.
77

44
0.

77
74

0.
78

65
0.

78
86

0.
79

11
0.

79
47

0.
79

56
0.

79
79

0.
79

95
0.

80
21

0.
80

85
0.

81
20

0.
81

48
0.

82
48

0.
83

35
0.

83
68

0.
84

20
0.

84
27

0.
84

59
0.

84
62

0.
85

27
0.

85
61

0.
85

67
0.

86
50

0.
88

36
0.

91
37

(a) AUROC

Op
en

M
ax

/R
es

Gr
ad

No
rm

/R
es

Op
en

M
ax

/V
GG

1-
VN

NS
VM

AS
HB

/V
GG

De
ep

En
s./

Re
s

8-
VN

NS
VM

4-
VN

NS
VM

2-
VN

NS
VM

Ou
tli

er
Ex

po
su

re
/R

es
Bi

nC
la

ss
/V

GG
Lo

g.
SV

M
/R

es
Bi

nC
la

ss
/R

es
Sc

or
eS

VM
/R

es
Pb

Th
re

sh
/R

es
AE

Th
re

./M
SE

1-
M

NN
SV

M
4-

M
NN

SV
M

8-
M

NN
SV

M
2-

M
NN

SV
M

4-
BN

NS
VM

8-
BN

NS
VM

1-
BN

NS
VM

2-
BN

NS
VM

Re
Ac

t/V
GG

De
ep

En
s./

VG
G

8-
NN

SV
M

En
er

gy
/V

GG
4-

NN
SV

M
Pb

Th
re

sh
/V

GG
AS

HB
/R

es
En

er
gy

/R
es

1-
NN

SV
M

M
C-

Dr
op

ou
t

2-
NN

SV
M

Gr
ad

No
rm

/V
GG

M
ea

nS
hi

fte
dA

D/
VG

G
Ou

tli
er

Ex
po

su
re

/V
GG

AE
Th

re
./B

CE
Lo

g.
SV

M
/V

GG
Re

Ac
t/R

es
Sc

or
eS

VM
/V

GG
OD

IN
/R

es
M

ea
nS

hi
fte

dA
D/

Re
s

OD
IN

/V
GG

M
ah

al
an

ob
is/

Re
s

N
AP

_1
/R

es
N

AP
_2

/R
es

N
AP

_1
/V

G
G

M
ah

al
an

ob
is/

VG
G

N
AP

_2
/V

G
G

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.
58

36
0.

59
40

0.
62

39
0.

64
66

0.
65

55
0.

65
85

0.
65

97
0.

66
04

0.
66

09
0.

67
53

0.
68

46
0.

69
13

0.
69

47
0.

69
71

0.
70

32
0.

70
52

0.
70

90
0.

70
94

0.
71

15
0.

71
22

0.
71

54
0.

71
64

0.
72

03
0.

72
09

0.
72

36
0.

72
57

0.
72

57
0.

72
61

0.
72

62
0.

72
72

0.
73

05
0.

73
18

0.
73

21
0.

73
29

0.
73

46
0.

74
33

0.
74

54
0.

74
54

0.
74

81
0.

74
81

0.
74

90
0.

77
26

0.
77

34
0.

77
56

0.
78

60
0.

78
92

0.
79

15
0.

79
82

0.
82

23
0.

82
29

0.
83

26

(b) Accuracy

Figure 4. Average evaluation results of the proposed NAP approach with various configurations with state-of-the-art OOD detection
methods over all datasets: (a) AUROC and (b) accuracy. The suffix /VGG or /Res indicates the network architecture.

Table 3. OD-test AUROC for every training dataset. The best results for all datasets and for each dataset are highlighted in bold. Note that
the NAP 2 version of our method is the majority voting system and the AUROC metric cannot be computed for it.

Model Method All MNIST FMNIST CIFAR10 CIFAR100 STL10 TImagenet All MNIST FMNIST CIFAR10 CIFAR100 STL10 TImagenet

AUROC Accuracy

VGG

ASH-B@90 0.6935 0.9801 0.9029 0.5341 0.4971 0.7122 0.4991 0.6555 0.9297 0.7807 0.5343 0.5048 0.6363 0.5116
BinClass 0.7721 0.9802 0.8485 0.7251 0.5944 0.7737 0.6989 0.6846 0.9281 0.6826 0.6604 0.5664 0.6631 0.5955
DeepEns. 0.7744 0.9878 0.8967 0.8410 0.6005 0.7774 0.5602 0.7257 0.9491 0.7992 0.7853 0.5594 0.6675 0.5935
Energy 0.8148 0.9882 0.9512 0.8634 0.7448 0.8664 0.4996 0.7261 0.9470 0.8348 0.70.16 0.6546 0.70.80 0.4996
GradNorm 0.7911 0.9801 0.8703 0.8398 0.6988 0.7086 0.6404 0.7433 0.9336 0.7963 0.7826 0.6459 0.6719 0.6211
Log.SVM 0.8368 0.9793 0.9177 0.8227 0.7289 0.8693 0.7070 0.7481 0.9087 0.8003 0.7378 0.6215 0.7622 0.6588
MC-Dropout 0.7979 0.9762 0.8635 0.8236 0.7205 0.7022 0.6837 0.7329 0.9285 0.7794 0.7520 0.6483 0.6228 0.6433
Mahalanobis 0.8836 0.9999 0.9863 0.8872 0.6816 0.9104 0.8434 0.8229 0.9390 0.9213 0.8296 0.6747 0.8343 0.7425
MeanShiftedAD 0.7995 0.9950 0.9666 0.8381 0.7700 0.7213 0.4961 0.7454 0.9745 0.8926 0.7473 0.6637 0.6832 0.4955
Ours (NAP 1) 0.9137 0.9996 0.9836 0.8359 0.7720 0.9520 0.9289 0.8223 0.9814 0.9125 0.7440 0.6768 0.8232 0.7761
Ours (NAP 2) N/A N/A N/A N/A N/A N/A N/A 0.8326 0.9901 0.9396 0.7401 0.6808 0.7954 0.8168
ODIN 0.8650 0.9808 0.8883 0.9152 0.7841 0.8913 0.7494 0.7860 0.9335 0.8047 0.8209 0.6861 0.7844 0.6945
OpenMax 0.6400 0.7249 0.5000 0.6395 0.6095 0.7638 0.6330 0.6239 0.6927 0.5000 0.5768 0.5857 0.7467 0.6604
OutlierExposure 0.8420 0.9361 0.9075 0.8466 0.7520 0.8360 0.7730 0.7454 0.9166 0.8020 0.7375 0.6471 0.7229 0.6383
PbThresh 0.7615 0.9371 0.7412 0.8245 0.7018 0.6936 0.6696 0.7272 0.9144 0.7311 0.7709 0.6426 0.6735 0.6281
ReAct 0.8120 0.9699 0.9556 0.8576 0.7423 0.8743 0.4988 0.7236 0.9299 0.8437 0.7008 0.6532 0.7043 0.4988
ScoreSVM 0.8335 0.9873 0.9697 0.8357 0.6608 0.8781 0.6810 0.7726 0.9408 0.8989 0.7348 0.5923 0.7702 0.6880

ResNet

ASH-B@90 0.8021 0.9499 0.8482 0.8638 0.7048 0.8455 0.6262 0.7305 0.9037 0.7727 0.7333 0.6297 0.7183 0.6226
BinClass 0.7451 0.9947 0.7613 0.6791 0.6376 0.7001 0.6698 0.6947 0.9027 0.6703 0.6523 0.5974 0.6607 0.6657
DeepEns. 0.7214 0.9544 0.8512 0.7791 0.5423 0.6562 0.5432 0.6585 0.8475 0.7604 0.6878 0.5328 0.5900 0.5225
Energy 0.8248 0.9762 0.9070 0.8940 0.6555 0.8238 0.7090 0.7318 0.9165 0.8095 0.7466 0.5722 0.7139 0.6311
GradNorm 0.6311 0.7946 0.4771 0.4379 0.7415 0.3733 0.8494 0.5940 0.6744 0.5021 0.4861 0.6719 0.4252 0.7346
Log.SVM 0.7710 0.9292 0.8404 0.7315 0.7176 0.7230 0.6621 0.6913 0.8531 0.7330 0.6357 0.5811 0.6352 0.6813
Mahalanobis 0.8459 0.9959 0.9805 0.8485 0.6537 0.7579 0.8175 0.7892 0.9383 0.9148 0.7724 0.6465 0.7491 0.6997
MeanShiftedAD 0.8427 0.9984 0.9733 0.9343 0.8161 0.6495 0.6588 0.7756 0.9739 0.9001 0.8447 0.7031 0.6268 0.5836
Ours (NAP 1) 0.8527 0.9998 0.9875 0.8482 0.6523 0.7847 0.8253 0.7915 0.9892 0.9294 0.7605 0.5798 0.7368 0.7314
Ours (NAP 2) 0.8567 0.9996 0.9874 0.8355 0.6614 0.8053 0.8328 0.7982 0.9875 0.9422 0.7557 0.5969 0.7397 0.7419
ODIN 0.8561 0.9247 0.8337 0.9231 0.7597 0.8886 0.8316 0.7734 0.8630 0.7519 0.8387 0.6720 0.7868 0.7474
OpenMax 0.6054 0.6755 0.5000 0.6388 0.5613 0.6271 0.6430 0.5836 0.6531 0.5000 0.6064 0.5413 0.5847 0.6218
OutlierExposure 0.7774 0.9172 0.8436 0.8228 0.6058 0.7510 0.7286 0.6753 0.8593 0.7067 0.6876 0.5510 0.6155 0.6197
PbThresh 0.7615 0.9170 0.8341 0.8453 0.5833 0.7540 0.6537 0.7032 0.8704 0.7652 0.7814 0.5264 0.6850 0.6054
ReAct 0.8462 0.9825 0.9230 0.8961 0.6821 0.9064 0.7141 0.7490 0.9296 0.8091 0.7516 0.5727 0.8164 0.6318
ScoreSVM 0.8085 0.9902 0.8041 0.7679 0.6883 0.6528 0.8982 0.6971 0.8962 0.7194 0.6367 0.60.01 0.5987 0.6916

—

1-NNSVM 0.7956 0.9975 0.9864 0.8226 0.7813 0.6683 0.4921 0.7321 0.9735 0.8879 0.6899 0.6490 0.6295 0.5265
1-BNNSVM 0.6680 0.9996 0.9984 0.4787 0.4920 0.4833 0.4623 0.7203 0.9919 0.9763 0.5686 0.5596 0.6174 0.5443
1-MNNSVM 0.6678 0.9995 0.9962 0.4743 0.4945 0.4824 0.4648 0.7090 0.9853 0.9577 0.5536 0.5519 0.5947 0.5430
1-VNNSVM 0.6165 0.9270 0.7904 0.4919 0.4916 0.4808 0.4519 0.6466 0.8679 0.7156 0.5751 0.5501 0.5947 0.5448
8-NNSVM 0.7865 0.9963 0.9845 0.8178 0.7499 0.6661 0.4818 0.7257 0.9721 0.8802 0.6948 0.6363 0.6049 0.5277
8-BNNSVM 0.6629 0.9997 0.9983 0.4702 0.4727 0.4821 0.4618 0.7164 0.9901 0.9723 0.5755 0.5344 0.6193 0.5472
8-MNNSVM 0.6641 0.9995 0.9965 0.4661 0.4839 0.4814 0.4609 0.7115 0.9831 0.9569 0.5601 0.5498 0.60.33 0.5505
8-VNNSVM 0.6155 0.9424 0.7860 0.4862 0.4820 0.4806 0.4495 0.6597 0.8790 0.70.64 0.6111 0.5682 0.6172 0.5534
AEThre./BCE 0.7315 1.0000 0.8846 0.6802 0.5434 0.6599 0.5898 0.7481 0.9982 0.8408 0.7423 0.5930 0.6598 0.6308
AEThre./MSE 0.7739 0.9999 0.9650 0.7828 0.7501 0.7251 0.4100 0.70.52 0.9296 0.8230 0.6538 0.6346 0.6222 0.5340

3385



References
[1] Abhijit Bendale and Terrance Boult. Towards open set

deep networks, 2015. 6

[2] Abhijit Bendale and Terrance E. Boult. Towards open
set deep networks. In 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
1563–1572, 2016. 1

[3] Yuan Cao, Heng Qi, Wenrui Zhou, Jien Kato, Keqiu
Li, Xiulong Liu, and Jie Gui. Binary hashing for ap-
proximate nearest neighbor search on big data: A sur-
vey. IEEE Access, 6:2039–2054, 2018. 3

[4] Chih-Hong Cheng, Georg Nührenberg, and Hirotoshi
Yasuoka. Runtime monitoring neuron activation pat-
terns, 2018. 2

[5] Adam Coates, Andrew Ng, and Honglak Lee. An
analysis of single-layer networks in unsupervised fea-
ture learning. Journal of Machine Learning Research
- Proceedings Track, 15:215–223, 01 2011. 6

[6] Corinna Cortes and Vladimir Naumovich Vapnik.
Support-vector networks. Machine Learning, 20:273–
297, 2004. 6

[7] Scott E. Coull and Christopher Gardner. Activation
analysis of a byte-based deep neural network for mal-
ware classification. CoRR, abs/1903.04717, 2019. 2

[8] Andrija Djurisic, Nebojsa Bozanic, Arjun Ashok, and
Rosanne Liu. Extremely simple activation shaping for
out-of-distribution detection. In The Eleventh Interna-
tional Conference on Learning Representations, ICLR
2023, 2023. 2, 6

[9] Fabio Falcini and Giuseppe Lami. Deep learning in
automotive: Challenges and opportunities. In Soft-
ware Process Improvement and Capability Determi-
nation, pages 279–288, 2017. 1

[10] Håkan Forsberg, Joakim Lindén, Johan Hjorth,
Torbjörn Månefjord, and Masoud Daneshtalab. Chal-
lenges in using neural networks in safety-critical ap-
plications. In 2020 AIAA/IEEE 39th Digital Avionics
Systems Conference (DASC), pages 1–7, 2020. 1

[11] Yarin Gal and Zoubin Ghahramani. Dropout as a
bayesian approximation: Representing model uncer-
tainty in deep learning, 2016. 2, 6

[12] Ian J. Goodfellow, Jonathon Shlens, and Christian
Szegedy. Explaining and harnessing adversarial ex-
amples, 2015. 2

[13] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Wein-
berger. On calibration of modern neural networks,
2017. 2

[14] Boris Hanin and David Rolnick. Deep ReLU Networks
Have Surprisingly Few Activation Patterns. 2019. 3

[15] Matan Haroush, Tzviel Frostig, Ruth Heller, and
Daniel Soudry. Statistical testing for efficient out of
distribution detection in deep neural networks. CoRR,
abs/2102.12967, 2021. 1

[16] D Hartmann, D Franzen, and S Brodehl. Studying
the evolution of neural activation patterns during train-
ing of feed-forward relu networks. Front. Artif. Intell,
4:642374, 2021. 3

[17] Vahid Hashemi, Jan Křetı́nský, Stefanie Mohr, and
Emmanouil Seferis. Gaussian-based runtime detec-
tion of out-of-distribution inputs for neural networks.
In Lu Feng and Dana Fisman, editors, Runtime Verifi-
cation, pages 254–264, 2021. 2

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition,
2015. 6

[19] Franz Hell, Gereon Hinz, Feng Liu, Sakshi Goyal,
Ke Pei, Tetiana Lytvynenko, Alois Knoll, and Chen
Yiqiang. Monitoring perception reliability in au-
tonomous driving: Distributional shift detection for
estimating the impact of input data on prediction accu-
racy. In Computer Science in Cars Symposium, CSCS
’21, 2021. 1

[20] Dan Hendrycks and Kevin Gimpel. A baseline for de-
tecting misclassified and out-of-distribution examples
in neural networks, 2018. 6

[21] Dan Hendrycks, Mantas Mazeika, and Thomas Diet-
terich. Deep anomaly detection with outlier exposure,
2019. 2, 6

[22] Thomas A. Henzinger, Anna Lukina, and Christian
Schilling. Outside the box: Abstraction-based mon-
itoring of neural networks. In ECAI, 2020. 2

[23] Rui Huang, Andrew Geng, and Yixuan Li. On the im-
portance of gradients for detecting distributional shifts
in the wild, 2021. 2, 6

[24] Alex Kendall and Yarin Gal. What uncertainties do
we need in bayesian deep learning for computer vi-
sion? In Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017. 1

[25] Diederik P Kingma and Max Welling. Auto-encoding
variational bayes, 2014. 6

[26] Alex Krizhevsky. Learning multiple layers of features
from tiny images. 2009. 6

[27] Balaji Lakshminarayanan, Alexander Pritzel, and
Charles Blundell. Simple and scalable predictive un-
certainty estimation using deep ensembles, 2017. 6

[28] Yann Lecun, Sumit Chopra, Raia Hadsell, Marc Aure-
lio Ranzato, and Fu Jie Huang. A tutorial on energy-
based learning. MIT Press, 2006. 2

3386



[29] Yann LeCun and Corinna Cortes. The mnist database
of handwritten digits. 2005. 6

[30] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo
Shin. A simple unified framework for detecting out-
of-distribution samples and adversarial attacks, 2018.
2, 6

[31] Shiyu Liang, Yixuan Li, and R. Srikant. Enhancing
the reliability of out-of-distribution image detection in
neural networks, 2020. 2, 6

[32] Weitang Liu, Xiaoyun Wang, John D. Owens, and
Yixuan Li. Energy-based out-of-distribution detec-
tion, 2021. 2, 6

[33] Lakmal Meegahapola, Vengateswaran Subramaniam,
Lance Kaplan, and Archan Misra. Prior activation
distribution (pad): A versatile representation to utilize
dnn hidden units, 2019. 2

[34] Lassi Meronen, Christabella Irwanto, and Arno Solin.
Stationary activations for uncertainty calibration in
deep learning, 2020. 2

[35] Khan Muhammad, Amin Ullah, Jaime Lloret,
Javier Del Ser, and Victor Hugo C. de Albuquerque.
Deep learning for safe autonomous driving: Current
challenges and future directions. IEEE Transactions
on Intelligent Transportation Systems, 22(7):4316–
4336, 2021. 1

[36] Vinod Nair and Geoffrey E. Hinton. Rectified lin-
ear units improve restricted boltzmann machines. In
Proc. of the 27th Int. Conf. on on Machine Learning,
ICML’10, page 807–814, 2010. 2

[37] Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, D
Sculley, Sebastian Nowozin, Joshua V. Dillon, Balaji
Lakshminarayanan, and Jasper Snoek. Can you trust
your model’s uncertainty? evaluating predictive un-
certainty under dataset shift, 2019. 2

[38] Guansong Pang, Chunhua Shen, Longbing Cao, and
Anton Van Den Hengel. Deep learning for anomaly
detection: A review. 54(2), 2021.

[39] Colin Paterson and Radu Calinescu. Detection and
mitigation of rare subclasses in neural network classi-
fiers. CoRR, abs/1911.12780, 2019. 2

[40] Janis Postels, Hermann Blum, Yannick Strümpler, Ce-
sar Cadena, Roland Siegwart, Luc Van Gool, and Fed-
erico Tombari. The hidden uncertainty in a neural net-
works activations, 2021. 2

[41] Janis Postels, Francesco Ferroni, Huseyin Coskun,
Nassir Navab, and Federico Tombari. Sampling-free
epistemic uncertainty estimation using approximated
variance propagation, 2019. 2

[42] Tal Reiss, Niv Cohen, Liron Bergman, and Yedid
Hoshen. Panda: Adapting pretrained features for
anomaly detection and segmentation, 2021. 2

[43] Tal Reiss and Yedid Hoshen. Mean-shifted contrastive
loss for anomaly detection, 2021. 2, 6

[44] Alireza Shafaei, Mark Schmidt, and James J. Little.
A less biased evaluation of out-of-distribution sample
detectors. In BMVC, 2019. 6

[45] Karen Simonyan and Andrew Zisserman. Very deep
convolutional networks for large-scale image recogni-
tion, 2015. 6

[46] Martin Stano, Wanda Benesova, and Lukas Samuel
Martak. Explaining predictions of deep neural clas-
sifier via activation analysis. CoRR, abs/2012.02248,
2020. 2

[47] Yiyou Sun, Chuan Guo, and Yixuan Li. React: Out-of-
distribution detection with rectified activations, 2021.
2, 6

[48] Francesco Terrosi, Lorenzo Strigini, and Andrea Bon-
davalli. Impact of machine learning on safety mon-
itors. In Mario Trapp, Francesca Saglietti, Marc
Spisländer, and Friedemann Bitsch, editors, Computer
Safety, Reliability, and Security, pages 129–143, 2022.
1

[49] Han Xiao, Kashif Rasul, and Roland Vollgraf.
Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms, 2017. 6

[50] Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei
Liu. Generalized out-of-distribution detection: A sur-
vey, 2021. 2

3387


