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Abstract

Screen content images (SCIs) include many informative
components, e.g., texts and graphics. Such content creates
sharp edges or homogeneous areas, making a pixel distribu-
tion of SCI different from the natural image. Therefore, we
need to properly handle the edges and textures to minimize
information distortion of the contents when a display de-
vice’s resolution differs from SCIs. To achieve this goal, we
propose an implicit neural representation using B-splines
for screen content image super-resolution (SCI SR) with ar-
bitrary scales. Our method extracts scaling, translating,
and smoothing parameters of B-splines. The followed multi-
layer perceptron (MLP) uses the estimated B-splines to re-
cover high-resolution SCI. Our network outperforms both
a transformer-based reconstruction and an implicit Fourier
representation method in almost upscaling factor, thanks to
the positive constraint and compact support of the B-spline
basis. Moreover, our SR results are recognized as cor-
rect text letters with the highest confidence by a pre-trained
scene text recognition network. Source code is available at
https://github.com/ByeongHyunPak/btc.

1. Introduction
With the rapid development of multimedia applications,

screen content images (SCIs) have been common in peo-
ple’s daily life. Many users interact with SCIs through
various display terminals, so resolution mismatch between
a display device and SCIs occurs frequently. In this re-
gard, we need to consider a flexible reconstruction at ar-
bitrary magnification from low-resolution (LR) SCI to its
high-resolution (HR). As in Figs. 1a and 1b, SCI has dis-
continuous tone contents, whereas natural image (NI) has
smooth and continuous textures. Such characteristics are
observed as a Gaussian distribution in the naturalness value
of NIs [25] and sharp fluctuations in the naturalness value

*Equal contribution.
†Corresponding author.

(a) Screen content image (b) Natural image

(c) Naturalness value distributions for 500 images per each class

Figure 1. Comparison on naturalness value distribution [25]
between screen content images and natural images.

of SCIs in Fig. 1c. This observation leads to a screen con-
tent image super-resolution (SCI SR) method considering
such distributional properties. However, most SR meth-
ods [4, 5, 8–10, 28, 29] are applied to NIs.

Recently, Yang et al. proposed a novel SCI SR
method based on a transformer, implicit transformer super-
resolution network (ITSRN) [26]. Since ITSRN evalu-
ates each pixel value by a point-to-point implicit function
through a transformer architecture, it outperforms CNN-
based methods [28, 29]. However, even though ITSRN rep-
resents SCI’s characters (e.g., sharp edges or homogeneous
areas) continuously, it has a large model size leading to in-
efficient memory consumption and slow inference time.

Meanwhile, Chen et al. first introduced implicit neu-
ral representation (INR) to single image super-resolution
(SISR) [4]. The implicit neural function enables arbitrary
scale super-resolution by jointly combining the continuous
query points and the encoded feature of the input LR image.
Nevertheless, such implicit neural function, implemented
with a multi-layer perceptron (MLP), is biased to learn the
low-frequency components, called spectral bias [15].
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Lee and Jin suggested the local texture estimator (LTE)
upon INR to overcome the above problem [8]. LTE es-
timates the frequencies and corresponding amplitude fea-
tures from the input LR image and feeds them into an MLP
with the Fourier representation. Here, projecting input into
a high-dimensional space with the sinusoids in Fourier rep-
resentation allows the implicit neural function to learn high-
frequency details. However, since LTE expresses a signal
with a finite sum of sinusoids, it has a risk for the recon-
structed values to under/overshoot at the discontinuities of
SCIs, called the Gibbs phenomenon. This phenomenon of-
ten produces incorrect information about SCIs. Thus, we
need to restore HR SCIs with fewer parameters, fewer com-
putation costs, and less distortion of contents.

In this paper, we propose a B-spline Texture Coeffi-
cients estimator (BTC) utilizing INR to represent SCIs
continuously. BTC predicts scaling (coefficients), trans-
lating (knots), and smoothing (dilations) parameters of B-
splines from the LR image. Then, inspired by Lee and
Jin [8], we project the query point’s coordinate into the
high-dimensional space with 2D B-spline representations
and feed them into MLP. Since the B-spline basis has a posi-
tive constraint and compact support, BTC preserves discon-
tinuities well without under/overshooting.

Our main contributions are: (I) We propose a B-spline
Texture Coefficients estimator (BTC), which estimates B-
spline features (i.e., coefficients, knots, and dilations) for
SCI SR. (II) With a 2D B-spline representation, we achieve
better performances with fewer parameters and less mem-
ory consumption. (III) We demonstrate that B-spline rep-
resentation is robust to over/undershooting aliasing when
reconstructing HR SCIs, owing to positive constraint and
compact support of the B-spline basis function.

2. Related works

2.1. Screen content image super-resolution

Screen content images (SCIs) are composed of
computer-rendered content, e.g., graphics and texts. There-
fore, as shown in Fig. 1c, the pixel distribution of screen
content images differs from that of natural images [25].
Paying attention to this point, Yang et al. tackle the SR prob-
lems in SCIs when the limited communications bandwidth
cannot send high-resolution content [26]. The authors uti-
lized a transformer-based algorithm, ITSRN, to infer pixel
values using relative coordinates between low-resolution
and high-resolution SCIs. In addition, they applied an im-
plicit position encoding to aggregate neighboring pixel val-
ues to represent SR images within the continuous regime.
However, ITSRN’s large model size requires more memory
and inference time. In contrast, our proposed algorithm rep-
resents edge-highlighted features even with fewer training
parameters and computational costs.

2.2. Implicit neural representation (INR)

Recent implicit neural representations (INR) have
achieved a good ability to represent signals implicitly and
continuously from partial observations [4, 12, 17]. The im-
plicit neural function, implemented by multi-layer percep-
tron (MLP), takes coordinates as input and returns the cor-
responding signal values. However, a combination of an
MLP and ReLU activation suffers from spectral bias [15], a
limitation in representing high-frequency details. Sitzmann
et al. substitute a ReLU with a sinusoidal activation func-
tion to overcome the spectral bias [17]. In addition, Tancik
et al. [18] and Mildenhall et al. [12] project the input coor-
dinates to a high-dimensional space with a set of sinusoids
(position encoding). With the same purpose, Lee and Jin [8]
proposed a local texture estimator (LTE) for single image
super-resolution to estimate dominant frequencies and cor-
responding amplitudes with Fourier representation. How-
ever, the finite sum of sinusoids in Fourier representation
can make the restored signal under/overshoot at the discon-
tinuities of the signal, Gibbs phenomenon. This paper uti-
lizes B-spline basis functions to reconstruct SCIs with high
discontinuity better.

2.3. B-spline representation

B-spline has gained the attention of signal processing
society in terms of stable and good signal representations
[16, 21, 22]. Splines, including a B-spline basis, have been
extensively studied in signal representations [19, 20]. Re-
cently, a uniform B-spline basis with trainable coefficients
was used as a position encoder of given Cartesian coordi-
nates. This leads to a better representation of a 3D signal
than frequency encoding [23]. Prasad et al. [14] proposed
a trainable non-uniform rational B-spline (NURBS) layer
to fit a surface from point clouds. However, the mentioned
works [14,23] are not demonstrated in SISR. This paper uti-
lizes a non-uniform 2D B-spline representation suitable for
reconstructing SCIs because of its compactness and positiv-
ity constraints. Our method estimates not only coefficient
information but also knots and dilations from local regions
of the input image and upscale factor.

3. Problem formulation
We tackle single image super-resolution (SISR) prob-

lems for screen content images. To prevent misleading in-
formation by asymmetric scaling, SISR for screen content
images considers a unified aspect ratio (r:r), i.e., the same
upscaling ratio between horizontal and vertical axes.

Our goal is to reconstruct a high-resolution RGB im-
age IHR ∈ R3×rH×rW from a low-resolution RGB image
ILR ∈ R3×H×W . To acquire ILR, we utilize the bicubic
interpolation degradation model from IHR to ILR given by

−→
I LR = DrTkb

−→
I HR, (1)
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Figure 2. Overall pipeline of our B-spline Texture Coefficients estimator (BTC). ⊕,⊖,⊙,⊗, B↑ and N↑ denote element-wise addition,
element-wise subtraction, element-wise multiplication, tensor product, Bilinear up and Nearest-Neighborhood up, correspondingly.

where kb is a cubic convolutional kernel, T is a block
Toeplitz matrix from 2D convolution, and Dr is a down-
sampling operator with a factor of r. To represent bicubic-
interpolated signals in the implicit neural representation, we
use non-uniform B-spline basis (βn : R 7→ R) with the gen-
eralized form [21, 23] :

s(x) =
∑
t∈I

c[t]βn
(
x− k[t]

d[t]

)
, (2)

where c[t] is the t−th coefficient, k[t] is the t−th continu-
ous knot , d[t] is the t−th continuous dilation variable, and
I is a index set of knots. The definitions of β0(·) and β3(·)
are given in Sec. 4.2. From now on, we explain the con-
cept of implicit neural representation with a B-spline basis
to represent 2D signals.

Implicit Neural Representation A decoder fθ, imple-
mented with a trainable MLP, θ, maps both latent codes and
local coordinates into query point’s RGB values; fθ(z,x) :
(Z,X ) 7→ Q. Here, z ∈ Z is a latent variable from
the encoder Eφ, x ∈ X is a continuous 2D coordinate of
IHR, and Q ∈ R3 is an predicted RGB space from fθ.
The latent code z ∈ RD×H×W has the same width and
height with ILR. Therefore, the query point’s RGB values
(IHR(x) ∈ R3) at a coordinate x ∈ R2 are calculated as

q(ILR,x; Θ) =
∑
t∈N

wtfθ(zt,x− xt, s), (3)

z = Eφ(ILR), Θ = {θ;φ}, N ∈ Z4 is a set of indices for
four nearest latent codes around x, wt is the bilinear inter-
polation weight corresponding to the latent code t (referred
to as the local ensemble weight [4]), zt ∈ RD is the near-
est latent feature vector from x, xt ∈ R2 is the coordinate
of the latent code t, and s is a cell value represented with
an upscaling factor [4]. With a series of M query points

from N images such as (xm, I
n
HR(xm)), m = 1, . . . ,M

and n = 1, . . . , N , the learning problem is defined as

Θ̂ = argmin
Θ

M,N∑
m,n

∥InHR(xm)− q(InLR,xm; Θ)∥1. (4)

Learning non-uniform bivariate B-splines Local Tex-
ture Estimator (LTE) [8], which predicts essential Fourier
features, was proposed for natural images to resolve the
spectral bias of an implicit neural function. To exploit
both position encoding [12] and Fourier feature mapping
[18], LTE embeds an input into the Fourier space before
an MLP. However, screen content images are synthetic and
rendered by computer software, so Fourier features do not
sufficiently represent SCIs. Thus, we use non-uniform B-
splines (Eq. (2)) for feature embedding. We call our algo-
rithm BTC. When we add another implicit representation
with BTC inside fθ, the local implicit neural representation
in Eq. (3) can be written as follows:

q(ILR,x; Θ, ψ) =
∑
t∈N

wtfθ(gψ(zt,x− xt, s)) (5)

where s is a cell value which means the size of the query
pixel (= 2/r) and gψ(·) denotes the BTC. BTC (gψ(·)) con-
sists of three estimators; (1) a coefficient estimator (gc :

RD 7→ RC), (2) a knot estimator (gk : RD 7→ R2
√
C), and

(3) a dilation estimator (gd : R1 7→ R
√
C). Given a local-

grid coordinate δt(= x − xt) ∈ R2 and cell value s(=
2/r) ∈ R1, the encoding function gψ : (RD,R2,R1) 7→
RC is defined as

gψ(zt, δt, s) = ct ⊙ vec

[
βn

(
δyt − kyt

d

)
⊗ βn

(
δxt − kxt

d

)T]
,

(6)

where ct = gc(zt), [k
x
t ,k

y
t ] = gk(zt), d = gd(s). (7)
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Input MetaSR [5] LIIF [4] ITSRN [26] LTE [8] BTC (ours) GT
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Figure 3. Qualitative comparison with other arbitrary-scale SR methods [4, 5, 8, 26] for ×3 (first), ×4 (second), ×5 (third), and ×7
(last). All methods are trained on SCI1K train set with RDN [29] encoder. We report the scene text recognition (STR) results of the
red-highlighted boxes using a pre-trained STR network [2], i.e., prediction for the red box region and its average confidence. The best and
second confidences are in red and blue, respectively.

ct ∈ RC is a coefficient vector for a latent code zt,
[kxt ,k

y
t ] ∈ R2

√
C indicate predicted knots from a latent

code zt, d ∈ R
√
C denote dilation variables, βn is a n−th

order B-spline (βn : R
√
C 7→ R

√
C) , and ⊗ represents

tensor product (outer product between two vectors). Since
MLPs with ReLUs are incompetent at extrapolate unseen
non-linear space [24], we use s = max(s, str), where str
indicates the minimum cell size during training.

Evaluated bivariate B-splines (gψ(·)) for a local area r×r
for a query point (δx, δy) is represented with multiplica-
tions between B-spline elements given by:

gψ(zt, δt, s)[q] = ct[q] β
n

(
δyt − kyt [i]

d[i]

)
βn

(
δxt − kxt [j]

d[j]

)
,

(8)

where q = i ·
√
C + j and i, j = 0, . . . ,

√
C − 1. From

this description, we notice that a r × r local area is fitted
with C different B-splines consisting of estimated dilations
d and knots k. In practice, we use a third-order B-spline
(n = 3). Because B-spline is compactly supported and pos-
itive in all ranges [21], it sufficiently represents synthetic
signals that frequently have sharp edges with less under-
shooting or overshooting. Contrarily, LTE [8] is inconsis-
tent with synthetic signals due to its Fourier basis. This is
explained in the discussion.

As in [8], a long skip connection improves graphical tex-
tures in residuals and stabilizes convergence. Our algorithm
is formulated as follows:

q̂(x) = q(ILR,x; Θ, ψ) + I↑LR(x) (9)
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Train set: SCI1K (n=800) In-training-scale Out-of-training-scale

Test set Method # Params. ×2 ×3 ×4 ×5 ×6 ×7 ×8 ×9 ×10

SCI1K
(n = 200)

Bicubic - 28.81 25.15 23.18 22.02 21.23 20.72 20.26 19.96 19.67
RDN [29] 21.97M 38.45 33.59 29.81 - - - - - -
MetaSR [5] 22.42M 38.57 33.67 30.12 27.52 26.13 23.91 23.19 22.02 21.73
LIIF [4] 22.32M 38.65 33.97 30.55 27.77 26.07 23.99 23.24 22.18 21.81
ITSRN [26] 22.62M 38.74 34.32 30.82 28.15 26.07 24.36 23.12 22.36 21.77
LTE [8] 22.53M 39.14 34.50 30.93 28.22 26.19 24.28 23.17 22.39 21.85
BTC (ours) 22.40M 39.17 34.58 31.10 28.33 26.31 24.47 23.38 22.48 21.89

SCID
(n = 40)

Bicubic - 25.22 22.78 21.60 20.90 20.42 20.04 19.77 19.51 19.29
RDN [29] 21.97M 34.00 28.34 25.74 - - - - - -
MetaSR [5] 22.42M 33.84 29.08 25.76 23.62 22.38 21.59 21.07 20.71 20.41
LIIF [4] 22.32M 34.24 29.10 25.89 23.77 22.53 21.73 21.21 20.84 20.54
ITSRN [26] 22.62M 34.19 29.46 26.22 23.96 22.64 21.80 21.26 20.87 20.56
LTE [8] 22.53M 34.49 29.60 26.34 24.06 22.67 21.81 21.28 20.90 20.59
BTC (ours) 22.40M 34.48 29.56 26.30 24.09 22.69 21.84 21.29 20.90 20.61

SIQAD
(n = 22)

Bicubic - 22.89 20.66 19.70 19.18 18.79 18.46 18.20 17.94 17.68
RDN [29] 21.97M 33.53 26.89 23.38 - - - - - -
MetaSR [5] 22.42M 34.12 28.40 23.55 21.18 20.18 19.63 19.25 18.94 18.65
LIIF [4] 22.32M 34.31 28.27 23.44 21.16 20.25 19.70 19.36 19.02 18.70
ITSRN [26] 22.62M 34.68 29.07 24.03 21.44 20.38 19.77 19.40 19.09 18.79
LTE [8] 22.53M 35.07 29.33 24.21 21.52 20.39 19.78 19.43 19.11 18.81
BTC (ours) 22.40M 34.91 29.36 24.25 21.57 20.43 19.82 19.45 19.11 18.84

Table 1. Quantitative comparison on SCI1K test set, SCID, and SIQAD (PSNR (dB)). All methods are trained on SCI1K train set.
The best and second results are in red and blue, respectively. RDN [29] trains different models for each scale. MetaSR [5], LIIF [4],
ITSRN [26], LTE [8], and BTC use one model for all scales, and the five models utilize RDN [29] as an encoder. The number of training
parameters of RDN [29] is estimated without its upsampling layer.

PSNR (dB) non-integer scale large scale

Method ×5.55 ×6.66 ×7.77 ×8.88 ×18 ×24 ×36

MetaSR [5] 27.04 24.99 23.47 22.45 19.55 18.81 17.81
LIIF [4] 27.02 24.92 23.48 22.49 19.63 18.85 17.85
ITSRN [26] 27.02 24.88 23.37 22.41 19.61 18.85 17.84
LTE [8] 27.22 24.96 23.42 22.50 19.67 18.90 17.88
BTC (ours) 27.31 25.14 23.64 22.61 19.67 18.90 17.88

Table 2. Quantitative comparison on SCI1K test set for non-
integer scales and large scales (PSNR (dB)). All methods are
trained on SCI1K train set with RDN [29] encoder.

4. Method

4.1. Overall pipeline

Our method consists of three steps, as shown in Fig. 2.
Step 1: For a given LR image ILR ∈ R3×H×W , our

deep SR encoder extracts a feature of LR, V ∈ RD×H×W .
The following coefficient estimator and knot estimator pre-
dict the coefficient features and knot features for scaling and
translating B-spline basis functions, respectively. The coef-
ficient estimator is a 3×3 convolutional layer withC output
channels. The knot estimator is a 3× 3 convolutional layer
with 2

√
C output channels.

√
C channels for X-axis knots

Acc./Conf. (%) SCID (c=100) SIQAD (c=50)

Method ×4 ×5 ×4 ×5

MetaSR [5] 90.89/98.19 87.07/94.89 86.55/99.08 93.55/98.53
LIIF [4] 91.00/98.26 87.17/94.69 85.23/99.23 91.56/99.13
ITSRN [26] 90.89/98.13 87.07/96.80 84.66/99.20 91.32/97.24
LTE [8] 90.89/98.00 87.07/96.18 86.36/98.98 92.31/98.90
BTC (ours) 93.63/98.55 89.70/97.88 86.93/99.32 94.29/99.22

Table 3. Scene text recognition (STR) comparison (Prediction
accuracy/Confidence (%)). We train all methods on SCI1K train
set with RDN [29] encoder and utilize a pre-trained STR network
[2]. Per each scale (×4 and ×5), we randomly crop 100 and 50
text regions (32×128 sized) from SCID and SIQAD, respectively.

and the rest for Y -axis knots. The dilation estimator, im-
plemented by a single fully connected layer with

√
C out-

put dimensions, predicts dilation features from the cell size.
Since the predicted coefficients and knots span an r×r local
region in an HR domain, we upscale the coefficient and knot
feature maps by a nearest-neighborhood spatial interpola-
tion (V ↑

coef ∈ RC×rH×rW and V ↑
knot ∈ R2

√
C×rH×rW ).

We utilize RDN [29] as an encoder in our experiments, re-
moving the last upsampling layer. The channels D and C
are 64 and 256, respectively.
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MetaSR [5] LIIF [4] ITSRN [26] LTE [8] BTC (ours) GT

Figure 4. Visual comparison with other arbitrary-scale SR methods [4, 5, 8,26] for the fraction number scales: ×1.49 (top) and ×6.25
(bottom). All methods are trained on SCI1K train set with RDN [29] encoder.

Method Mem. Time (mean±std)
MetaSR [5] 15.1 GB 655.91±2.09 ms
LIIF [4] 12.3 GB 1024.02±3.33 ms
ITSRN [26] 21.0 GB 1185.45±4.95 ms
LTE [8] 8.7 GB 1099.34±2.54 ms
BTC (ours) 7.8 GB 958.77±3.28 ms

Table 4. Memory consumption and computation time compar-
ison. We use a 480×480 sized input and 9602 query points per
inference (×2 SR). The mean and std of computation time were
measured with 300 iterations. All methods use RDN [29] encoder.

Step 2: Hereafter, we utilize B-spline representation
with the query point’s feature. To translate the B-spline
basis on the coordinate around the LR pixel, we perform
the element-wise subtraction between the knot features
(V ↑
knot[q] ∈ R2×

√
C) and local coordinates (δxy[q] ∈ R2×1)

for each XY -axis. This results are element-wise multiplied
by the predicted dilations and are fed into the B-spline bases
(βn). Finally, as in Eq. (6), we conduct tensor product be-
tween X- and Y -axis bases (βny ⊗ (βnx )

T ), and perform
the element-wise multiplication between the flattened ten-
sor product results (R

√
C×

√
C 7→ RC) and the predicted

coefficients (V ↑
coef [q] ∈ RC).

Step 3: The following INR decoder (fθ) infers the query
point’s RGB values with the B-spline representation results.
Our decoder is a 4-layered MLP with ReLU activations and
C hidden dimensions. In detail, our method predicts the
query point’s RGB values by adding the decoder’s output to
the bilinear upscaled LR image’s value as in Eq. (9).

4.2. B-spline backpropagation

The B-spline basis function βn(x) is a piecewise func-
tion, where n is its polynomial degree, and is set to the nth

convolution between β0(x), itself. The β0(x) is defined as

1 if |x| < 0.5 and 0 for otherwise. The β1(x) is supported in
[-1, 1], the β2(x) is supported in [-1.5, 1.5], and the β3(x)
is supported in [-2, 2]. We design BTC with β3(x). The
β3(x) and differentiated ∂

∂xβ
3(x) (for backpropagation) are

as follows:

β3(x) =



1
6
(2 + x)3 if − 2 < x ≤ −1;

1
6
(4− 6x2 − 3x3) if − 1 < x ≤ 0;

1
6
(4− 6x2 + 3x3) if 0 < x ≤ 1;

1
6
(2− x)3 if 1 < x < 2;

0 otherwise,

(10)

∂

∂x
β3(x) =



1
2 (2 + x)2 if − 2 < x ≤ −1;

−2x− 1.5x2 if − 1 < x ≤ 0;

−2x+ 1.5x2 if 0 < x ≤ 1;

− 1
2 (2− x)2 if 1 < x < 2;

0 otherwise.

(11)

4.3. Training strategy

Let B be the batch size, and H,W denote a training
patch’s height and width. First, in order to simulate ar-
bitrary magnifications, we sample B random scales r1∼B
in a uniform distribution U(1, 4) and crop B patches with
sizes {riH × riW}Bi=1 from HR training images. Then, we
randomly pick XY query points (coordinate-RGB pairs)
from each HR patch in the batch from ground truth (GT)
and make B LR counterparts with sizes {H × W}Bi=1 by
downsampling HR patches in the scale factor r1∼B . We use
the LR patches as the encoder’s input and interpolate only
query points during training. Finally, we compute the loss
between the query and GT pixels. For verifying the gener-
alization ability of our network, we evaluate our BTC for
×1 ∼ ×4 (in-training-scale), and also ×5 ∼ ×10 (out-of-
training-scale).
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PSNR (dB) In-scale Out-of-scale

Method ×2 ×3 ×4 ×5 ×7 ×9

BTC 39.17 34.58 31.10 28.33 24.47 22.48
BTC(-C) 39.06 34.56 30.96 28.23 24.31 22.35
BTC(-K) 33.90 30.09 27.42 25.83 23.10 21.57
BTC(-D) 39.05 34.54 30.94 28.19 24.42 22.41
BTC(-L) 39.01 34.04 30.49 27.95 24.34 22.36
BTC(β2) 39.12 34.46 30.91 28.22 24.36 22.42
BTC(β4) 39.18 34.57 31.04 28.25 24.41 22.45

Table 5. Ablation study on SCI1K test set (PSNR (dB)). Defini-
tions of -C/K/D/L and β2/4 are described in Sec. 5.3. All methods
are trained on SCI1K train set with RDN [29] encoder. The best
results are bolded.

5. Experiments

5.1. Training

Dataset To demonstrate the ability of our model, we uti-
lize SCI1K dataset [26] for SCI SR experiments. It consists
of 1000 screenshots with 800 images for the train set and
200 for the testing set and we follow the standard split [26]
for train and test set. We also report the results on two other
screen content datasets: SCID [13] and SIQAD [25]. We
train all the methods only on SCI1K train set.

Implementation details For training, we use LR patches
with the sizes of {48× 48}16i=1 downsampled by bicubic re-
sizing, and augment the patches with flipping and rotations.
Following [29], we utilize L1 loss and the Adam [7] opti-
mizer with β1 = 0.9 and β2 = 0.999. The networks are
trained for 1000 epochs with batch size 16, and the learning
rate initialized as 1e-4 is decayed in half every 200 epochs.

5.2. Evaluation

Quantitative results Tab. 1 demonstrates a quantitative
comparison between our method, RDN [29], and existing
arbitrary-scale SR methods (MetaSR [5], LIIF [4], ITSRN
[26], LTE [8]) on SCI1K test set, SCID, and SIQAD. All
the methods are trained on the train set of SCI1K. Since
RDN [29] is dedicated to an upscaling factor, each model
on the specific scale needs to be trained. Except for SCID
in-training-scales and SIQAD×2, our method shows the
best performance with competitive model size for almost
every scale factor and dataset. The maximum gain is up
to 0.17dB for ×4 on SCI1K. Moreover, BTC outperforms
ITSRN [26] by 0.43dB, 0.26dB, and 0.28dB at SCI1K×2,
×3, and ×4 with 220K fewer parameters. Compared to LTE
[8], BTC performs better by 0.03dB, 0.08dB, and 0.17dB
at SCI1K×2, ×3, and ×4 with 130K fewer parameters.
In Tab. 2, our method gains 0.09dB, 0.18dB, 0.16dB, and
0.11dB at ×5.55, ×6.66, ×7.77, and ×8.88, correspond-
ingly. For large scales, BTC shows better performance over
MetaSR [5], LIIF [4], and ITSRN [26].

Red channel Green channel Blue channel

LTE [8] BTC GT

Figure 5. Robustness of BTC against undershooting compared
to LTE [8] (×8). The graphs in the first row present the red, green,
and blue channel intensity along the red lines in the second row.

Qualitative results Figs. 3 and 4 present a qualitative
comparison with other arbitrary-scale SR methods [4, 5, 8,
26] for integer number scales (×3, ×4, ×5, and ×7) and
fraction number scales (×1.49 and ×6, 25), respectively.
As shown in Fig. 3, our method represents the thin edges
of characters and reconstructs the information of texts bet-
ter than other methods. Moreover, the pre-trained scene
text recognition algorithm [2] recognizes our reconstructed
characters more accurately and confidently. In Fig. 4, BTC
restores texts and graphics better than other methods, even
on the fractional number scales.

5.3. Ablation study

For ablation study, we retrain several configurations with
RDN [29] encoder: BTC(-C), BTC(-K), BTC(-D), and
BTC(-L) indicate BTC without a coefficient estimator, a
knot estimator, a dilation estimator, and an LR skip connec-
tion, respectively. The B-spline basis’s polynomial degree
of BTC(β2/4) is 2/4. Tab. 5 shows that a coefficient esti-
mator, a dilation estimator, and an LR skip connection con-
tribute 0.1dB, 0.12dB, and 0.57dB at ×4 SR, respectively.
Note that the gain of a knot estimator is significantly higher
than the gain of the other things. Moreover, we can observe
that β3 is superior to β2/4.

5.4. Computation cost comparison

Tab. 4 compares our method’s memory consumption and
computation time with other arbitrary-scale SR methods on
NVIDIA RTX 3090 24GB. We compute the memory con-
sumption and computation time with the ×2 SR task (input:
480×480). Our BTC has competitive memory consump-
tion compared to MetaSR and ITSRN. MetaSR estimates
the filter’s weights for each pixel, so it performs the matrix
product between the filters and the LR feature, consuming
more memories.
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Train set: DIV2K In-scale Out-of-scale

Test set Method ×2 ×3 ×4 ×6 ×8

Set5
(n = 5)

BTC 38.26 34.73 32.57 29.26 27.23
LTE [8] 38.23 34.72 32.61 29.32 27.26

Set14
(n = 14)

BTC 34.05 30.58 28.84 26.67 25.21
LTE [8] 34.09 30.58 28.88 26.71 25.16

B100
(n = 100)

BTC 32.36 29.30 27.78 26.01 24.95
LTE [8] 32.36 29.30 27.77 26.01 24.95

Urban100
(n = 100)

BTC 32.98 28.95 26.81 24.28 22.88
LTE [8] 33.04 28.97 26.81 24.28 22.88

Table 6. Quantitative limitation of BTC compared to LTE [8]
on natural image benchmarks: Set5, Set14, B100, and Ur-
ban100 (PSNR (dB)). All methods are trained on DIV2K train
set with RDN [29] encoder. The best results are bolded.

Similarly, ITSRN utilizes an MLP to model an implicit
transformer, including a matrix product between features,
causing more memory consumption. On the other hand,
BTC uses convolutional layers to learn B-spline features
and reduces the number of convolution filter channels by
the tensor product. Meanwhile, MetaSR does not perform
local ensemble, so the computation time is faster than LIIF,
LTE, and BTC. However, blocking artifacts may occur.

6. Discussion
Advantage of B-spline over Fourier information LTE

[8] represents the signal as Fourier series close to the HR
image’s Fourier features. The finite sum of sinusoids,
caused by finite size of channels, leads to convolution with
sinc function (ideal low-pass filter on freq. domain). Then,
we are able to reformulate the signal representation in LTE
as follow:

s(x) =
∑
t∈I

c[t]sinc
(
x− k′[t]

)
︸ ︷︷ ︸

LTE’s Fourier representation

⇔ s(x) =
∑
t∈I

c[t]βn
(
x− k[t]

d[t]

)
︸ ︷︷ ︸

BTC’s B-spline representation

,

where sinc(x) = sin(x)
x , k′ is the uniformly distributed

translations, and I is a set of index. Here, the rippled side-
lobes of sinc(·) can cause under/overshooting at the discon-
tinuities (similar to Gibb’s Phenomena). Because screen
content images include many texts and graphics, the edges
of such contents cause lots of discontinuities.

In BTC (right-hand side), the positive B-spline kernels
(integrated to 1) make the values between the minimum and
maximum of the input signal. The smoothing effect of the
B-spline kernel is reduced by dynamically allocating the
weights and translations to βn(·) with compact support. As
shown in Fig. 5, BTC is robust to undershooting compared
to LTE at the sharp edges. LTE causes undershooting alias-
ing at a discontinuity (the black pixels along the border on
the shark’s face in LTE’s SR result).

BTC LTE [8] GT

Figure 6. Qualitative limitation of BTC compared to LTE [8]
on natural image benchmarks (×3): B100 (top) and Urban100
(bottom). All methods are trained on DIV2K train set with RDN
[29] encoder.

Limitation on natural images Although BTC performs
better on screen content images, BTC is not always supe-
rior to LTE. We compare our method with LTE [8], training
both methods on DIV2K [1] train set. From Tab. 6, BTC
shows the same or lower performance as LTE on natural
image benchmarks (Set5 [3], Set14 [27], B100 [11], and
Urban100 [6]). Since natural images mainly contain a lot of
continuous and repetitive textures, LTE, which represents
signals with Fourier basis, generally performs better on nat-
ural images as shown in Fig. 6.

7. Conclusion

This paper proposes a B-spline Texture Coefficients es-
timator (BTC) for arbitrary scale SCI SR. Our BTC-based
SR method achieves the best performance with a compet-
itive model size for screen content datasets. Furthermore,
our method restores the thin edges of text or graphics better
than other arbitrary-scale SR methods. Compared with the
LTE utilizing Fourier representation, BTC has fewer ringing
artifacts caused by overshooting or undershooting owing to
the compactly and positively supported B-spline. Moreover,
our BTC shows efficient memory consumption and compu-
tation time. Our SR results are recognized as correct text
letters with the highest confidence by a pre-trained scene
text recognition network.

Acknowledgement This work was partly supported by the Na-
tional Research Foundation of Korea (NRF) grant funded by the
Korea government (No. 2021R1A4A1028652), the DGIST R&D
Program of the Ministry of Science and ICT (21-IJRP-01), Smart
HealthCare Program(www.kipot.or.kr) funded by the Korean Na-
tional Police Agency(KNPA) (No. 230222M01), and Institute
of Information & communications Technology Planning & Eval-
uation (IITP) grant funded by the Korea government (MSIT)
(No.2021-0-02068, Artificial Intelligence Innovation Hub).

10069



References
[1] Eirikur Agustsson and Radu Timofte. NTIRE 2017 Chal-

lenge on Single Image Super-Resolution: Dataset and Study.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops, July 2017. 8

[2] Darwin Bautista and Rowel Atienza. Scene text recognition
with permuted autoregressive sequence models. In European
Conference on Computer Vision, pages 178–196. Springer,
2022. 4, 5, 7

[3] Marco Bevilacqua, Aline Roumy, Christine Guillemot, and
Marie line Alberi Morel. Low-Complexity Single-Image
Super-Resolution based on Nonnegative Neighbor Embed-
ding. In Proceedings of the British Machine Vision Confer-
ence, pages 135.1–135.10. BMVA Press, 2012. 8

[4] Yinbo Chen, Sifei Liu, and Xiaolong Wang. Learning Con-
tinuous Image Representation With Local Implicit Image
Function. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
8628–8638, June 2021. 1, 2, 3, 4, 5, 6, 7

[5] Xuecai Hu, Haoyuan Mu, Xiangyu Zhang, Zilei Wang,
Tieniu Tan, and Jian Sun. Meta-SR: A Magnification-
Arbitrary Network for Super-Resolution. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019. 1, 4, 5, 6, 7

[6] Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single
Image Super-Resolution From Transformed Self-Exemplars.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2015. 8

[7] Diederik P. Kingma and Jimmy Ba. Adam: A Method for
Stochastic Optimization. In Yoshua Bengio and Yann Le-
Cun, editors, 3rd International Conference on Learning Rep-
resentations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015. 7

[8] Jaewon Lee and Kyong Hwan Jin. Local Texture Estima-
tor for Implicit Representation Function. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1929–1938, 2022. 1, 2, 3, 4, 5, 6, 7, 8

[9] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc
Van Gool, and Radu Timofte. SwinIR: Image Restoration
Using Swin Transformer. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV) Work-
shops, pages 1833–1844, October 2021. 1

[10] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and
Kyoung Mu Lee. Enhanced Deep Residual Networks for
Single Image Super-Resolution. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, July 2017. 1

[11] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of
human segmented natural images and its application to eval-
uating segmentation algorithms and measuring ecological
statistics. In Proceedings Eighth IEEE International Con-
ference on Computer Vision. ICCV 2001, volume 2, pages
416–423 vol.2, 2001. 8

[12] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing Scenes as Neural Radiance Fields for View

Synthesis. In Proceedings of the European Conference on
Computer Vision (ECCV), August 2020. 2, 3

[13] Zhangkai Ni, Lin Ma, Huanqiang Zeng, Jing Chen, Canhui
Cai, and Kai-Kuang Ma. Esim: Edge similarity for screen
content image quality assessment. IEEE Transactions on Im-
age Processing, 26(10):4818–4831, 2017. 7

[14] Anjana Deva Prasad, Aditya Balu, Harshil Shah, Soumik
Sarkar, Chinmay Hegde, and Adarsh Krishnamurthy.
NURBS-Diff: A Differentiable Programming Module For
NURBS. Computer-Aided Design, page 103199, 2022. 2

[15] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix
Draxler, Min Lin, Fred Hamprecht, Yoshua Bengio, and
Aaron Courville. On the spectral bias of neural networks.
In International Conference on Machine Learning, pages
5301–5310. PMLR, 2019. 1, 2

[16] Isaac Jacob Schoenberg. Contributions to the problem of
approximation of equidistant data by analytic functions. part
b. on the problem of osculatory interpolation. a second class
of analytic approximation formulae. Quarterly of Applied
Mathematics, 4(2):112–141, 1946. 2

[17] Vincent Sitzmann, Julien Martel, Alexander Bergman, David
Lindell, and Gordon Wetzstein. Implicit Neural Representa-
tions with Periodic Activation Functions. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, vol-
ume 33, pages 7462–7473. Curran Associates, Inc., 2020.
2

[18] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan Barron, and Ren Ng. Fourier Features
Let Networks Learn High Frequency Functions in Low Di-
mensional Domains. In H. Larochelle, M. Ranzato, R. Had-
sell, M. F. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33, pages 7537–
7547. Curran Associates, Inc., 2020. 2, 3

[19] Michael Unser. Splines: A perfect fit for signal and image
processing. IEEE Signal processing magazine, 16(6):22–38,
1999. 2

[20] Michael Unser, Akram Aldroubi, and Murray Eden. Fast
B-spline transforms for continuous image representation and
interpolation. IEEE Transactions on pattern analysis and
machine intelligence, 13(3):277–285, 1991. 2

[21] Michael Unser, Akram Aldroubi, and Murray Eden. B-spline
signal processing. I. Theory. IEEE transactions on signal
processing, 41(2):821–833, 1993. 2, 3, 4

[22] Michael Unser, Akram Aldroubi, and Murray Eden. B-
spline signal processing. II. Efficiency design and applica-
tions. IEEE transactions on signal processing, 41(2):834–
848, 1993. 2

[23] Peng-Shuai Wang, Yang Liu, Yu-Qi Yang, and Xin Tong.
Spline positional encoding for learning 3d implicit signed
distance fields. arXiv preprint arXiv:2106.01553, 2021. 2, 3

[24] Keyulu Xu, Mozhi Zhang, Jingling Li, Simon Shaolei Du,
Ken-ichi Kawarabayashi, and Stefanie Jegelka. How Neu-
ral Networks Extrapolate: From Feedforward to Graph Neu-
ral Networks. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-
7, 2021. OpenReview.net, 2021. 4

10070



[25] Huan Yang, Yuming Fang, and Weisi Lin. Perceptual quality
assessment of screen content images. IEEE Transactions on
Image Processing, 24(11):4408–4421, 2015. 1, 2, 7

[26] Jingyu Yang, Sheng Shen, Huanjing Yue, and Kun Li. Im-
plicit Transformer Network for Screen Content Image Con-
tinuous Super-Resolution. Advances in Neural Information
Processing Systems, 34:13304–13315, 2021. 1, 2, 4, 5, 6, 7

[27] Roman Zeyde, Michael Elad, and Matan Protter. On Sin-
gle Image Scale-Up Using Sparse-Representations. In Jean-
Daniel Boissonnat, Patrick Chenin, Albert Cohen, Christian
Gout, Tom Lyche, Marie-Laurence Mazure, and Larry Schu-
maker, editors, Curves and Surfaces, pages 711–730, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg. 8

[28] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng
Zhong, and Yun Fu. Image Super-Resolution Using Very
Deep Residual Channel Attention Networks. In Proceedings
of the European Conference on Computer Vision (ECCV),
September 2018. 1

[29] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong,
and Yun Fu. Residual Dense Network for Image Super-
Resolution. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2018. 1,
4, 5, 6, 7, 8

10071


