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Abstract

In this paper, we propose an approach for view-time in-
terpolation of stereo videos. Specifically, we build upon
X-Fields that approximates an interpolatable mapping be-
tween the input coordinates and 2D RGB images using a
convolutional decoder. Our main contribution is to ana-
lyze and identify the sources of the problems with using X-
Fields in our application and propose novel techniques to
overcome these challenges. Specifically, we observe that X-
Fields struggles to implicitly interpolate the disparities for
large baseline cameras. Therefore, we propose multi-plane
disparities to reduce the spatial distance of the objects in the
stereo views. Moreover, we propose non-uniform time coor-
dinates to handle the non-linear and sudden motion spikes
in videos. We additionally introduce several simple, but im-
portant, improvements over X-Fields. We demonstrate that
our approach is able to produce better results than the state
of the art, while running in near real-time rates and having
low memory and storage costs.

1. Introduction
As the virtual reality (VR) and light field displays (e.g.,

Lume Pad [26]) become widespread, there is a growing
need for capturing the appropriate content for these devices
to provide an immersive virtual experience for the users.
This necessitates capturing a scene from different views and
at high frame rates. While this can be done using special-
ized hardware [3], such setups are usually bulky and expen-
sive, and thus not suitable for an average user. To make the
content capture widespread, we should focus on standard
capturing devices like cellphone cameras. These devices,
however, are typically equipped with only two cameras and
are often not able to capture two videos at high frame rates.
This necessitates interpolating across time and view to re-
construct high frame rate videos from dense views.

For a system to be practical and can be deployed on dis-
play devices with limited storage, memory, and computa-
tional capability, it should have a few properties: 1) while

a reasonable amount of post-processing can be done on a
server, the approach should be able to generate results in
real-time, 2) it should not have a significant storage over-
head on top of the input stereo video, and 3) it should have
a low memory cost.

Unfortunately, most existing approaches violate one or
more criteria. For example, while the approaches based
on multi-plane images (MPI) [47, 50, 55] can render novel
views in real-time, they require storing the estimated MPIs
for each frame (tens of megabytes per frame) and are ad-
ditionally memory intensive. Moreover, to perform both
view and time interpolations, these approaches need to be
augmented with a video interpolation method which fur-
ther adds to their memory and computational cost. The
more recent approaches based on neural radiance fields
(NeRF) [32] can perform both view and time interpola-
tions [10, 29]. These methods encode the radiance field of
a scene into a small network, and thus have a small storage
and memory cost. However, they usually take a few sec-
onds to render each novel view. Additionally, they require
the cameras to be calibrated, and thus have difficulty han-
dling general videos.

In this paper, we build upon X-Fields [2] that optimizes
a coordinate-based network to learn an interpolatable im-
plicit mapping between the input coordinates X (view or
time) and the observed images. Once the optimization for
a specific scene is performed, the network can be used to
generate an image given any X coordinate. This approach
satisfies all the properties, as the rendering is real-time (cri-
terion 1) and the scene is encoded into a small network (cri-
teria 2 and 3). Despite that, X-Fields struggles to produce
reasonable results for the specific problem of view-time in-
terpolation of stereo videos.

Our main contribution is to analyze X-Fields, identify
the sources of the problems, and propose approaches that
address these shortfalls. Specifically, we identify two major
problems with X-Fields for stereo video interpolation. Our
first observation is that X-Fields struggles to interpolate the
disparities for cameras with large baselines. Second, we
observe that linear motion in the input videos is critical for
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X-Fields optimization to work, but non-linear motions are
common in natural videos.

We address the first issue by proposing multi-plane dis-
parities to reduce the spatial distance of the objects in the
scene. Our approach makes it substantially easier for the
network to interpolate the disparities, as the left and right
disparities in different planes become closer to each other
spatially. Moreover, we propose to address the second prob-
lem through a novel non-uniform time coordinate encoding
method. We demonstrate that the implicit network is able
to find a proper mapping between these non-uniform coor-
dinates and the observations and has a significantly better
interpolation capability.

Additionally, we propose a series of simple, but impor-
tant, improvements such as additional regularization losses,
learned blending, and positional encoding. Our approach
has low memory and storage costs, and is able to reconstruct
novel images in near real-time rates. Through extensive ex-
periments we demonstrate that our method is significantly
better than the state-of-the-art approaches. Code and sup-
plementary materials are available on our project website at
https://people.engr.tamu.edu/nimak/Papers/CVPR23StereoVideo.

2. Related Work
In this section, we briefly review the relevant view, time,

and view-time synthesis methods.

2.1. View Synthesis

Novel view synthesis is a widely studied problem. A
classical solution is to first reconstruct the 3D geometry of
the scene, e.g., point clouds, and then render novel views
based on the geometry [4, 5, 8, 15, 16, 25, 40, 45]. With
the rise of deep learning, several approaches propose to
handle this application using a neural network. For exam-
ple, Flynn et al. [13] proposes a network based on plane
sweep volumes, while Kalantari et al. [21] estimates the
disparity and blending weights using two sequential net-
works. Zhou et al. [55] introduce multi-plane images (MPI),
a flexible scene representation which is suitable for view
synthesis. Several approaches [12, 28, 30, 31, 47, 50] pro-
pose various ways to extend this idea. The major problem
with these approaches is significant storage and memory
costs. Following the introduction of neural radiance field
(NeRF) by Mildenhall et al. [32], a large number of ap-
proaches [9, 14, 17, 19, 37–39, 46] based on this idea have
been proposed. While these approaches are powerful, they
are typically slow to render novel images.

2.2. Time Interpolation

Most video interpolation approaches rely on optical flow
to warp images and synthesize the interpolated frames. Re-
cent state-of-the-art methods rely on deep learning for flow
computation and image synthesis [1, 20, 34–36]. Several

methods [7,22] propose to directly generate the interpolated
images without explicitly estimating a flow. Finally, a few
methods [6,43] adapt a network on the test example at hand
by fine tuning it through the typical appearance loss.

2.3. View-Time Synthesis

Several recent approaches [10, 29, 41, 48, 51] extend
NeRF to handle the additional time dimension and work on
dynamic scenes. In addition to the common shortfalls of
the NeRF-based approaches, these methods can only han-
dle limited types of videos, as they require the cameras to
be calibrated. Different from these approaches, Bemana et
al. [2] propose X-Fields, a lightweight network capable of
real-time view-time (as well as additional dimensions like
light) interpolation. This approach essentially learns a per-
scene mapping between the coordinates and 2D RGB im-
ages. We build upon X-Fields, but propose key ideas to sig-
nificantly improve its performance on the problem of view-
time interpolation of stereo videos.

3. Background
Given a set of images captured with different modalities

(e.g., view and time), X-Fields [2] poses the problem as ap-
proximating the mapping between the input coordinates X
and the corresponding images through a small coordinate-
based neural network. To do so, X-Fields optimizes the net-
work using the following objective:

θ∗ = argmin
θ

N∑
i=1

∥fθ(yi)− f(yi)∥1 (1)

where f(yi) is the observed image at coordinate yi and
fθ(yi) is the approximated image using the network with
weights θ. The approximated mapping function fθ can then
be used to reconstruct an image from any novel coordinate
x (in the convex hull of the observed coordinates).

Instead of directly estimating the 2D RGB images us-
ing the network, X-Fields reconstructs the novel image by
warping and combining the observed images in the neigh-
borhood of the coordinate of interest. This is done by first
estimating the Jacobian of the flows at each pixel. This Ja-
cobian describes how a pixel in the coordinate of interest
moves if, for example, the time coordinate changes. The
Jacobian which is estimated by the network is defined as:

gθ(x)[p] = J(x)[p] =
∂p(x)
∂x

, (2)

where gθ is the network and J(x)[p] denotes the Jacobian at
pixel p of coordinate x. Using this Jacobian, the flow from
pixel p(x) to the corresponding pixel q in coordinate y can
be obtained by:

Fy(x)[p] = p + (y − x)J(x)[p], (3)
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Left Frame Right Frame X-Fields Ours
Figure 1. We show the images from the left and right views on
the left. The interpolated middle images using only appearance
loss (X-Fields) and our results are shown on the right. The stretch-
ing artifacts around the depth discontinuities because of the poorly
estimated Jacobians can be observed in X-Fields results.

where Fy(x) refers to the flow from the image at coordinate
x to the one at y. Using these flows, the observed neighbor-
ing images are warped to the coordinate of interest and are
combined using a weight map, derived from the forward-
backward flow consistency check.

4. Algorithm
Given a stereo video with N frames, our goal is to re-

construct images at novel views and times. We build upon
X-Fields and attempt to learn an implicit mapping from the
view-time coordinates x to the corresponding 2D RGB im-
ages f(x). In our specific problem, the coordinates are 2
dimensional x = (u, t), where u is one dimensional view
between and including the two views, and t denotes the one
dimensional time coordinate.

We begin by discussing the view synthesis and time in-
terpolation separately in Secs. 4.1 and 4.2, respectively. We
then discuss the view-time interpolation in Sec. 4.3.

4.1. View Synthesis

Given a pair of stereo images at a specific frame, our
goal here is to reconstruct novel views in between the two
images. Since we would like our approach to have a low
storage cost, we encode all the frames into a single neural
network.1 As the number of frames N can be large (90 for
a 3 seconds video at 30 fps), we normalize the time coordi-
nates to be between 0 and 1, i.e., t = 0 for the first frame
and t = 1 for the last frame of the video. Moreover, we set
the coordinates of the left and right views to u1 = −0.5 and
u2 = 0.5, respectively.

Since our goal in this section is only view synthesis, our
network needs to estimate a single channel Jacobian corre-
sponding to the partial derivative of the horizontal displace-
ment with respect to the view (i.e., disparity). With these
settings we can optimize our network using Eq. 1 to per-
form this task. However, as shown in Fig. 1, X-Fields is not
able to produce satisfactory results. Next, we discuss our
approaches to significantly improve the results.

Jacobian Supervision: We observe that with the ex-
tremely sparse inputs in our application (two views), the

1This is in contrast to using a separate network for each stereo frame.
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Figure 2. We show the images captured from left and right views
of a particular frame on the left. Using only the appearance loss,
the network tries to reconstruct the occluded regions by stretching
the flow outside the depth discontinuities. With our additional Ja-
cobian loss, we supervise the Jacobian in the occluded regions and
produce better maps. Through positional encoding, the network is
able to properly learn the complex boundaries.

appearance loss in Eq. 1 does not provide sufficient super-
vision to estimate reliable Jacobians. Note that in this case,
only one image can be used to reconstruct the image fθ(yi)
at coordinate yi during optimization. For example, to recon-
struct the left image at frame t = 0, (u, t) = (−0.5, 0), we
can only use the right image at that frame (0.5, 0). Unfortu-
nately, minimizing the appearance loss forces the network
to reconstruct the occluded regions in one view from the
other (e.g., by texture stretching) by estimating Jacobians
that do not properly represent the disparity (see Fig. 2). This
negatively affect the quality of the interpolated results.

To address this issue, we use an existing disparity es-
timation network (Li et al. [27] in our implementation) to
constrain the estimated Jacobians in the occluded areas.
Through training on a large number of scenes, this network
is able to learn a prior and properly estimates the disparity in
the occluded areas. Our key idea is to supervise our implicit
network gθ by only relying on the guiding disparity (from
the pre-trained network) in the occluded areas, but use both
the appearance and disparity supervisions in the other areas.
To do this, we introduce the following objective:

θ∗ = argmin
θ

2∑
j=1

N∑
i=1

∥M occ ⊙ (fθ(uj , ti)− f(uj , ti)) ∥1

+λ∥gθ(uj , ti)− J̃(uj , ti)∥1.
(4)

Here, J̃(uj , ti) is the guiding Jacobian (disparity) and
is obtained by passing the two views as the input to the
pre-trained network. Specifically, to get J̃(u1, ti) we pass
the left and right images at frame ti as the input and re-
verse the order of the images to obtain the other Jacobian
J̃(u2, ti). Moreover, M occ is a binary mask with zero in
the occluded areas and one in the other regions. We calcu-
late this mask through forward-backward consistency check
using the guiding Jacobians at the two views. This mask
ensures that the warping loss (first term) is not used in the
occluded areas. Finally, λ defines the weight of the second
term, which is set to 20/w (where w is the frame width) in
our implementation. In addition to improving the estimated
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Disparity = 2px Disparity = 24px Disparity = 48px

Disparity = 72px Disparity = 96px Disparity = 120px
Figure 3. We show the network’s interpolation ability on exam-
ples with varying disparities. For each case, we show the left and
right Jacobians on the left and the interpolated Jacobian (for the
middle view) on the right. As seen the quality of the interpolated
Jacobians starts to degrade for cases with 48 pixels disparity and
above. Note that the gap under the arm (shown in green box) be-
comes smaller in the case with 48 pixels disparity.

Jacobians in the occluded areas (see Fig. 2), the disparity
supervision speeds up the convergence of the optimization
and helps with the challenging cases like thin objects.

While the results produced with our method using the
additional disparity supervision are reasonable, they some-
times contain ghosting and other artifacts around the depth
discontinuities. We observe that these artifacts arise be-
cause the encoded Jacobians often lack sufficient details to
represent the object boundaries (see Fig. 2). This is mainly
because of the difficulty in encoding a large number of
frames into a single small network. To address this issue,
we apply positional encoding [32] (with 5 frequencies) to
the time coordinates and use them instead as the input to
our implicit network. Note that while positional encoding
is proposed for multi-layer perceptron (MLP) networks, we
observe that it improves the quality of estimated Jacobians
using coordinate-based convolutional network as well, as
shown in Fig. 2.

Multi-Plane Disparities: This approach is able to pro-
duce high-quality Jacobians at intermediate views for cases
where the maximum disparity in the scene is small (e.g.,
small baseline cameras). However, the quality of the inter-
polated Jacobians for cases with large disparities (e.g., large
baseline cameras) deteriorates, as shown in Fig. 3. This is
because the objects with large disparities have a large spatial
distance in the left and right Jacobians, making the implicit
interpolation significantly more challenging.

We address this issue by reducing the spatial distance
between the objects in the encoded left and right Jaco-
bians. Specifically, we propose multi-plane disparities to
represent the Jacobians at each coordinate. As shown in
Fig. 4, instead of directly estimating the Jacobian, our net-
work gθ(u, t) estimates a set of Jacobians Jdk

(u, v), each at
a predefined disparity, d1, · · · dK . The final Jacobian is then
estimated from the multi-plane disparities as follows:

J(u, t) = r(gθ(u, t)) = max
d1,···dK

s(Jdk
(u, t), dku), (5)

where s(Jdk
(u, t), dku) shifts the Jacobian at plane k,

Jdk
(u, t), dku pixels to the left.

0px
22px

40px

40px
0px

22px

2px

d1 = 0px

shift(0px) shift(10px) shift(20px)

shift(0px) shift(-10px) shift(-20px)

Pixelwise
Max

Pixelwise
Max

Right View

Left View

d2 = 20px d3 = 40px

Figure 4. We demonstrate our multi-plane disparities with three
planes at 0, 20, and 40 pixels. Our network estimates Jacobians
on three planes, each encoding the objects with disparities in the
proximity of their pre-defined disparity. For example, the object
with 22 pixels disparity (green circle) is encoded into the plane
d2 = 20. We reconstruct the final disparity by shifting each plane
dku pixels to the left and computing the pixel wise max on the
shifted planes. For example, to reconstruct the Jacobian at the
left view (u1 = −0.5), we shift the plane at d2 = 20 equal to
-10 pixels to the left. Because we move the objects to their cor-
rect location using the shift, the objects in the encoded multi-plane
Jacobians at the left and right views are spatially close. This sig-
nificantly improves the interpolation ability of our network.

Since we use u1 = −0.5 and u2 = 0.5 as the left and
right view coordinates, through this process, the left and
right Jacobians at each plane, Jdk

(u1, t) and Jdk
(u2, t),

are shifted equal to dk/2 pixels in the opposite directions.
Therefore, as shown in Fig. 4, an object with dk pixels dis-
parity will be at the same spatial location in the encoded
left and right Jacobians at plane k, since the object will be
moved to the correct location using the shift operator. This
significantly enhances the interpolation quality as the net-
work, in this case, encodes left and right multi-plane dis-
parities that contain objects at small spatial distances.

Moreover, since the objects that are closer to the cam-
era have larger disparities, we obtain the final Jacobian by
selecting the plane with maximum disparity at each pixel
(see Eq. 5). This allows the network to reconstruct the un-
selected regions in a desired manner. The additional flex-
ibility, provided by the max operator, makes it superior to
other choices, such as summation (see comparisons in the
supplementary materials).

Our network estimating the multi-plane disparities can
be optimized using Eq. 4, with a small modification; instead
of directly estimating the Jacobian using the network, we
use the network to estimate the multi-plane disparities and
reconstruct the Jacobian using Eq. 5. However, with such
an optimization, there is no mechanism to enforce the net-
work to utilize all the planes appropriately. For example, the
network could potentially only use one of the planes to esti-
mate the left and right Jacobians. In this case, our network
will still not be able to properly interpolate the Jacobians,
as shown in Fig. 5.
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Figure 5. We show the impact of our multi-plane disparity, as well
as the per plane regularization term and per plane mask in Eq. 6.
Single-plane disparity fails to reconstruct the details during inter-
polation. Without the per plane regularization, the network does
not utilize all the planes effectively. Therefore, it is not able to pro-
duce reasonable results in the regions corresponding to the unused
planes (background in this case). Not using the per plane mask
leads to halo artifacts around foreground objects. See supplemen-
tary Fig. 5 for more detailed intermediate results.

To address this issue, we propose to apply a regulariza-
tion loss between the estimated and guiding Jacobians at
each plane. As shown in Fig. 6, we compute the per plane
guiding Jacobians by selecting disparities in the proximity
of the plane’s disparity. Specifically, to compute the guid-
ing Jacobian at plane k (i.e., J̃dk

(uj , ti)), we only select the
disparities in the range dk − l/2 and dk + l/2, where l is
the distance between consecutive disparities (e.g., 20 when
the planes are at 0, 20, 40, etc.). Our final loss using this
additional regularization is as follows:

θ∗ = argmin
θ

2∑
j=1

N∑
i=1

∥M occ ⊙ (fθ(uj , ti)− f(uj , ti)) ∥1

+λ∥r(gθ(uj , ti))− J̃(uj , ti)∥1

+γ

K∑
k=1

∥M disp
k ⊙

(
s(Jdk

(uj , ti), dkuj)− J̃dk
(uj , ti)

)
∥1.

(6)
where γ is the weight of the per plane regularization term
and we set it to 1/w (where w is the frame width) in our
implementation. Note that we use the shifted estimated Ja-
cobians in the regularization term to align them with the per
plane guiding Jacobian. Moreover, we use a per plane mask
M disp

k to ensure that this regularization is only applied in
the regions where the guiding disparity has valid content.
As shown in Fig. 6, we obtain the binary per plane mask
by setting the regions with valid content to one and the re-
maining areas to zero. Without this mask, the network will
be forced to match the guiding Jacobians, even in the areas
without a valid content. This negatively affects the quality
of the results, as shown in Fig. 5.

Blending: Using the optimized network, we can obtain
a Jacobian at any coordinate. This Jacobian can then be

Figure 6. On the top, we show the guiding disparity (leftmost)
along with the per plane guiding disparity images. On the bottom,
we show the corresponding masks for each plane.

 X-Fields Blending Ours
Figure 7. We show the interpolated images generated using the
X-Fields blending weights and our learned weights. Our approach
does not have the distracting artifacts around the boundaries.

used to obtain the flows to the left and right views using
Eq. 3. The flows in turn can be used to warp the images to
the novel coordinate. X-Fields [2] uses weight maps com-
puted based on the forward-backward flow consistency to
combine the images. However, their blending weights can-
not fully avoid introducing the residual warping artifacts to
the reconstructed image (see Fig. 7). This is particularly a
problem in stereo video interpolation since only one image
is used to reconstruct the other view. As such the blending
weights are not utilized during optimization.

To address this problem, we separately train a small net-
work on a large dataset that takes the two inputs, warped
images, as well as the corresponding flows and estimates a
weight map. Using this map we obtain the reconstructed
image at coordinate (u, ti) as:

fθ(u, ti) =
(1− c)WlIl + cWrIr
(1− c)Wl + cWr

, (7)

where c = u−u0, while Wl is the estimated weight map for
the left image and Wr = 1 −Wl. Moreover, Il and Ir are
the warped left and right views using the estimated Jacobian
at coordinate (u, ti).

4.2. Time Interpolation

The goal here is to reconstruct an image at a novel time
coordinate from the two neighboring frames. Similar to the
view synthesis case, we encode the entire stereo video into a
single neural network to ensure low storage cost. Note that
the network in this case estimates a two channel Jacobian at
each coordinate, corresponding the partial derivative of the
displacement in the x and y directions with respect to time.
To handle this application, we apply all the enhancements
from view synthesis (except multi-plane disparity, since it is
specific to view synthesis), as we observe they improve the
quality of the results. Specifically, we minimize the follow-
ing loss, which is slightly different from the loss in Eq. 4:
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Non-Uniform Coordinates

Dual Jacobians

Single Jacobian

Flow Magnitude

Figure 8. We show the frames with a black or a gray dot and the
two flows to the next and previous frames with two color coded
arrows (color representing their magnitude). Note that we are il-
lustrating the ideal flows that need to be encoded into the neural
network. Natural videos have non-linear motions, and thus it is
difficult to represent the two flows at each frame using a single
Jacobian. A straightforward way to address this problem is to
estimate two different Jacobians at each frame (dual Jacobians).
However, as discussed in Sec. 4.2, this approach (the same as sin-
gle Jacobian) will have difficulty handling motion spikes (green).
With our proposed non-uniform coordinates, we use two different
coordinates to estimate the previous and next Jacobians at each
frame. The large unused regions in-between allow the network to
smoothly accommodate motion spikes.

θ∗ = argmin
θ

2∑
j=1

N∑
i=1

∥ (fθ(uj , ti)− f(uj , ti)) ∥1

+λ∥gθ(uj , ti)− J̃(uj , ti)∥1. (8)

The main differences here are that we do not have an oc-
clusion mask M occ and our guidance Jacobian J̃ (estimated
using Zhang et al.’s approach [53]) has two channels. This
flow supervision significantly enhances the results as the
exposure in different frames varies slightly which makes it
difficult for the appearance loss (with brightness constancy
assumption) to find appropriate Jacobians. Note that we do
not use the occlusion mask, since for time interpolation, the
image at the novel coordinate is generated by combining the
warped previous and next frames. Therefore, we assume
that all the areas are visible at least in one of the neighbor-
ing frames. We also apply positional encoding to the time
coordinates (10 frequencies) and use the learned blending
weights as opposed to the weights computed by forward-
backward flow consistency [2].

Unfortunately, as shown in Fig. 9 (“Single Jacobian”),
even with the additional enhancements, our system is not be
able to produce satisfactory results in some cases. Specif-
ically, we observe that the system struggles in cases where
the motion becomes non-linear. This is because we use
three consecutive frames during optimization; specifically,
we minimize the error between f(uj , ti) and the recon-
structed frame using the previous f(uj , ti−1) and next
f(uj , ti+1) frames. The main assumption here is that the
motion is linear, i.e., a single two channel Jacobian at uj , ti
can describe the flow to the previous and next frames. How-
ever, this assumption is typically violated in natural videos.

A straightforward way to handle this problem is to esti-
mate two sets of Jacobians at each coordinate (see Fig. 8),
Jb(uj , ti) and Ja(uj , ti), where they denote the Jacobians
to the previous and next frames , respectively. The two Ja-
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Figure 9. We show two interpolated frames (top and bottom) gen-
erated using single Jacobian, dual jacobians, and our approach
with non-uniform coordinates. On the top, we show that because
of non-linearity of motion in the scene, with a single Jacobian we
generate results with severe ghosting. This problem can be re-
solved with dual Jacobians. On the bottom, we show a frame with
motion spikes. Both single and dual Jacobians fail to properly esti-
mate the large motion in this case. Our approach with non-uniform
coordinates, however, produces high-quality results in both cases.

cobians can be estimated using a single network (with a
four channel output) or two separate networks. Although
this approach can handle the cases with non-linear motions
reasonably well (see “Dual Jacobians” in Fig. 9 - top), in
some cases it produces results with severe ghosting (Fig. 9
- bottom). To understand the reason, we show the average
flow magnitude of the guidance flow (obtained with a pre-
trained network) for the consecutive frames of one view in
Fig. 10. As seen, natural videos, in particular the ones cap-
tured with handheld devices, often contain motion spikes.
Unfortunately, both the single and dual Jacobians solutions
have difficulty producing Jacobians that can properly esti-
mate such spikes. This is because the network smoothly
interpolates between the observations, and thus the spikes
will be over-smoothed.

We address this issue by proposing to encode the Jaco-
bians using non-uniform time coordinates τ (see Fig. 8).
Specifically, we estimate all the Jacobians to the next frame
(Ja) at the original time coordinate (τ = t for Ja). How-
ever, for the Jacobian to the previous frame (Jb) we shift the
coordinate closer to the previous frame, i.e., τ = t − α for
Jb, where α is set to 0.9 in our implementation. With this
transformation, we are able to effectively encode the Jaco-
bians (see Fig. 10) and produce high-quality interpolated
frames (Fig. 9). In this case, the large unused regions in-
between allow the network to smoothly ramp up and down
to and from the motion spikes.

4.3. View-Time Synthesis

Our goal here is to combine the view and time interpola-
tion systems to be able to synthesize an image at any novel
view-time coordinates given a stereo video. While we can
perform both view and time synthesis by encoding the view
and time Jacobians into one network, we observe that the
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Figure 10. We show the mean flow magnitude (obtained using a
pre-trained flow network) for the consecutive frames in a video.
As seen, natural videos often contain motion spikes, specially for
handheld cameras. Single (X-Fields) and dual Jacobians are un-
able to properly estimate these spikes. Our method with non-
uniform coordinates produces results that closely match the guid-
ance flow.
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Figure 11. Overview of our view-time interpolation system.

two types of Jacobians often conflict with each other. This,
unfortunately, negatively affects the quality of the results.

Therefore, we propose to perform the view-time synthe-
sis in two stages (see Fig. 11). Given 4 frames neighboring
the coordinate of interest (u, t), we first obtain the time in-
terpolated images at coordinates (u1, t) and (u2, t). In the
second stage, we perform view interpolation between these
two images to calculate the final image at coordinate (u, t).

5. Implementation
We set the coordinates of the left and right views to u1 =

−0.5 and u2 = 0.5, respectively. However, when pass-
ing these view coordinates to the network we scale them
down by a factor of 30 (i.e., u1 = −1/60 and u2 = 1/60),
as we empirically observe that with closer coordinates, the
network is able to better interpolate between the Jacobians.
This is because with closer coordinates the network tends
to produce intermediate Jacobians that are correlated with
the ones at the left and right views. However, after a certain
point, the interpolation quality deteriorates as we bring the
coordinates closer [11].

We use the convolutional decoder network as proposed
by Bemana et al. [2] with a capacity factor of 16 for both
view and time interpolations. Moreover, we use a UNet
with 5 downsampling/upsampling layers to estimate the
blending weights. We train the network for 10k iterations
using the Adam optimizer [23] with a learning rate of 10−4

on the Vimeo90K [52] video dataset. As the loss, we use the
L1 distance between the blended and ground truth images.

In our implementation, we further enhance the view
weight maps (Wl and Wr in Eq. 7) by computing gradient of

the flow in the x direction. We then threshold the derivative
to identify the edge regions. We expand these edges hori-
zontally by applying dilation-erosion (morphological oper-
ations) with an anisotropic kernel to create a residual mask.
Finally, we combine this residual mask with the weight map
through binary operations.

We perform our per-scene optimization for 100k itera-
tions using Adam. We start with a learning rate of 10−4 and
decrease it by a factor of 0.4 every 33k iterations to speed
up convergence.

6. Results
We compare our approach against the approaches by Be-

mana et al. [2] (X-Fields) and Du et al. [10] (NeRF+T, NeR-
Flow). We also compare against a combination of MPI (for
view interpolation) by Zhou et al. [55] and FILM by Reda
et al. [42] (for time interpolation). We call this combined
method FILM+MPI throughout this section. For X-Fields,
we use a larger network than ours to ensure the network
capacity is not a limiting factor for their performance. Du
et al. first train a NeRF with an additional input for the
time coordinate (NeRF+T) and then fine-tune it for dynamic
scenes using pre-trained flows and depth maps (NeRFlow).
We compare our method against both versions of this ap-
proach. For all the approaches, we use the source code pro-
vided by the authors. Here, we show results on a few scenes,
but more comparisons, and the videos, are provided in the
supplementary materials.

6.1. Qualitative Results

We capture a set of stereo videos with a variety of mo-
tions using a stereo GoPro camera rig. We show the results
using this camera setup in the paper, but we also test our ap-
proach using Lume Pad [26] and provide the results in the
supplementary video.

We show comparisons against several state-of-the art ap-
proaches on a few scenes in Fig. 12. For all the scenes, we
show view-time interpolation at the middle of four observed
view-time frames. As seen, other approaches produce re-
sults with noticeable ghosting and other artifacts, while our
results are sharp and have clear boundaries.

6.2. Quantitative Results

We numerically compare our approach against the other
methods on two lightfield video datasets, Sintel [24] and
LFVID [44], in terms of PSNR, SSIM [49], and LPIPS [54].
The comparisons against FILM+MPI and X-Fields are
shown in Table 1. As seen, our approach produces signif-
icantly better results than both of these methods across all
the metrics. Note that, we excluded NeRF+T and NeRFlow
from these comparisons as the camera calibration fails for
some of the sequences (some scenes are captured with a tri-
pod mounted camera).
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Figure 12. Comparison against several state-of-the-art methods on view-time interpolation. On the left we show the overlayed left and
right views for two consecutive frames neighboring the coordinate of interest.

Table 1. View-time synthesis results on Sintel [24] and
LFVID [44] datasets.

Sintel LFVID

PSNR SSIM LPIPS PSNR SSIM LPIPS

FILM+MPI 24.39 0.782 0.1423 18.23 0.496 0.3046

X-Fields 25.38 0.814 0.1263 19.33 0.552 0.2365

Ours 26.33 0.860 0.0989 23.49 0.696 0.1345

6.3. Training and Inference Times

We compare the training (optimization) and inference
speed of our approach against the other methods. The train-
ing times are obtained on a machine with an NVIDIA V100
GPU, while the inference speed is measured on a machine
with a 2080Ti GPU. We provide the timings for a stereo
video with 100 360p frames. Our approach takes roughly
120 minutes to train our view and time interpolation net-
works. In comparison, X-Fields requires 170 minutes of
training, while NeRF+T and NeRFlow take around 5 and
25 hours, respectively. At run-time, our approach takes 44
ms to generate a novel view-time image. In contrast, X-
Fields takes 26 ms, while NeRF+T and NeRFlow require
17 seconds to generate a single image. Note that, X-Fields
is faster as it performs view-time synthesis using a single
network, while ours requires evaluating the Jacobians us-
ing two separate networks. However, we believe given the
improvement in quality, this is justified. Nevertheless, the
performance can be significantly improved by optimizing
the network architecture and implementing the approach on
efficient frameworks like tiny-cuda-nn [33].

Note that, MPI does not perform any optimization and
can render novel images in real-time given the MPI for each
frame. However, the MPI for each frame is around 120 MB
(12 GB for 100 frames), and thus their method is signifi-
cantly storage and memory intensive. In comparison, our
network takes around 12 MB of storage space for the en-
tire 100 frames Additionally, MPI only performs view syn-
thesis and we augmented this method with FILM, which
takes roughly 0.5s per frame, to be able to handle view-

time interpolation. While there are other approaches, such
as RIFE [18], that can perform time interpolation at real-
time, they often produce results with lower quality.

6.4. Limitations

Our approach uses Jacobian supervision, and thus the
performance of our system depends on the quality of the
guidance Jacobians (estimated with Li et al. [27] and Zhang
et al. [53]). As such, poor quality guidance Jacobians can
negatively affect our optimization. However, as discussed,
pure per-scene optimization for such an ill-posed problem
is not effective and incorporating the results of networks,
trained over a large number of scenes is necessary. Addi-
tionally, our method will not be able to properly reconstruct
regions that are occluded in both neighboring frames, e.g.,
left and right views. Such information, however, might ex-
ist in other frames in the video. Therefore, addressing this
problem by combining the NeRF-based approaches with
our method would be an interesting future research.

7. Conclusion

We present an approach to generate images from any
novel view-time coordinates from an input stereo video. We
analyze and identify the problems with using X-Fields in
our application. We make two key observations based on
our analysis: 1) the network struggles to interpolate the Ja-
cobians for cases with large disparities and 2) the main as-
sumption of X-Fields is linear motion which is violated in
natural videos. Based on these observations, we propose
multi-plane disparities and non-uniform time coordinates to
improve the results. We demonstrate that our method sig-
nificantly outperforms the state of the art.
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