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Abstract

Bird’s Eye View (BEV) semantic segmentation is a
critical task in autonomous driving. However, existing
Transformer-based methods confront difficulties in trans-
forming Perspective View (PV) to BEV due to their unidi-
rectional and posterior interaction mechanisms. To address
this issue, we propose a novel Bi-directional and Early In-
teraction Transformers framework named BAEFormer, con-
sisting of (i) an early-interaction PV-BEV pipeline and (ii)
a bi-directional cross-attention mechanism. Moreover, we
find that the image feature maps’ resolution in the cross-
attention module has a limited effect on the final perfor-
mance. Under this critical observation, we propose to en-
large the size of input images and downsample the multi-
view image features for cross-interaction, further improving
the accuracy while keeping the amount of computation con-
trollable. Our proposed method for BEV semantic segmen-
tation achieves state-of-the-art performance in real-time in-
ference speed on the nuScenes dataset, i.e., 38.9 mIoU at 45
FPS on a single A100 GPU.

1. Introduction
Recently, pure vision-based perception methods [16, 18,

25, 38] have occupied a significant position in autonomous
driving due to their higher signal-to-noise ratio and lower
cost compared to LIDAR-based methods [6, 14, 35, 39, 42].
Among them, Bird’s-Eye-View (BEV) perception has be-
come the mainstream method. The BEV representation
learning in vision-centric autonomous driving is to take con-
secutive frames from multiple surrounding cameras as input
and transform the pixel panel view to Bird’s-Eye-View to

∗ This work was done during Cong Pan’s internship at Horizon
Robotics. B Zhaoxiang Zhang is the Corresponding author.

conduct perception tasks such as 3D object detection, map-
view semantic segmentation, and motion prediction.

The BEV representation offers several inherent advan-
tages for visual perception. Firstly, it facilitates the inte-
gration of pure vision-based results with those from other
modalities. Secondly, it provides a natural means to unify
and express different perspectives under BEV to simplify
the subsequent module development and deployment, such
as planning and control. Finally, the object representation
in BEV circumvents the common scale and occlusion diffi-
culties that arise in 2D tasks.

The enhancement of BEV perception performance
hinges on the rapid and graceful acquisition of road and ob-
ject feature representations. Figure 1 illustrates that there
are two categories of BEV perception pipelines based on
distinct interaction mechanisms: (a) Late-interaction and
(b) Middle-interaction. The late-interaction pipeline [24]
employs independent perception on each camera view, fol-
lowed by temporal and spatial fusion of the results into a
unified BEV space. Recently, the most widely used pipeline
is the middle-interaction [16, 18,25, 38,41]. It concatenates
all camera inputs as a whole into the network, transforms
them into the BEV space, and then outputs the result di-
rectly. The middle-interaction pipeline comprises a well-
defined workflow for feature extraction, space transforma-
tion, and BEV space learning. Nevertheless, the transfor-
mation of PV to BEV using these two interaction strategies
remains arduous. To tackle this challenge, we propose a
novel paradigm: (c) Early-interaction method, which de-
serves further attention from the research community.

Our proposed early-interaction method offers distinct
advantages when compared to the two existing strategies.
Firstly, the image-space backbone only extracts image fea-
tures with different resolutions sequentially without any in-
formation integration across resolutions. In contrast, our
proposed method advocates for the integration of global
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Figure 1. View-transformation taxonomy. The illustrations of the previous (a) late-interaction pipeline, (b) middle-interaction pipeline, and
(c) our proposed early-interaction pipeline.

contextual information and local details, which enables the
delivery of richer semantic information to the BEV space.
Secondly, the computation of the core module in the exist-
ing strategies is predominantly occupied by the image-space
backbone, which does not incorporate any BEV space in-
formation. Moreover, the information flow in the forward
processing of late-interaction and middle-interaction strate-
gies is unidirectional, with information flowing from the
image space to the BEV space, while the information in
the BEV space does not effectively affect the features in
the image space. To address these issues, we suggest that
the view transformation of image features to BEV features
should occur not only after the image feature extraction but
can be converted gradually during the extraction process.
This way, the information flow can implicitly interact bi-
laterally, aligning features in the PV and BEV. Ultimately,
the core challenge of vision-based BEV perception is the
transformation from image space to BEV space. We pro-
pose a solution by distributing the learning of cross-space
alignment throughout the entire structure, with the image
network learning not only good feature representation but
also cross-space alignment.

To this end, we propose a novel framework named
Bi-directional and Early Interaction Transformers (BAE-
Former) to effectively aggregate multi-scale image features
into a better BEV feature representation and perform map-
view semantic segmentation. Firstly, we initialize grid-
shape BEV Queries and encode the camera parameters into
positional embeddings, following the CVT [41] method.
Subsequently, we utilize the cross-attention mechanism in
Transformer [8, 37] to interact BEV features with multi-

scale image features in both directions. This bi-directional
interaction involves the use of an unshared attention map to
update BEV and image features simultaneously, with image
features from the previous scale influencing the extraction
of the following scale’s features. Furthermore, we observe
that the resolution of the multi-scale feature maps during
the interaction has a negligible effect on the final accuracy.
As such, we can maintain the full amount of interaction
while managing the number of parameters and computa-
tional costs by increasing the input image resolution and
downsampling the image features at each scale before inter-
action.

Our contributions can be summarized as follows:

• We propose a novel framework, Bi-directional and
Early Interaction Transformers (BAEFormer), to
achieve a better view transformation from image fea-
ture space to BEV feature space.

• We find that the image features’ resolution during
the interaction does not significantly influence perfor-
mance, so we can increase the input image resolution
and downsample the image features at each scale be-
fore an interaction. This will lead to superior per-
formance while simultaneously controlling parameters
and computational costs.

• We conduct extensive experiments on nuScenes [3]
and Lyft [13] datasets with comprehensive ablation
studies, demonstrating the efficiency and effective-
ness of our proposed BAEFormer method. We
achieve state-of-the-art performance at real-time infer-
ence speed on BEV semantic segmentation.
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2. Related Work

Most BEV Semantic Segmentation works follow late-
interaction or middle-interaction pipelines to extract fea-
tures from monocular or multi-view images and then con-
vert features from PV to BEV. Pure vision-based view trans-
formation strategies are different and can be divided into
geometry-based methods and network-based methods.

2.1. Geometry-based BEV Semantic Segmentation

Geometry-based BEV Semantic Segmentation meth-
ods leverage geometric projection to transform PV-BEV.
IPM [22] is the earliest work that utilizes a homography
matrix to define the mapping between the camera and the
ground planes. Some methods [1, 32] follow IPM to warp
the front-view image onto the ground plane via a homogra-
phy. Since IPM is based on the strong assumption of a flat
ground plane, which usually leads to distortion for objects
above the ground. To alleviate this shortcoming, Bridge-
GAN [43] takes the homography view as an intermediate
view and proposes a multi-GAN-based model to learn the
cross-view translation. Cam2BEV [27] trains a BEV de-
coder with a synthetic dataset to refine the IPM projection.

Another line of works [12, 23, 26, 29, 33] explicitly esti-
mates depth to lift 2D features to 3D space and then splat
them in BEV space. OFT [29] maps image-based features
into an orthographic 3D space. It assumes that the distri-
bution is uniform, i.e., all features along the ray are identi-
cal. Instead of predicting a uniform distribution along the
depth for each image pixel, LSS [26] learns a categorical
distribution and the context vector to better approximate
the proper depth distribution. Recently, FIERY [12] has
extended LSS [26] from single timestep to multi-timestep
observation to do occupancy forecasting.

2.2. Network-based Semantic Segmentation

An alternative to explicit geometric projection is to
model the view transformation implicitly in a data-driven
way. To this end, the neural network serves as a map-
ping function from PV to BEV. Some methods [4, 7, 11,
15, 21, 24, 28, 30, 40, 44] use multilayer perceptron (MLP)
to learn implicit representations of camera calibrations.
VED [21] predicts a semantic occupancy grid with a vari-
ational encoder-decoder network directly from an image.
VPN [24] uses MLP-based modules to aggregate the infor-
mation from multiple first-view observations with different
angles and modalities and outputs the top-down-view se-
mantic map. PON [28] uses a feature pyramid to augment
the high-resolution features with spatial context from lower
pyramid layers and uses a stack of dense transformer lay-
ers to map the image feature into BEV. HDMapNet [15]
proposes a feature projection module from PV to BEV that
consists of both neural feature transformation to model a

3D environment implicitly and geometric projection to con-
sider the camera extrinsic explicitly. PYVA [40] exploits
the cycle consistency between views to fully use their corre-
lation to strengthen the cross-view transformation module.
HFT [44] designs a hybrid feature transformation consisting
of IPM-based and MLP-based branches to make full use of
geometry information and capture global context.

Other works [2,9,16,19,25,38,41] query corresponding
image features through the attention mechanism in Trans-
formers, which allows learning of long-range dependencies,
to conduct a top-down framework. Inspired by the pioneer-
ing 2D detection framework DETR [5], DETR3D [38] uses
a geometry-based reference points projection and feature
sampling operation to refine the learnable sparse queries it-
eratively. Following [38], BEVFormer [16] designs a dense
grid-shape learnable BEV queries along with a spatial de-
formable cross-attention layer and a temporal self-attention
layer to lookup spatial features from cross cameras and
temporal features from history BEV, respectively. Also,
BEVSegFormer [25] utilizes deformable attention to trans-
form multi-view image features to BEV representations for
semantic map construction. LaRa [2] proposes latent rep-
resentations of multi-view images, which are processed by
a series of self-attention blocks, and then achieves BEV
features through querying the latent space with a cross-
attention module. CVT [41] uses a camera-aware cross-
view attention mechanism that equips each camera-view
feature with positional embeddings that depend on its intrin-
sic and extrinsic calibration. Though similar to our work,
a direct cross-attention between multi-scale multi-camera
image features and BEV grid in CVT [41] is computation-
ally expensive, which limits the extensibility of the mod-
ule. Meanwhile, the transformer-based methods mentioned
above rely on a fixed structure that involves extracting fea-
tures from PV images before transforming them to BEV
space. This approach may lead to insufficient interaction
between the image space and the BEV space, resulting in a
homogeneous flow of information.

3. Method

3.1. Framework overview

As shown in Figure 2, we design a simple yet effective
architecture that transforms PV to BEV for BEV semantic
segmentation. Given images from multiple camera views
along with their corresponding camera intrinsic and extrin-
sic parameters, the approach is designed to estimate a binary
semantic segmentation mask in the map-view embedding
coordinates. The framework consists of two key compo-
nents: (i) a bi-directional early interaction encoder that si-
multaneously extracts image features and transforms them
from PV to BEV; and (ii) a decoder that upsamples low-
resolution BEV features to high-resolution BEV features,
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Figure 2. Overall framework of our proposed EBAFormer approach. We extract multi-view image features across multiple scales by
EfficientNet-B4. Using known camera pose and intrinsics, we construct a camera-aware positional embedding. The encoder layer contains
Bi-CA (Bi-directional Cross-view Attention) and CA (Cross-view Attention). Bi-CA is used to refine image features and grid-shaped BEV
queries simultaneously, and CA is only used to refine BEV queries. Finally, a lightweight convolutional decoder upsamples the refined
map-view embedding and produces the final segmentation output.

which is pertinent for the downstream task.
Specifically, we first extract high-resolution (4×) multi-

view image features by early stage in EfficientNet-B4 [34]
and downsample the 4× features to 16× through adap-
tive pooling module. Using known camera pose and in-
trinsics, we construct a camera-aware positional embedding
both for image embeddings and BEV embeddings follow-
ing CVT [41]. Secondly, we use a bi-directional cross-
attention module to update multi-view image features and
BEV features at the same time. Then we recover the scale
of the refined multi-view image features through an upsam-
ple module and use it as the input of the middle stage in
EfficientNet-B4 [34] to extract lower resolution (8×) multi-
view image features. By analogy, the BEV features are in-
teracted with a series of multi-view image features at dif-
ferent scales to obtain the refined BEV features. Finally, a
lightweight convolutional decoder upsamples the advanced
BEV features to generate the final segmentation results. The
entire network is end-to-end differentiable.

Module # Parameters(K)
Encoder.image-backbone 340
Encoder.view-transformation 306
Encoder.BEVEmbedding 80
Encoder.others 71.2
Decoder 244

Table 1. Comparison of parameters of different modules in our
baseline model [41].

3.2. Input and output modeling

Our model starts with a set of images from N views
(In,Kn, Rn, tn)

N
n=1, with In ∈ RH×W×3 the image pro-

duced by camera n, Kn ∈ R3×3 the intrinsics, Rn ∈ R3×3

and tn ∈ R3 the extrinsic rotation and translation, respec-
tively. H and W mean the height and width of the input
images.

Following [12, 26, 41], we use a pretrained EfficientNet-
B4 [34] as a shared image extractor E to obtain multi-view
image features Fn = E (In) ∈ Rh×w×c. These spatial
feature maps in RN×h×w×c are then rearranged as a se-
quence of feature vectors in RN×(hw)×c, where c means
the number of channels. Also, we predefine a group of
grid-shaped learnable parameters Qbev ∈ Rhbev×wbev×cbev

as the queries of BEV features. Following [41], the re-
spective camera-aware position embeddings are added to
the image feature vectors and BEV embeddings to retain
positional information. The final step is to upsample the
BEV features Qbev to a specified resolution with a de-
coder and predict the binary bird’s-eye-view semantic map
ŷ ∈ {0, 1}hbev ×wbev ×C .

3.3. Early Interaction

As shown in Table 1, the core (encoder) part of the net-
work is composed of the image backbone and the view
transformation modules, with the former accounting for
nearly half of the total parameters, despite only being used
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to extract image features devoid of any BEV spatial infor-
mation. To address this, we merge the image backbone and
view transformation modules using a bi-directional cross-
attention mechanism, forming the proposed early interac-
tion module, which consists of three layers obtaining 4×,
8× and 16× resolutions of image feature maps (f4×, f8×
and f16×) from the pretrained model, respectively.

After bi-directional and early interaction, the resulting
refined multi-view image feature maps, f ′

4× and f ′
8×, re-

place the original features and serve as the input to the
subsequent stage. Our multi-scale early interaction method
leverages the hierarchical structure of pretrained models to
integrate multi-scale image features. Additionally, the BEV
spatial information is incorporated into the backbone net-
work, enabling the early interactional backbone to partially
assume the function of heterogeneous-space alignment.

3.4. Bi-directional Cross-attention

As shown in Figure 3, our proposed transformer block
with a bi-directional cross-attention module contains two
branches that refine multi-view image features and BEV
features, respectively. Each branch follows the simple and
standard Transformer Encoder structure in ViT [8].

Specifically, the multi-view spatial feature maps are
first transformed into queries Qf ∈ RN×(hw)×c, keys
Kf ∈ RN×(hw)×c and values Vf ∈ RN×(hw)×c, where
c indicates their dimensions. Similarly, the initialized
BEV embeddings are transformed into queries Qbev ∈
R(hbevwbev)×cbev , keys Kbev ∈ R(hbevwbev)×cbev and values

Multi-Head 
Bi-Cross-Attention

MLP

Å Å

Multi-Head 
Bi-Cross-Attention

Qf Qbev Kf VfKbev Vbev

Å Å

LN

MLP

LN

!"#$%&' !(%&'

*̂(% *̂"#$%

!(% !"#$%

LN LN

+,-+.- +/-+,012+.012 +/012

Figure 3. Overview of transformer block with bi-directional cross-
attention. LN denotes layer normalization and MLP denotes multi-
layer perceptron. WQ, WK , and WV denote transformation pa-
rameters to generate queries, keys and values, respectively.

Vbev ∈ R(hbevwbev)×cbev , where cbev indicates its dimen-
sions. The bi-directional cross-attention for image features
Zf and BEV features Zbev can be computed as

BiCAZf (Zf , Zbev) = softmax

(
QfK

T
bev√
c

)
Vbev, (1)

BiCAZbev (Zbev, Zf ) = softmax

(
QbevK

T
f√

cbev

)
Vf . (2)

The entire transformer block can be formulated as

Ẑl
f = MHBiCA

(
LN
(
Zl−1

f

)
,LN

(
Zl−1

bev

))
+ Zl−1

f , (3)

Zl
f = MLP

(
LN
(
Ẑl

f

))
+ LN

(
Ẑl

f

)
, (4)

Ẑl
bev = MHBiCA

(
LN
(
Zl−1

bev

)
,LN

(
Zl−1

f

))
+ Zl−1

bev , (5)

Zl
bev = MLP

(
LN
(
Ẑl

bev

))
+ LN

(
Ẑl

bev

)
, (6)

where Zl−1
f and Zl−1

bev denote inputs for the lth transformer
block, Zl

f and Zl
bev denote the corresponding outputs for

the lth transformer block. LN(·) denotes layer normaliza-
tion [36], MLP(·) denotes 2-layer fully connected neural
network with a GELU non-lineraity [10], and MHBiCA(·)
is BiCA(·) defined in Equation 1 and 2 with multi-head
cross attention.

Since it is challenging to transform PV to BEV, the
exchange of information between image space and BEV
space is crucial. Our proposed bi-directional cross-attention
mechanism offers an implicit means of constraining this in-
formation flow. Not only do image features impact BEV
features, but in turn, progressively refined BEV features
promote a tailored image feature extraction process.

4. Experiments
4.1. Dataset and Evaluation Metrics

Dataset. We evaluate our proposed framework on the chal-
lenging nuScenes [3] and Lyft [13] datasets. NuScenes
contains 1000 scenes that are captured from four locations
in Boston and Singapore under various weather conditions
and at different times of the day. Each scene lasts roughly
20 seconds and the key samples are annotated 2 Hz. The
dataset includes RGB images from 6 cameras with a 360°
horizontal field of view, and there is a slight overlap be-
tween the cameras’ fields of view. Camera intrinsics and
extrinsics are provided for each camera in every scene. Fol-
lowing [41], we generate the ground-truth for our binary
semantic segmentation task by rendering the raw annota-
tions, the 3D bounding boxes, into the discretized BEV of
scenes. In addition, following [26], 48 of the Lyft scenes
are separated to obtain 6048 samples for validation.
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Method visibility > 0% visibility > 40% # Parameters(M) FPSSetting 1 (IoU%) Setting 2 (IoU%) Setting 1 (IoU%) Setting 2 (IoU%)
VPN [24] 25.5 - - - 18 -
STA [31] 36.0 - - - - -

FIERY Static [12] 37.7 35.8 - - 7.4 8
BEVFormer [16] - 43.2 - - 68.1 2 †

PON [28] 24.7 - - - 38 30
LSS [26] - 32.1 - - 14 25
CVT [41] - - 37.5 36.0 5 48 †

BAEFormer (224×480) 39.5 36.0 42.0 38.9 5.6 45
BAEFormer (504×1056) 41.2 37.8 44.2 41.0 5.6 24

Table 2. Vehicle map-view segmentation on nuScenes. Setting 1 refers to the 100m×50m at 25cm resolution setting and Setting 2 refers to
the 100m×100m at 50cm resolution setting. Different visibility levels of vehicles (0% or 40%) are considered for training and validation.
For a fair comparison, † denotes our evaluated inference speed on a single A100 GPU, which is faster than the ones reported in the original
paper. The top and bottom rows correspond to the non-real-time and real-time models.

Evaluation. We utilize Intersection-over-Union (IoU) score
between the predicted results and the ground-truth BEV la-
bels as the main performance measure. Setting 1 refers to
the 100m×50m at 25cm resolution setting proposed by [28]
and Setting 2 refers to the 100m×100m at 50cm resolution
setting proposed by [26]. All ablation studies are conducted
under Setting 2 with 40% visibility level.

4.2. Implementation Details

Architecture. The input images are scaled to 224×480 un-
less specified otherwise. We feed the input multi-view im-
ages to EfficientNet-B4 [34] and obtain multi-scale image
feature maps - (56, 120), (28, 60) and (14, 30) with stride
4, 8, and 16, respectively. The initial map-view embed-
ding is a tensor of learnable parameters wbev ×hbev × cbev ,
where wbev = hbev = 25. All the dimensions of image
features and BEV features are set to c = cbev = 128. We
use multi-head attention with four heads and an embedding
size dhead = 64. The decoder consists of three bilinear up-
sample and convolutional layers to upsample the last BEV
features to the final output size. Each decoder layer enlarges
the BEV feature size by a factor of 2 up to a final output res-
olution of 200× 200, corresponding to a 100× 100 meters
area centered around the ego-car.
Training. We use the AdamW [20] optimizer with a con-
stant learning rate of 4e-3 and a weight decay of 1e-7. We
train our model on 4 Nvidia A100 GPUs with a total batch
size of 16. All inference speeds are given on a single Nvidia
A100 GPU. The model is optimized by a Focal Loss [17]
with our predicted soft segmentation maps and the binary
ground-truth.

4.3. Comparison with previous works

In Table 2, we compare IoU performances, parameters,
and inference speed of our proposed BAEFormer under two
settings with the previous competitive works on vehicle
BEV segmentation. Though BEVFormer [16] achieves high
performance, it is time-consuming with a huge model size

of up to 68.1M parameters. Ours with large input image res-
olution (504×1056) runs 12× faster than BEVFormer [16]
and is approximately 1

12 of its size.

Method nuScenes Lyft
Veh. Driv. Veh. Driv.

OFT [29] 30.1 71.7 40.43 -
LSS [26] 32.1 72.9 44.6 -
CVT [41] 36.0 74.3 45.4† 80.2†

BAEFormer (224×480) 38.9 76.0 46.6 82.8

Table 3. IoU for vehicles and driveable area on nuScenes and Lyft
datasets under Setting 2. † denotes our implementation.

Our proposed BAEFormer can run at 45 FPS on A100
GPU with 42.0 mIoU for Setting 1 and 38.9 mIoU for Set-
ting 2, which is 4.5/2.9 points higher for Setting 1/2 than the
real-time model CVT [41], respectively. Under larger input
image resolution (504 × 1056), our BAEFormer is 6.7/5.0
points higher for Setting 1/2 than CVT [41].

Also, Table 3 shows that our BAEFormer outperforms
all alternative approaches for both vehicles and driveable
area on nuScenes [3] and Lyft [13] datasets. Specifically,
BAEFormer is 1.7 points higher with the same input res-
olution (224 × 480) for driveable area than CVT [41] on
nuScenes. And our BAEFormer is 1.2/2.6 points higher for
vehicle/driveable area than CVT [41] on Lyft.

4.4. Ablation Study

4.4.1 Ablations on different interaction methods

Table 4 illustrates different interaction methods for vehicles
on nuScenes [3] dataset. (a) We reimplement CVT [41]
and use 4×, 8×, and 16× features for interaction as our
baseline, which is a unidirectional and posterior interaction
method. (b) Only refining different scales of multi-view im-
age features in cross-attention modules and using the same
query for each module. The updated multi-scale features are
taken and interacted with the BEV queries layer by layer.
(c) After extracting multi-scale image features through a
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Early Interaction BiCA mIoU(%)
(a) Baseline - - 37.3

(b) Baseline + EI ✓ - 37.6
(c) Baseline + BiCA - ✓ 37.4
(d) Our BAEFormer ✓ ✓ 38.9

Table 4. Ablation studies for different interaction methods for ve-
hicles on nuScenes.

4× 8× 16× Baseline BAEFormer
(a) ✓ - - 22.9 22.0
(b) - ✓ - 32.2 32.2
(c) - - ✓ 35.8 36.0
(d) ✓ ✓ - 33.7 36.4
(e) ✓ - ✓ 37.0 37.8
(f) - ✓ ✓ 36.8 38.4
(g) ✓ ✓ ✓ 37.3 38.9

Table 5. Ablation studies for the combinations of different image
feature scales for vehicles on nuScenes.

4× 8× 16× input resolution mIoU(%) Memory(GB)
(a) CA - - 224×480 22.9 11.5
(b) - CA - 224×480 32.2 6.3
(c) - - CA 224×480 35.8 6.4
(d) CA CA - 224×480 33.7 13.4
(e) CA - CA 224×480 37.0 11.4
(f) - CA CA 224×480 37.0 5.7
(g) CA CA CA 224×480 37.3 13.8
(h) CA CA CA 296×640 37.7 15.6
(i) CA CA CA 372×800 38.5 24.2

4×→16× 8× 16× input resolution mIoU(%) Memory(GB)
(j) CA CA CA 504×1056 38.8 23.8
(k) BiCA BiCA CA 224×480 38.9 8.0
(l) BiCA BiCA CA 296×640 39.2 12.2
(m) BiCA BiCA CA 372×800 39.8 18.9
(n) BiCA BiCA CA 504×1056 41.0 24.0

Table 6. Combinations of different input resolutions and different
image feature scales for vehicles on nuScenes. (a)-(j) is based on
the baseline model (interaction through CA) and (k)-(n) is based
on BAEFormer model (interaction through BiCA). Memory is
measured on A100 GPU with batch size 4. 4× image features in
(j)-(n) are all downsampled to 16×.

pretrained image backbone, both multi-view image fea-
tures and BEV features are updated by bi-directional cross-
attention modules. Therefore, the image backbone is fine-
tuned with BEV-space information and without inter-scale
information. (d) Our proposed BAEFormer method with
Bi-directional cross-attention and early interaction mod-
ules. The mIoU performance denotes that our proposed
BAEFormer method not only fully integrates inter-scale in-
formation to obtain a better semantic representation but also
achieves better spatial alignment through bi-directional con-
straints on the flow of information in heterogeneous spaces.

4.4.2 Ablations on different scales and resolutions
Combination of different scales. Table 5 shows the combi-
nations of different resolutions. The results show that 16×

CA Bi-CA mIoU(%)
(a) 8×,16× 4× 37.5
(b) 4×,16× 8× 38.3
(c) 16× 4×,8× 37.8
(d) 8×→16×,16× 4× 37.2
(e) 4×→16×,16× 8× 38.6
(f) 8×,16× 4×→16× 37.6
(g) 4×,16× 8×→16× 37.0
(h) 16× 4×→16×, 8×→16× 37.9
(i) 16× 4×→16×, 8× 38.9
(j) 8×→16×,16× 4×→16× 36.8
(k) 4×→16×,16× 8×→16× 38.3

Table 7. Ablation studies for the combinations of different scales
for standard cross-attention (CA) and our proposed bi-directional
cross-attention (Bi-CA) mechanisms for vehicles on nuScenes.

resolution image features are the most important in the base-
line and our proposed models. Moreover, the more scales
of multi-view image features we have, the better the perfor-
mance of our model compared to the baseline model.
Combination of different resolutions and scales. Table 6
illustrates mIoU performance and memory usage of models
with different input resolutions and image feature scales.
However, the A100 GPU with 40G available memory can-
not cover the entire model when the input resolution of the
baseline model is at its maximum (504× 1056). Therefore,
as shown in (j), we can get better performance while keep-
ing the computation manageable through downsampling the
4× features to 16×. As shown in (j)-(n), the resolution of
the input images during the interaction does not have much
impact on the final accuracy. Also, as the input image res-
olution continuously increases, the baseline models and our
proposed models can both obtain higher accuracy. So we
can keep this full amount of interaction within a manageable
number of parameters and computational costs by down-
sampling the image features at each scale.

4.4.3 Ablations on combinations of CA and Bi-CA

Table 7 illustrates the combination of different scales
for standard cross-attention (CA) and our proposed bi-
directional cross-attention (Bi-CA) mechanism. From the
results in (b), (e), (i), and (k) we can see that applying Bi-
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0 25 50 75
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Io

U

Minimum distance (m)

CVT

Ours

Figure 4. A comparison of model performance v.s. distance to the
ego-car between CVT and ours.
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Visualization

(a) multi-view images (b) BEV_gt (c) BEV_pred
baseline model

(d) BEV_pred
ours

Figure 5. Qualitative results of different models on nuScenes. (a) shows the 6 camera views surrounding the vehicle. The top 3 views
are front-facing and the bottom 3 views are back-facing. (b) shows the ground-truths map-view semantic segmentation for vehicles and
driveable areas. (c) shows the BEV semantic segmentation prediction results of the baseline model for vehicles. (d) shows the BEV
semantic segmentation prediction results of our proposed model for vehicles. To clarify, the driveable areas in (c) and (d) are ground-
truths.

CA method on 8× multi-view image features will achieve
better performance. As shown in (d)-(e) and (f)-(k), the in-
put resolution of image features of Bi-CA module is more
important than that of the standard CA module.

4.5. Accuracy vs distance

As shown in Figure 4, we evaluate how well our model
performs as the distance to the ego-car increases. In this
experiment, all predictions that are closer than a certain dis-
tance to the ego-car are ignored. The results show that our
method not only outperforms CVT at close-by distances but
also outperforms CVT at longer ranges.

4.6. Qualitative Results

We show the BEV visualization of our proposed model
for BEV semantic segmentation in Figure 5. Our proposed
bi-directional cross-attention and early interaction model is
effective in reducing the number of missed near objects of
ego-car (red circles) compared to the baseline model, and
can also perceive distant objects of ego-car (green circles),
further illustrating the perceptual ability of our approach.

5. Conclusion
In this paper, we propose a novel framework for BEV

semantic segmentation called BAEFormer, which utilizes

a Bi-directional and Early Interaction Transformers ap-
proach. Firstly, we employ a bi-directional cross-attention
mechanism to establish improved cross-space alignment by
imposing bi-directional constraints on information flow in
the heterogeneous space of image feature and BEV feature
spaces. Secondly, we utilize the early interaction method to
incorporate inter-scale information and achieve a more re-
fined semantic representation. Additionally, we make a cru-
cial observation that augmenting the image resolution in the
cross-attention module has a limited impact on final perfor-
mance but significantly increases computational overhead.
Thus, we propose the enlargement of input images, fol-
lowed by downsampling for cross-interaction, to enhance
accuracy while maintaining computational efficiency. Em-
pirical evaluations conducted on nuScenes and Lyft datasets
reveal that our approach significantly surpasses real-time
competitors.
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