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Abstract

Image retrieval plays an important role in the Inter-
net world. Usually, the core parts of mainstream visual
retrieval systems include an online service of the embed-
ding model and a large-scale vector database. For tra-
ditional model upgrades, the old model will not be re-
placed by the new one until the embeddings of all the im-
ages in the database are re-computed by the new model,
which takes days or weeks for a large amount of data.
Recently, backward-compatible training (BCT) enables the
new model to be immediately deployed online by making the
new embeddings directly comparable to the old ones. For
BCT, improving the compatibility of two models with less
negative impact on retrieval performance is the key chal-
lenge. In this paper, we introduce AdvBCT, an Adversar-
ial Backward-Compatible Training method with an elastic
boundary constraint that takes both compatibility and dis-
crimination into consideration. We first employ adversarial
learning to minimize the distribution disparity between em-
beddings of the new model and the old model. Meanwhile,
we add an elastic boundary constraint during training to
improve compatibility and discrimination efficiently. Exten-
sive experiments on GLDv2, Revisited Oxford (ROxford),
and Revisited Paris (RParis) demonstrate that our method
outperforms other BCT methods on both compatibility and
discrimination. The implementation of AdvBCT will be pub-
licly available at https://github.com/Ashespt/AdvBCT.

1. Introduction
Image retrieval brings great convenience to our daily life

in various areas such as e-commerce search [8, 16], face
recognition [17, 32], and landmark localization [13, 24].
With the rapid development of deep learning, visual re-
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trieval systems develop towards larger models and richer
databases to provide people with better services. Most mod-
ern visual retrieval systems include two core parts: (i) an
online service of the embedding model which maps an in-
put image to a high-dimensional vector, i.e., the embedding,
and (ii) a large-scale vector database which stores the em-
beddings of the gallery set and is responsible for similarity
search when a query image arrives. During the lifetime of
the system, new models with better performance are trained
and then deployed online to replace the old ones. Unfor-
tunately, the embeddings of the query images extracted by
the new model are not compatible with the old ones in the
database in most cases. As a result, the vector database must
be rebuilt by extracting embeddings for the whole gallery
set with the new model. This process is called backfill-
ing [18]. In general, practical industrial applications con-
taining a database with millions to billions of images take
days or even weeks for backfilling. During that time, the old
model and database must be kept online to handle queries.
This so-called cold-refresh [30] model upgrade process is
shown in Fig. 1a.

Recently, to save resources and simplify the complex
backfilling process, backward-compatible learning was pro-
posed [18]. Backward-compatible learning aims to ensure
the compatibility of embedding representations between
models. As shown in Fig. 1b, the new model can directly
replace the old one and the embeddings of images in stock
are updated on-the-fly. With the hot-refresh model-update
strategy, the system only needs to maintain one service and
one database at a time, effectively reducing the required re-
source during backfilling.

Meanwhile, these hot-refresh model upgrades also pose
new challenges for visual search systems. The retrieval per-
formance during backfilling reflects the compatibility be-
tween models, which should not degrade compared to the
old system. However, making the new model perfectly
back-compatible with the old one leaves no room for im-
provement on the retrieval task. The ultimate goal of the
compatible learning is to enable the compatibility between
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(a) The process of the traditional upgrade. (b) The process of the compatible upgrade.

Figure 1. The processes of updating online systems on different models. Best viewed in color.

Figure 2. Distributions visualization of the old embeddings and
new embeddings on RParis without compatible training by t-SNE
[20]. Triangles represent old embeddings and circles represent
new embeddings. The old embeddings are extracted by the model
trained on 30% data of GLDv2 while the new embeddings ex-
tracted by the model trained on 100% data of GLDv2. The em-
beddings in the same color belong to same class.

the new model and the old model while keeping the perfor-
mance gain of the back-compatible trained new model as
close as possible to that of the independently trained new
model. When evaluating BCT methods, both the compat-
ibility between models and the discrimination of the new
model for the retrieval task must be taken into account.

The incompatibility between models results from the
discrepancy of the embedding distributions of the models,
which is illustrated in Fig. 2. Most of the previous works
in BCT [14, 30, 31] narrow the distribution gap by adding
some regularization losses involving the old and the new
embeddings. The main idea of these methods is to pull
the new and old embeddings of the same class closer and
to push the new and old embeddings of different classes
apart from each other in a metric learning manner. Another
way to minimize the distribution discrepancy is adversarial
learning, which was successfully applied in domain adapta-
tion [2,5]. We decide to combine the metric learning and the

adversarial learning as they measure and minimize the dis-
crepancy between distributions in different ways, and this is
complementary for compatible learning in our intuition.

Some works [23, 30] design the loss for the compatibil-
ity in a point-to-point manner, which is sensitive to outliers
in the training data. Other works [14, 18] propose point-
to-set losses to address the issues by loosely constraining
the new embeddings inside the class boundary estimated by
the old model. However, these estimated boundaries remain
constant when training the new model, which may not be
flexible for the new model to learn more discriminative em-
beddings. We design an elastic boundary loss in which the
boundary can be dynamically adjusted during training.

In addition, existing methods are evaluated in different
settings and on different datasets, which makes it difficult
to fairly compare them. In this paper, we adopt a uni-
fied training and evaluation protocol to evaluate the ex-
isting backward-compatible methods and our adversarial
backward-compatible training method (AdvBCT).

In summary, the main contributions of our work are
listed as follows:

• We first propose an adversarial backward-compatible
learning method to close the distribution gap between
different models and employ an elastic boundary loss
to improve compatibility and discrimination.

• We unify the training and evaluation protocol to as-
sess the performance of 5 BCT works. Meanwhile,
we propose a new metric named Pβ−score to evaluate
compatibility and discrimination in a comprehensive
metric.

• By comprehensive experiments, we show that the pro-
posed AdvBCT outperforms the related state-of-the-
arts on several image retrieval datasets, e.g. GLDv2,
ROxford and RParis in most BCT settings.
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Figure 3. An overview of our AdvBCT framework. The adversarial and boundary-aware compatible modules minimize the discrepancy
between distributions of the old and new embeddings, while the classification module improves the retrieval performance. In the compatible
losses part, the blue and yellow circles refer to the boundary between the new embeddings and old class centers respectively. rmax minus
the learnable re equals to remax. rmax is the maximum distance between old embeddings and the old class center. The solid circles and
triangles represent embeddings from two different classes.

2. Related Works
Backward-Compatible Training. Aiming to deploy a
new model without the operation of “backfilling”, Shen
et al. [18] proposed backward-compatible learning to get
new embeddings compatible with old ones. Following this
topic, compatible learning methods have developed into
three branches: backward-compatible learning, forward-
compatible learning [15, 34], and cross-model compatible
learning (CMC) [1,14,19,23]. Forward-compatible learning
aims to enhance the capacity of the current model to leave
embedding space for the next upgrade, which is suitable for
the close-set scenario. CMC supposes that there are two
existing models and adopts projection heads to make mod-
els compatible. However, the upgrade of CMC models still
needs two embedding models and two databases which is
shown in supplemental materials. In this paper, we mainly
focus on the backward-compatible training (BCT) situation,
which is suitable for open-set scenarios and can simplify the
process of backfilling.

On the BCT track, Wang et al. [14] aligned class cen-
ters between models by a transformation that can be applied
to both cross-model compatibility training and compatible
training. Zhang et al. [31] defined 4 types of model upgrad-
ing and proposed a novel structural prototype refinement al-
gorithm to adapt to different protocols. Wu et al. [23] con-
strained the relationship between new embeddings and old
embeddings inspired by contrastive learning. Those meth-
ods proved to be effective under different datasets and pro-
tocols and focused on constraints of prototypes and class
centers between new and old models.
Image Retrieval. Image retrieval is a classic task in repre-
sentation learning. Given a query image, the system will

return the top similar images by searching a large-scale
pre-encoded database. Image retrieval is related to many
research topics such as landmark retrieval, face recogni-
tion, person re-identification, and so on. Researchers pay
more attention to the improvement of retrieval performance
[3, 13, 25, 27, 28] and there exist several comprehensive
benchmarks [12, 22]. However, those works rarely dis-
cuss the model upgrade problem for visual retrieval systems
which is a critical concern in real industrial applications.
Adversarial Learning. Adversarial learning is widely used
in various fields such as generative adversarial networks
[4, 6, 7], person re-identity [33], and domain adaptation
[2, 5]. Generative adversarial networks utilize a discrimina-
tor to enhance the ability of the generator to synthesize sam-
ples. Ganin and Lempitsky’s work [2] learned embeddings
invariant to the domain shift by a label predictor which com-
bined adversarial learning with domain adaptation. After
that, various adversarial domain adaptation methods were
proposed [9, 10]. The core of adversarial learning is mini-
mizing the discrepancy between distributions of target and
source by defending against attacks.

3. Methodology

3.1. Problem Formulation

Given a training dataset T = {X,Y } of C classes,
X = {x1, x2..., xm} is the image sample set, and Y =
{y1, y2, ..., ym} is the one-hot label set. We can train an
embedding model ϕ by using X to map image samples into
embeddings Z = {ϕ(x1), ϕ(x2), ..., ϕ(xm)}.

We use ϕo trained on Told and ϕn trained on Tnew to rep-
resent the old embedding model and new embedding model
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respectively. Furthermore, ϕ∗ represents the model ob-
tained with the same settings as the new embedding model
but without compatibility constraints. In the inference
stage, a query dataset Q and a gallery dataset G are adopted
to evaluate the retrieval performance of embeddings. To
measure the compatibility performance during backfilling,
the embeddings of G are extracted by ϕo, and the ones of Q
are obtained by ϕn. In this work, ⟨ϕ(xi), ϕ(xj)⟩ represents
the distance between two embeddings ϕ(xi) and ϕ(xj) un-
der some distance metrics. The smaller the distance is, the
more similar the samples are.

3.2. Backward-Compatible Training Framework

The new model obtained by backward-compatible train-
ing needs to be compatible with the old model in embed-
ding space, and it is also demanded to be more discrim-
inative than the old model on retrieval performance. To
meet these two requirements in model iterations, as shown
in figure Fig. 3, we adopt three modules, namely the clas-
sification module, the adversarial compatible module and
the boundary-aware compatible module. The classification
module aims at guiding the new model to learn discrimi-
native embeddings. The adversarial compatible module re-
duces the discrepancy between the distribution of the old
embeddings and the distribution of the new embeddings
in an adversarial manner. The boundary-aware compati-
ble module is utilized to maintain a reasonable distance be-
tween the new embeddings and the old cluster centers to
improve compatibility and discrimination efficiently. These
modules are explained in detail in Sec. 3.3.

3.3. Backward-Compatible Learning

Classification Module. To ensure the discrimination of
new embeddings, we adopt the commonly used method
that learn the representation using close-set classification:
a classifier is connected after the embedding layer of the
model and cross-entropy loss is employed to minimize the
classification error of the new model. In this way, the model
can extract discriminative features for similarity retrieval.
The cross-entropy loss is defined as:

Lcls = − 1

N

N∑
i=1

yi log pi (1)

where N is the number of instances, yi is the label of the
image xi, and pi is the probability that xi belongs to the
class yi.
Adversarial Compatible Module. As mentioned in Sec. 1,
reducing the dissimilarity of the embedding distribution be-
tween the new model and the old model is the key for model
compatibility. The adversarial learning is applied to domain
adaptation [21,26,29] to guide the embedding model to gen-
erate domain-insensitive embeddings. Inspired by this, we

adopt adversarial learning to make the embedding distribu-
tion between models as similar as possible. Specifically, we
introduce a discriminator ϕd after the embedding layer of
the new model as shown in Fig. 3. The discriminator deter-
mines whether the embedding comes from the new model
or from the old model. Hence, the discrepancy of the em-
bedding distributions is estimated by the classification loss
of the discriminator, which is defined as:

Ladv = E(θn, θd) = − 1

N

N∑
i=1

ℓi log qi (2)

where ℓi is a binary label indicating by which model the
embedding is generated, and qi is the probability output by
the discriminator. θn and θd are the parameters of ϕn and
ϕd respectively.

At training time, the embedding model and the discrim-
inator are optimized together in an adversarial way: the
model discriminator tries to minimize Ladv while the em-
bedding model tries to maximize it. When the training pro-
cess converges, the end-to-end network comprised of the
embedding model ϕn and the discriminator ϕd will look for
a saddle point of θ̂n and θ̂d satisfying:

θ̂d = argmin
θd

E(θ̂n, θd) (3)

θ̂n = argmax
θn

E(θn, θ̂d) (4)

The parameters θd are optimized in the direction of mini-
mizing the classification loss of retrieval as Eq. (3) shows.
The parameters θn of the new embedding model work
on maximizing model classification loss as Eq. (4) shows
which is equivalent to minimizing the distribution gap.

In order to optimize the end-to-end network composed
by the embedding model and the discriminator with oppo-
site objectives using conventional optimization solver such
as SGD, a gradient reversal layer (GRL) [2] is inserted be-
tween the new embedding model and discriminator. Dur-
ing the forward propagation process, GRL acts as an iden-
tity transform. And in the back propagation, GRL takes the
gradient from the subsequent level, multiplies it by -β and
passes it to the preceding layer.
Boundary-aware Compatible Module. When the new and
old embeddings are compatible, the positive pairs and neg-
ative pairs should satisfy the following conditions on dis-
tance constraints. The following formulas are based on
∀{i, j, k}, yi = yj ̸= yk.

⟨ϕn(xi), ϕo(xj)⟩ < ⟨ϕn(xi), ϕo(xk)⟩ (5)

⟨ϕn(xi), ϕo(xj)⟩ < ⟨ϕn(xi), ϕn(xk)⟩ (6)

Some methods followed the formulas and designed con-
straints of new embeddings and old embeddings, which we
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call point-to-point (p2p) constraints. However, the p2p con-
straint is too strict because it is applied to all pairs of sam-
ples, which means outliers or corner cases will exert nega-
tive effects on training. To address these issues, we transfer
this p2p constraint into a point-to-set (p2s) constraint as fol-
lows.

Here, we use Euclidean Metric as the measure of dis-
tance ⟨ϕn(xi), ϕo(xj)⟩ = ∥ϕn(xi)− ϕo(xj)∥2. According
to the triangle inequality, we can draw some conclusions on
relationships of ϕn(xi), ϕo(xj) and Eo(X

c):

Blower = ∥ϕn(xi)− Eo(X
c)∥2 − ∥ϕo(xj)− Eo(X

c)∥2
(7)

Bupper = ∥ϕn(xi)− Eo(X
c)∥2 + ∥ϕo(xj)− Eo(X

c)∥2
(8)

Blower ≤ ∥ϕn(xi)− ϕo(xj)∥2 ≤ Bupper (9)

where Eo(X
c) is the expectation of ϕo(X

c) and Xc =
{xi}ni=1 is the set of instances of class c, where ∀{xi, xj} ∈
Xc. Details are given in the supplemental material Sec. 1.

Because the ∥ϕo(xj)− Eo(X
c)∥2 is a constant, and the

range of ∥ϕn(xi) − ϕo(xj)∥2 is determined by ∥ϕn(xi) −
Eo(X

c)∥2. Thus, by constraining the distance between
ϕn(xi) and Eo(X

c), we can constrain the distance between
ϕn(xi) and ϕo(xj). In this paper, we estimate Eo(X

c) as
the cluster center of the training samples for class c.

Based on the existing old model, we can easily cal-
culate expectations {Eo(X

i)}Ci namely cluster centers
O = {o1, o2, ..., oC} of the training data. The maxi-
mum distance set of all classes is defined as Rmax =
{r1max, r

2
max, ..., r

C
max} in which rimax represents the max-

imum distance between embeddings and the cluster center
of class i. rimax is determined by the old embedding space
of class i. A p2s constraint can be ∥ϕn(xi)− Eo(X

i)∥2 <
rimax in which we call rimax as the max boundary. However,
corner cases and outliers will make the distribution looser
which leads to a larger rimax. Although a larger rimax gives
more space to improve discrimination, it will be harder to
improve compatibility. We hope to constrain new embed-
dings and old centers by suitable boundaries. Thus, we
use an elastic boundary re to dynamically adjust the max
boundary between a threshold t and rmax. re is defined as:

rke = wk|rkmax − t|
(10)

where wk is a learnable parameter between 0 and 1.
We employ the elastic boundary re to adjust the final

max boundary remax. remax is defined as Eq. (11) in which
k represents class k. The equation will range remax in
[t, rmax] or [rmax, t].

rkemax =

{
rkmax − rke t < rmax

t− rke t > rmax
(11)

Figure 4. The distribution state evolution of embeddings during
training constrained by our LAdvBCT .

Combined with Eq. (11) and Eq. (10), the final remax

can be defined as follows:

rkemax =

{
(1− wk)rkmax + wkt t < rmax

wkrkmax + (1− wk)t t > rmax
(12)

Based on what mentioned above, we design an elastic
p2s loss to dynamically minimize ∥ϕn(xi)−Eo(X

c)∥2. As
shown in Fig. 3, the p2s loss constrains distances between
new embeddings and the old cluster center in a dynamic
way. The elastic p2s loss can be defined as the following:

Dk =

m∑
i=1

max(
〈
ϕn(x

k
i ), o

k
〉
− rkemax, 0) (13)

Lp2s =

C∑
k=1

Dk (14)

In total, our final loss on embedding model can be
summed as the following:

LAdvBCT = Lcls + λLp2s + γLadv (15)

where γ and λ are factors. From the experiments, Ladv af-
fects on the consistency of distributions efficiently in the
early training while influences discrimination in the late.
So, we progressively reduce γ during training. The state
of distributions can be abstracted in Fig. 4.

4. Benchmarks and Metrics
Benchmarks. Training data and backbones can be consid-
ered as major factors affecting the performance of the new
model when the old model is going to be upgraded. Thus,
we discuss three settings as followings. (1) Extended-data:
Extended-data supposes that the classes of the new train-
ing data set Tnew remain unchanged but the data number of
each class increases. In our setting, the old training data set
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Told composed of 30% images is randomly sampled from
the whole data set. (2) Extended-class: Told is composed of
30% classes of the whole data set. (3) Enlarged-backbone:
The old model is trained on ResNet18 (R18) while the new
model is trained on ResNet50 (R50). For Extended-data and
Extended-class, the new models are trained on R18. Gen-
erally, when the backbone is enlarged, the volume of data
should be enlarged too. Therefore, in Enlarged-backbone,
the data will increase from 30% to 100% same as Extended-
data or Extended-class.

In this article, except for the settings mentioned above,
we won’t take situations into account that other training
schemes are changed.
Metrics. Referring to previous works, the performance
metrics of compatible learning methods can be divided into
two parts, the performance of compatibility during upgrad-
ing and the improvement of retrieval after updating which
we call discrimination. They can be presented as follow-
ings.

Pcomp = sigmoid(
M(ϕn, ϕo;Q,G)−M(ϕo, ϕo;Q,G)
M(ϕ∗, ϕ∗;Q,G)−M(ϕo, ϕo;Q,G)

)

(16)

Pup = sigmoid(
M(ϕn, ϕn;Q,G)−M(ϕ∗, ϕ∗;Q,G)

M(ϕ∗, ϕ∗;Q,G)
)

(17)
Where M(·, ·) represents the evaluation metric for im-
age retrieval, e.g. mean Average Precision (mAP).
M(ϕn, ϕo;Q,G) represents the mAP with the setting that
embeddings of Q and embeddings of G are extracted by ϕn

and ϕo respectively.
Pcomp is the indicator of compatibility and Pup mea-

sures the performance of the new embedding model
ϕn compared to the embedding model ϕ∗ trained with-
out compatible methods. We use sigmoid function
to normalize values because M(ϕn, ϕo;Q,G) is less
than M(ϕo, ϕo;Q,G) and M(ϕn, ϕn;Q,G) is less than
M(ϕ∗, ϕ∗;Q,G) in some cases. For those metrics, a higher
value is better.

Except for the metrics mentioned above, inspired by F−
score [11], we propose a new metric P − score to measure
both the performance of compatibility and discrimination.

Pβ−score =
(1 + β2)Pcomp ∗ Pup

β2Pcomp + Pup
(18)

P − score can take Pcomp and Pup into consideration to-
gether where β is the impact factor of Pcomp. Like widely
used setting β = 1 in F − score, we also set β = 1 in
P − score as the formula Eq. (19) shows. In this case,
P − score is the harmonic mean of Pcomp and Pup.

P1−score =
2Pcomp ∗ Pup

Pcomp + Pup
(19)

Allocation type
Old train-set New train-set

#images #classes #images #classes
Extended-data 445,419 81,313 1,580,470 81,313
Extended-class 470,369 24,393 1,580,470 81,313

Extended-backbone
(class) 445,419 81,313 1,580,470 81,313

Extended-backbone
(data) 470,369 24,393 1,580,470 81,313

Table 1. Three different allocations for the training data set sam-
pled from GLDv2. For experiments, the random seed is fixed to
reproduce the allocation.

5. Experiments
5.1. Implementation Details

Training Data. We use Google Landmark v2 [22] (GLDv2)
as the training dataset. GLDv2 is a large-scale public
dataset associated with two challenges Google Landmark
Recognition 2019 and Google Landmark Retrieval 2019.
Following allocation types mentioned in Sec. 4, the com-
positions of different training settings are shown in Tab. 1.
Training Settings. All the models are trained on 4 v100 by
stochastic gradient descent. For all methods, we train the
transformations for 30 epochs, with the learning rate initial-
ized as 0.1. The weight decay is set to 5e-4 and the momen-
tum is 0.9.
Evaluation Metrics. Mean Average Precision (mAP) is
utilized to evaluate the performance of retrieval. As men-
tioned in Sec. 3.1, we adopt Pcom, Pup and P1−score to
evaluate the performance of compatibility and discrimina-
tion. We average Pcom, Pup and P1−score of every test set
as the final Pcom, Pup and P1−score.

5.2. Ablation Study

Effectiveness of different components. As shown in
Fig. 3, our AdvBCT has three modules. To verify the im-
pact of each module alone on the final effect, we conduct
eight split experiments on each module under the compat-
ible settings of Extended-data and Extended-class, and the
effect is evaluated on RParis and ROxford datasets. The
experimental results are shown in Tab. 2.

As can be seen from the table, each component is neces-
sary, and all components are combined to achieve the best
overall effect. In the first four sets of experiments, each
component is tested individually. As shown in Tab. 2, Lcls

makes the new model discriminative but lacking compati-
bility (refer to #1 and #2), and Lp2s performs better com-
patibility but limited discrimination (refer to #4, #2 and
#1). In addition, we also found that the effect of Ladv alone
is relatively poor. It’s reasonable that adversarial learning
is an unsupervised constraint on old and new distributions
which cannot constrain instances directly. But when Ladv
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# Lcls Ladv Lp2s
RParis ROxford RParis ROxford

self cross self cross self cross self cross
1(ϕo) ✓ 75.45 - 49.15 - 74.29 - 54.34 -
2(ϕ∗) ✓ 81.15 4.93 63.85 1.29 81.15 4.93 63.85 1.29

3 ✓ 5.8 6.69 3.25 1.66 5.14 6.8 2.44 1.76
4 ✓ 76.4 75.23 50.78 44.75 74.82 74.13 51.09 48.22
5 ✓ ✓ 80.87 4.4 63.92 2.11 81.09 5.67 62.3 2.34
6 ✓ ✓ 82.12 77.18 61.16 51.63 81.66 76.16 63.59 52.92
7 ✓ ✓ 76.83 75.7 52.76 49.31 75.09 74.45 51.39 48.67
8 ✓ ✓ ✓ 82.78 78.55 62.13 52.31 82.05 77.16 64.51 54.82

Table 2. Comparison results of different components in Extended-data (left) and Extended-class (right) setting, where both backbones of
the old and new model are R18. Best and second best are highlighted.

Allocation
type

Modelold Modelnew RParis ROxford GLDv2-test Pup Pcomp P1−score

self cross self cross self cross

Extended-
data

ϕR18
o - 75.45 - 49.15 - 10.03 - - - -

- ϕR18
∗ 81.15 4.93 63.85 1.20 16.48 0.2 - 7.19 -

ϕR18
o ϕR18

BCT 80.58 77.37 56.34 49.66 14.61 11.30 48.02 54.71 51.13
ϕR18
o ϕR18

LCE 81.57 77.83 60.85 51.35 16.48 12.17 49.65 57.41 53.34
ϕR18
o ϕR18

UniBCT 80.93 78.30 57.24 50.97 16.06 13.25 48.90 59.19 53.52
ϕR18
o ϕR18

Hot−refresh79.57 76.53 58.15 50.05 13.88 10.35 47.78 52.50 50.03
ϕR18
o ϕR18

AdvBCT 82.78 78.55 62.13 52.31 15.71 11.49 49.55 58.09 53.45

Extended-
class

ϕR18
o - 74.29 - 54.34 - 11.43 - - - -

- ϕR18
∗ 81.15 4.93 63.85 1.29 16.48 0.2 - 3.38 -

ϕR18
o ϕR18

BCT 79.45 76.13 58.94 53.43 14.79 12.26 48.33 52.79 50.41
ϕR18
o ϕR18

LCE 81.26 76.78 60.49 54.29 16.07 12.04 49.37 53.95 51.51
ϕR18
o ϕR18

UniBCT 76.92 74.55 59.07 57.82 14.80 12.31 48.09 54.78 51.17
ϕR18
o ϕR18

Hot−refresh78.93 75.33 60.31 51.68 14.0 10.41 48.06 47.26 47.57
ϕR18
o ϕR18

AdvBCT 82.05 77.16 64.51 54.82 16.44 12.05 50.16 54.87 52.35

Extended-
backbone

(data)

ϕR18
o - 75.45 - 49.15 - 10.03 - - - -

- ϕR50
∗ 87.66 4.81 76.56 2.26 22.12 0.2 - 15.44 -

ϕR18
o ϕR50

BCT 85.54 78.95 68.66 54.42 19.11 12.78 47.81 55.86 51.52
ϕR18
o ϕR50

LCE 87.49 79.36 75.16 57.18 21.85 13.30 49.73 57.31 53.25
ϕR18
o ϕR50

UniBCT 84.37 78.91 67.42 56.18 21.57 13.42 48.48 56.80 52.31
ϕR18
o ϕR50

Hot−refresh86.78 78.81 75.10 57.84 20.61 12.41 49.19 56.53 52.60
ϕR18
o ϕR50

AdvBCT 86.79 79.08 75.71 59.03 20.77 12.75 49.31 57.30 53.01

Extended-
backbone

(class)

ϕR18
o - 74.29 - 54.34 - 11.43 - - - -

- ϕR50
∗ 87.66 4.81 76.56 2.26 22.12 0.2 - 11.46 -

ϕR18
o ϕR50

BCT 84.18 77.12 68.93 57.52 18.85 13.47 47.71 54.59 50.91
ϕR18
o ϕR50

LCE 85.77 77.31 72.89 58.95 20.84 14.00 49.04 55.67 52.15
ϕR18
o ϕR50

UniBCT 82.48 77.33 66.37 58.51 18.91 13.99 47.29 55.51 51.06
ϕR18
o ϕR50

Hot−refresh85.62 77.29 73.95 56.83 20.47 12.44 49.01 53.63 51.21
ϕR18
o ϕR50

AdvBCT 86.24 78.31 73.93 60.33 22.03 13.54 49.65 56.64 52.83

Table 3. The compatible training benchmark testing on BCT, LCE, Hot-refresh, UniBCT, and AdvBCT. ϕR18
o represents that the backbone of

the old model is ResNet18. ϕ∗ is trained on the whole data set without any compatible operation. self represents self-test M(ϕo, ϕo;Q,G)
or M(ϕn, ϕn;Q,G), and cross represents cross-test M(ϕn, ϕo;Q,G). In the allocation type of Extended-backbone, data represents 30%
and 100% training data for the old model and the new model respectively. Similarly, class represents 30% class and 100% class for the
old model and the new model. Our method AdvBCT achieves best performance in the most allocation types. Best and second best of five
works are higlighted.

and Lp2s are combined, better results are achieved (refer to
#4 and #7). Of course, from the experimental results, the
combination of the three achieves the best discrimination

and compatibility. Therefore, our proposed adversarial and
boundary-aware compatible modules are all effective.

Parameter Analysis. In order to determine an appropriate
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Figure 5. The influence of parameter t on RParis dataset in
Extended-class setting.

Figure 6. The convergence trend of BCT [18], LCE [14],
Hot-refresh [30], UniBCT [31], our AdvBCT and ϕ∗ in Extended-
backbone (class) setting.

boundary to constrain the distance between the new embed-
dings and the old cluster centers, we set a flexible threshold
t to obtain the upper or the lower of boundaries in formula
Eq. (11). To observe the influence of threshold t, we con-
duct experiments on RParis dataset in the Extended-class
setting. The retrieval performance of different t is shown
in figure Fig. 5. When t = 0.4, we get the best mAP on
both self-test and cross-test. From the figure, we can see
that large thresholds and small thresholds perform worse.
When the threshold is greater, the model has more flexi-
bility to learn discriminative embeddings, but the compat-
ibility is limited. On the contrary, when the constraint on
compatibility is too strict, discrimination is affected.

5.3. Compatible Training Benchmark

Following benchmark settings mentioned in Sec. 4, we
evaluate 4 previous works labeled as BCT [18], LCE [14],
Hot-refresh [30], and UniBCT [31] and our work AdvBCT.
Thanks to the open source of the Ref [30], we implemented
BCT and Hot-refresh according to their work. We imple-

mented UniBCT without the structural prototype refinement
algorithm and followed the setting in LCE that the trans-
formation layer K = 0 while compatible learning. We
mark M(ϕn, ϕn;Q,G) or M(ϕo, ϕo;Q,G) as self-test and
M(ϕn, ϕo;Q,G) as cross-test.

The results of different allocation types are shown in
Tab. 3. From the experiment results, our AdvBCT surpasses
previous BCT works in the most cases. Especially in the
scenario that classes increase, AdvBCT exceeds other meth-
ods more than 1% in P1−score.

It is remarkable that the self-test performance of AdvBCT
and LCE outperforms the performance of ϕ∗ in Extended-
data and Extended-class. The results indicate that the com-
patibility has positive impacts on discrimination of classes,
if the constraints are selected properly. Furthermore, from
the results, the method UniBCT which minimizes the dis-
tances of the old prototypes and new embeddings directly
performs not as good as the methods LCE and AdvBCT in
self-test whose constraints are under boundary limits. That
means boundary limits are meaningful for improvements on
the self-test.

We also visualize convergence trend of several methods
in Fig. 6. From the figure, we can see that our method con-
verges fast, the loss declined smooth and the trend is close
to ϕ∗. One explanation is that adversarial learning pulls two
models into the same distribution which can be helpful to
the distance compatible constraint. And the elastic bound-
ary gives more freedom space to optimizing compatibility
and discrimination.

6. Conclusion
In this paper, we proposed a novel backward-compatible

training method in image retrieval. To better ensure com-
patibility, we designed the adversarial and boundary-aware
compatible modules. Adversarial compatible module aims
to pull the embedding distributions of the old and new mod-
els close. And boundary-aware compatible module is used
to obtain a suitable boundary to constrain distance relation-
ship between the new and old embeddings. In addition, we
compare our AdvBCT with the existing BCT methods in
uniform settings, and an eclectic metric is proposed to ver-
ify the pros and cons of all backward-compatible methods,
which establishes a comprehensive benchmark for subse-
quent researchers to handily contribute to the field. Exten-
sive experiments were conducted to verify the effectiveness
of our AdvBCT. For our future work, we will explore lever-
aging the old embeddings to further improve discrimination
while maintaining compatibility.
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