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Abstract

Current state-of-the-art image-text matching methods
implicitly align the visual-semantic fragments, like regions
in images and words in sentences, and adopt cross-attention
mechanism to discover fine-grained cross-modal semantic
correspondence. However, the cross-attention mechanism
may bring redundant or irrelevant region-word alignments,
degenerating retrieval accuracy and limiting efficiency. Al-
though many researchers have made progress in mining
meaningful alignments and thus improving accuracy, the
problem of poor efficiency remains unresolved. In this work,
we propose to learn fine-grained image-text matching from
the perspective of information coding. Specifically, we sug-
gest a coding framework to explain the fragments aligning
process, which provides a novel view to reexamine the cross-
attention mechanism and analyze the problem of redundant
alignments. Based on this framework, a Cross-modal Hard
Aligning Network (CHAN) is designed, which comprehen-
sively exploits the most relevant region-word pairs and elim-
inates all other alignments. Extensive experiments con-
ducted on two public datasets, MS-COCO and Flickr30K,
verify that the relevance of the most associated word-region
pairs is discriminative enough as an indicator of the image-
text similarity, with superior accuracy and efficiency over
the state-of-the-art approaches on the bidirectional image
and text retrieval tasks. Our code will be available at
https://github.com/ppanzx/CHAN.

1. Introduction
With the rapid development of information technology,

multi-modal data, like texts, audio, images, and video, has
become ubiquitous in our daily life. It is of great value
to study multi-modal learning to give computers the ability
to process and relate information from multiple modalities.
Among the tasks of multi-modal learning, image-text re-
trieval is the most fundamental one, which paves the way for
more general cross-modal retrieval, namely, implementing
a retrieval task across different modalities, such as video-
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Figure 1. Illustration of different semantic corresponding methods:
(a) Global Embedding methods, (b) Fragment Embedding meth-
ods, (c) existing Fragment Aligning methods, and (d) our CHAN
method. Here ω in (c) and (d) is the attention weight/assignment
between the word "pajamas" and the image region, where the re-
gion with the maximum attention weight is outlined in yellow
below. Compared to existing Fragment Aligning methods which
bring redundant alignments, we improve them by attending to the
most relevant region while neglecting all of the misalignments.

text and audio-text. Image-text retrieval has attracted broad
attention in recent years [12,21,23]; yet, the key challenges,
i.e., bridging the inter-modality gap and achieving the se-
mantic correspondence across modalities, are far from be-
ing resolved. A good alignment directly links to correctly
measuring the similarity between images and texts.

Early works usually adopt the intuitive idea of global
embedding to find the semantic correspondence between a
whole picture and the complete sentence [12]. By project-
ing the overall image and text into a common embedding
space, the similarity between heterogeneous samples is mea-
sured for the subsequent matching of the two modalities, as
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shown in Figure 1(a). However, such a global embedding
method often induces background noise, which impedes the
correct image-text matching. Recent works have focused on
essential fragments [4, 16, 22], such as salient objects in im-
ages and keywords in texts, aiming to reduce contributions
of uninterested regions as well as irrelevant conjunctions.
By introducing the self-attention mechanism, the represen-
tation of holistic inputs is replaced by a weighted sum of
the local fragments, thereby easing the matching obstacles
caused by the noise parts, as shown in Figure 1(b). However,
these fragment embedding methods do not explicitly imple-
ment fine-grained aligning, as they only focus on the com-
plex aggregation of fragments in a single modality without
taking account of correctly learning granular cross-modal
semantic consistency.

Based on the consensus that overall image-text similar-
ity is a complex aggregation of the local similarities cal-
culated between the cross-modal fragments [19], the frag-
ments aligning method emphasizes the aggregation of the
local similarities rather than the aggregation of the local rep-
resentations. SCAN [21] and its variants [10, 25, 43, 46] are
the representatives of this school of thought, which align im-
age regions and sentence words by locally associating visual
semantics, and integrate the semantic similarities between
relevant region-word pairs to measure the overall image-
text relevance. Specifically, with the core idea of the cross-
attention mechanism, they attend to the fragments related
to each query fragment from another modality, thus mak-
ing the semantically consistent granular pairs significantly
contribute to the final image-text similarity, and at the same
time eliminating or weakening the influence of inconsistent
pairs.

However, there are two problems associated with the
previous fragments aligning methods: (1) redundant align-
ments are detrimental to retrieval accuracy. Selecting se-
mantically consistent region-word alignments and rejecting
inconsistent alignments is the key to realizing fine-grained
image-text matching. However, though semantically con-
sistent alignments can be discovered by the cross-attention
mechanism, it is far from enough to achieve an accurate re-
trieval because these meaningful alignments will be more or
less disturbed by other attended fragments irrelevant to the
shared semantics. As illustrated in Figure 1(c), given a text
fragment "pajamas," current cross-attention-based methods
not only attend to the most matched image region but also
refer to other regions not exactly relevant, like "cat" and
"towel," which will incorrectly estimate the affinity between
"pajamas" and irrelevant regions while training. As a result,
semantically inconsistent region-word pairs will eventually
overwhelm those matched ones, thus compromising the ef-
fect from the most matched pairs and degenerating the final
performance; (2) caching cross-attention weights is with a
massive cost of memory and time. When the cross-attention

mechanism is applied to fragments aligning, it is inevitable
to calculate the affinities between all the cross-modal frag-
ments, because a query needs to be reconstructed with the
attention weights derived from the affinities, which incurs
huge memory consumption to store the attention weights.
In fact, due to the limited memory, the matching process
between each query text/image and the whole image/text
set requires a large number of iterations, resulting in a long
retrieval time and thus compromising the practical applica-
tions of the fragments aligning method.

Inspired by the coding idea widely adopted in content-
based image retrieval tasks [14, 17, 32], we propose a cod-
ing framework to explain the aligning process and rethink
cross-attention-based methods from the view of soft assign-
ment coding. Specifically, we regard each word in a sen-
tence as a query and represent the salient regions in an im-
age as a codebook. Therefore, the aligning of fragments
is expressed as an adjustment of the measure of the rela-
tionship between query words and visual codewords. The
overall image-text similarity is the aggregation of similari-
ties between all queries and all codewords. In this view, the
definition of attention weights in a cross-attention mecha-
nism is almost the same as assignments in soft assignment
coding [14] scheme, and thus the cross-attention mecha-
nism can be explained as a kind of soft assignment cod-
ing method. Based on the assumption that there must ex-
ist a sub-region in an image which can best describe every
given word in the semantically consistent sentence [19], we
deem it unnecessary to consider all or even a selected part of
codewords since most of them do not bring benefit for bet-
ter describing the query words but lowering the efficiency.
This insight inspires switching the methodology from soft
assignment coding to hard assignment coding [27], with
attention to the most relevant word-region/query-codeword
pair which is a more accurate indication of semantic consis-
tency between a word and an image, as shown in Figure 1(d).
We further propose a novel Cross-modal Hard Aligning Net-
work (CHAN) for fine-grained image-text matching. Our
scheme not only discards redundant alignments and better
discovers the granular semantic correspondence, but also re-
lieves the costly dense cross-attention matching, thus signif-
icantly improving cross-attention baselines both in accuracy
and efficiency. Our main contributions can be summarized
as follows:
• We propose a coding framework to explain fragments

aligning for image-text retrieval and subsequently elab-
orate on the aligning process of cross-attention mecha-
nism. This elaboration allows us to pinpoint the deficien-
cies, and propose an improved hard assignment coding
scheme.

• With the hard assignment coding scheme, we propose
a novel Cross-modal Hard Aligning Network (CHAN),
which can accurately discover the shared semantics of im-
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age and text by mining the informative region-word pairs
and rejecting the redundant or irrelevant alignments.

• Extensive experiments on two benchmarks, i.e.,
Flickr30K [45] and MS-COCO [5], showing the su-
periority of CHAN in both accuracy and efficiency
compared with state-of-the-art methods.

2. Related Works

Visual Semantic Embedding. Visual Semantic Embedding
(VSE) [12] is a general solution for image-text matching,
with the core idea of associating the correspondence glob-
ally by separately projecting image and text into a common
space using two separate networks. The subsequent works
improve VSE by seeking better representative common sub-
space [8, 24, 33, 37], designing more appropriate similarity
metrics [11, 36, 38, 40, 44] and proposing Vision Language
Pre-training methods [2, 18, 30, 39]. Recent works try to
exploit the intrinsic information within each modality and
aggregate fine-grained information into VSE in order to pro-
duce semantically more consistent embedding for represent-
ing images and texts. For example, some works [16, 41, 43]
take advantage of self-attention mechanism to focus on es-
sential fragments; VSRN [22] and similar works [6, 23, 26]
introduce Graph Convolutional Networks [42] to generate
global features with local relationships; VSE∞ [4] demon-
strates that aggregating local features by a learnable pool-
ing operation outperform these complex aggregation mod-
els mentioned above.

Cross-modal Fragments Aligning. In contrast to the
embedding-based methods’ poor interpretability of granu-
lar semantic consistency, fragments aligning methods di-
rectly learn the semantic alignments between image regions
and text words. Karpathy et al. [19] make the first at-
tempt to infer finer-level alignments between textual seg-
ments and visual regions. They calculate the global image-
text similarity by summing up all the region-word simi-
larities. While not all fragments are equally contributive,
the following methods are devoted to mining the substan-
tial alignments. SCAN [21] is the representative work in
this direction which has attracted great attention. It intro-
duces cross-attention mechanism to concentrate on signifi-
cant alignments aiming to minimize the misalignments. IM-
RAM [3] extends SCAN by combining a cross-modal atten-
tion unit with a memory distillation unit to refine the cross-
modal attention core iteratively. Unlike methods devoted
to irrelevant alignments removal, NAAF [46] explores the
clues about the disparate fragments and thus discriminating
subtle mismatched ones across modalities toward more ac-
curate image-text matching. However, due to intrinsic prop-
erty of the cross-attention mechanism, above methods ob-
tain a higher accuracy with sacrifice of efficiency, which is
vital for retrieval tasks.

Relation to Coding. Our intuition is activated by the
famous bag-of-feature (BoF) [32] image coding scheme,
which quantizes local invariant descriptors into a set of vi-
sual words for efficient image representation. The coding
process of BoF approach sheds light on fine-grained image-
text matching as we can compare the local regionword align-
ment and high-level global alignment with the essential
steps of BoF, namely, (1) Coding and (2) Pooling. Such
a similarity between BoF and image-text aligning inspires
our viewpoint of treating cross-modal aligning using a uni-
fied coding framework. Further, the cross-modal matching
can be expounded as a special case of soft assignment cod-
ing [14, 27, 34], and the approach of mining the most rele-
vant visual codeword for a query is consistent with a hard
assignment coding method [17, 32].

3. Cross-modal Hard Aligning Network
3.1. Coding Framework for Fragment Alignment

We tackle the granular semantic matching problem with
coding framework. Formally, for a set of text features
T = {ti | i ∈ [1, · · · , L], ti ∈ Rd}, each text feature ti
encodes a i-th word in a sentence, where L is the length
of a sentence; for a set of visual features V = {vj | j ∈
[1, · · · ,K], vj ∈ Rd}, each visual feature vj encodes a
salient j-th region in an image, where K is the number of
salient regions in an image; d is the dimension of common
embedding space. The semantic relevance between a sen-
tence T and an image V can be scrutinized with the infor-
mation coding framework via two processes, namely, cod-
ing and pooling, as expounded below.

The calculation of the similarity between word ti and an
image V can be approached by appropriate information en-
coding process. Concretely, let a word ti in a sentence be
the query, and the image V can be represented by a code-
book, where every region vj in V is treated as a codeword.
The similarity of ti and V is thus transformed to be the re-
construction error between ti and t̂i obtained using code-
book V = {vj}Kj=1, formally as:

s(ti,V) = S(ti, t̂i) (1)

where S denotes the similarity metric function. In contrast
to the euclidean metric widely used in BoF methods [14,34],
S in cross-modal retrieval tasks is usually adopted as the
cosine metric function, that is, S(ti, t̂i) =

t⊤i t̂i
∥ti∥·∥t̂i∥

. And

t̂i in Eq. 1 indicates the attended version of the query ti
relative to codebook V = {vj}Kj=1, which is defined as:

t̂i =

K∑
j=1

ωijvj (2)

where ωij is the weighting factor of vj . By defining sij =
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S(ti,vj) =
t⊤i vj

∥ti∥·∥vj∥ as the similarity between query ti and
codeword vj , ωij is positively correlated with sij generally.

The final similarity score between sentence T and image
V is obtained by a proper pooling operation, which com-
bines all of the word-image scores s(ti,V), ∀i. Taking
LogSumExp pooling (LSE-Pooling) [21] as an example, the
overall similarity can be summarised as:

s(T ,V) = 1

λ
log

L∑
i=1

exp(λs(ti,V)) (3)

where λ is a scaling factor that determines how much to
magnify the importance of the most relevant word-image
pair.

Particularly, Eq. 2 expresses a cross-attention mecha-
nism for image-text matching, where the weighting factor
ωij is linked with sij with a Gaussian kernel function un-
der the assumption that the similarity between a query and a
codeword can be described by a normal distribution [14,34],
that is, ωij = 1√

2πσ
exp (

sij

2σ2 ), where sij represents the
similarity and σ determines the size of the kernel. After
normalization, ωij is represented as:

ωij =
exp(sij/τ)∑K
j=1 exp(sij/τ)

(4)

where
∑K

j=1 exp(sij/τ) is the normalization factor and τ
is the a smooth parameter [7]. It should be noted that there
is a slight difference between Eq. 4 and the definition of ωij

in [21] where the similarities are empirically thresholded
at zero and sij is normalized. We argue the intuition of
soft assignment coding proposed in [14] is not suitable for
cross-modal retrieval tasks because there is always a suit-
able codeword in the vocabulary appropriately representa-
tive for a word in the matched sentence.

3.2. Hard Assignment Coding

Our insight is that if a sentence is semantically consistent
with an image, then every word can be representative of an
appropriate region of the image, while most of the other re-
gions are much more irrelevant. In other words, the similar-
ity sik between the query word ti and its semantically corre-
sponding codeword vk, where k = arg max

j=1···K
(sij), is much

larger than sij,j ̸=k, which means that τ in Eq. 4 should be
very small to describe such a distribution.

We extend τ in Eq. 4 to be approaching 0 and derive the
Hard Assignment Coding, in which the weighting factor ωij

is redefined as:

ωij =

1 , if j = arg max
j′=1···K

(sij′);

0 , otherwise.
(5)

We combine Eq. 1, Eq. 2 and Eq. 5 then rewrite the similar-
ity between ti and V as:

s(ti,V) =
t⊤i t̂i

∥ti∥ · ∥t̂i∥
=

t⊤i vk

∥ti∥ · ∥vk∥
= sik = max

j=1···K
(sij) (6)

where k has been defined above as the index of the code-
word vk most similar to query ti. From Eq. 6 we can
learn that the word-image similarity s(ti,V) is represented
as the maximum word-region similarity. In this way, the
hard assignment coding method avoids caching the atten-
tion weights {ωij}Kj=1, which will greatly reduce the time
and space complexity. Besides, it skips the procedure of
constructing the attended query t̂i using unnecessary code-
words but only preserves the most informative one to indi-
cate whether the semantic contained in a word is included
in an image.

Discussions about the effectiveness. Following [27], the
mechanism of the hard assignment coding can be inter-
preted probabilistically. Put it in a nutshell, the hard as-
signment coding models the joint probability of the seman-
tic co-occurrence between a word and an image to learn
the discriminative representation by maximizing its lower
bound embodied in the most informative query-codeword
relevance. Now let P (ti,V) denote the probability of the
semantic consistency of query ti and a codebook V and let
P (ti,vj) denote the probability of the semantic consistency
of query ti and a codeword vj . Without loss of generality,
we define P (ti,V) being proportional to the word-image
similarity s(ti,V), i.e., P (ti,V) ∝ s(ti,V), so is P (ti,vj),
i.e., P (ti,vj) ∝ sij . Firstly, let us sample a subset of code-
words {vj}Rj=1 including vk in a codebook V that all of
these codewords are independent of each other. In this case,
P (ti,V) can be defined using P (ti,vj) as:

P (ti,V) = 1−
R∏

j=1

(1− P (ti,vj))

≥ 1− (1− P (ti,vk)) = P (ti,vk) (7)

That is, the semantic consistency between query ti and
its most relevant codeword vk is a lower bound of the prob-
ability of the presence of a word in an image. However, it
is intractable for soft assignment coding to measure the re-
lationship between P (ti,V) and P (ti,vj) because of the
dependency of some codewords, which means that the soft
assignment coding is not as effective in indicating granular
correspondence as hard assignment coding. Furthermore,
the above analysis provides an intriguing interpretation of
hard assignment coding for cross-modal tasks. We can con-
sider the words in a sentence as a collection of "semantic
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Figure 2. An overview of the proposed CHAN network. It con-
sists of four modules: Visual representation, Text representation,
Hard assignment coding and Objective function. The final form
of Hard assignment coding module is obtained by performing row-
wise max-pooling and LSE-pooling over the similarity matrix.

detector," and the coding process as the execution of these
detectors on different locations within an image. The best
response of each detector is then recorded by its highest
coding coefficients. From this interpretation, the denser the
sampled local features are, the more reliable the responses
are.

Discussions about the efficiency. Consider a visual feature
set V ∈ RB1×K×d and a text feature set T ∈ RB2×L×d,
where B1 and B2 denote the number of images and cap-
tions, respectively. To obtain the final image-text similar-
ity, both hard assignment coding and soft assignment cod-
ing require the calculation of the assignment matrix A ∈
RB1×B2×K×L, resulting in the same time complexity of
O(B1B2KLd). However, hard assignment coding has a
linearly better efficiency compared to soft assignment cod-
ing under the condition of infinite memory, as it no longer
needs to calculate the attended version of the text feature set
T̂ ∈ RB1×B2×L×d, as shown in Eq. 6. Furthermore, due to
the fact that K ≪ d, the spatial complexity of hard assign-
ment coding (O(B1B2KL)) is significantly lower than that
of soft assignment coding (O(B1B2Ld)), which inherently
suffers from the issue of high memory consumption. This
makes hard assignment coding much more efficient than
soft assignment coding without the need for iterations.

3.3. Cross-modal Hard Alignment Network

As illustrated in Figure 2, our proposed CHAN is com-
posed of four modules with more details elaborated below.

Visual representation. For each input image V , we
follow [21] to extract top-K region-level features, with
the Faster R-CNN [31] model pre-trained on Visual
Genomes [20] using bottom-up and top-down attention
(BUTD) [1]. We utilize a fully-connected layer to embed

them into d-dimensional vectors. Thereafter, like [13], we
add a self-attention layer [35] to inject the contextual infor-
mation for each local region feature, and subsequently con-
stitute a discriminative codebook with K visual codewords
{vj}Kj=1.

Text representation. We define two formulations for text
representation, based on bi-direction gated recurrent unit
(BiGRU) or pre-trained Bert [9]. For BiGRU-based for-
mulation, each sentence T is tokenized to several words.
We embed every word using a pre-trained Glove vector [29]
like [8,46] and feed all vectors into a BiGRU to obtain text
queries {ti}Li=1 by averaging the forward and backward hid-
den states at each time step. For Bert-based formulation, we
obtain word-level vectors from the last layer of pre-trained
Bert, then leverage a fully-connected layer to embed them
into d-dimensional vectors.

Hard assignment coding. For a given set of text queries
T = {ti}Li=1 and a set of visual codewords V = {vj}Kj=1

obtained above, we first normalize each item of them with
ℓ2-norm, then calculate the cosine similarity matrix S ∈
RL×K between all query-codeword pairs by matrix multi-
plication, i.e., S = TV ⊤. According to Eq. 6, we imple-
ment hard assignment coding by performing row-wise max-
pooling over S to align every word with an image. Then, we
implement LSE-pooling to aggregate all word-image simi-
larities with respect to each word. On the whole, the hard
assignment coding for fine-grained cross-modal matching
can be summarized as:

s(T ,V) = 1

λ
log

L∑
i=1

exp(λ max
j=1···K

S) (8)

Objective function. Following existing approaches [10,
21, 46], we minimize the hinge-based bi-direction triplet
ranking loss with online hard negative mining proposed by
VSE++ [11], to cluster together the word and its most rele-
vant image region in a matched image-sentence pair while
guaranteeing the word is far apart from its most relevant re-
gion in a mismatched pair. The objective function is written
as:

L =
∑

(T ,V)∼D

[α+ s(T , V̂)− s(T ,V)]+

+[α+ s(T̂ ,V)− s(T ,V)]+ (9)

where α is the margin parameter. (T ,V) is a matched
image-sentence pair in dataset D and [x]+ ≡ max(x, 0).
V̂ = arg max

V′ ̸=V
s(T , V̂) and T̂ = arg max

T ′ ̸=T
s(T̂ ,V) denote

the hardest image and the hardest sentence within a training
mini-batch, respectively.
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4. Experiments

4.1. Experimental Setup

Datasets. We evaluate our method on Flickr30K [45] and
MS-COCO [5] datasets. The MS-COCO dataset contains
123,287 images, and each image is annotated with 5 anno-
tated captions. We use the data split practice of [11, 21, 34]
where there are 113,287 images for training, 5,000 images
for validation and 5,000 images for testing. We report re-
sults by averaging over 5 folds of 1K test images and test-
ing on the full 5K images. The Flickr30K dataset contains
31,783 images collected from the Flickr website with 5 cor-
responding captions each. Following the split in [11], we
use 1,014 images for validation, 1,000 images for testing
and the rest for training.

Evaluation Metrics. As a common practice in information
retrieval, we measure the performance by R@K, defined as
the percentage of queries correctly matched in the closest
K retrieved instances. A higher R@K indicates better per-
formance. To show the overall matching performance, we
sum up all recall values as RSUM at both image-to-text and
text-to-image directions.

4.2. Comparison Results

Quantitative Comparison. We compare CHAN with re-
cent state-of-the-art methods on the two benchmarks. In
contrast to methods [10, 21, 28, 34, 46] which boost their
performance by averaging the similarities from two sepa-
rate models, we do not leverage ensemble approaches but
only report our single-model retrieval results. For a fairer
comparison, we divide the methods according to their fea-
ture extraction backbones.

Table 2 shows the quantitative results of our CHAN ap-
proach on Flickr30K test set. We can observe that CHAN
outperforms all other methods with RSUM= 507.8 for
BiGRU-based CHAN and RSUM= 518.5 for Bert-based
CHAN. Compared with the baseline model SCAN, our
BiGRU-based CHAN achieves over 12.3% and 11.6% im-
provement at R@1 for two-direction retrieval. Our Bert-
based CHAN also outperforms other state-of-the-art meth-
ods with a large margin of over 5% at RSUM.

The quantitative comparison results on the larger and
more complicated MS-COCO are shown in Table 1. Our
BiGRU-based CHAN performs much better than other
counterparts such as SGRAF [10] and NAAF [46] on both
COCO 5-fold 1K and COCO 5K test sets. For Bert-based
models, it can be seen from the bottom of Table 1 that
our CHAN achieves slightly better results than the ensem-
ble TERAN [28]. The improved accuracy of our proposed
CHAN demonstrates that hard assignment coding is able
to effectively uncover the common semantic from image
and text while eliminating the influence of irrelevant region-

word pairs.

Inference Efficiency Analysis. In addition to the improve-
ments in accuracy, CHAN also outperforms recent state-of-
the-art fragments aligning methods in terms of efficiency.
In Figure 3, we present the comparison in RSUM rela-
tive to total inference time on COCO 5K, COCO 1K, and
Flickr30K test sets with recent methods with publicly avail-
able source code. To compare more fairly, we reimplement
SCAN by merely replacing hard assignment coding in our
BiGRU-based CHAN with soft assignment coding (denoted
as SCAN(ours)). Regarding the total inference time, our
methods (CHAN(BiGRU), CHAN(Bert)) are over 10 times
faster than other recent methods and 3 times faster than
SCAN(ours) while obtaining the best accuracy on three test
sets.

Figure 3. Performance comparison of accuracy (RSUM) and ef-
ficiency (ms/pair) between different methods on three test sets,
where △, □ and ♢ represent results on COCO 5-fold 1K,
Flickr30K and COCO 5K, respectively.

4.3. Ablation Study

We conduct detailed ablation studies on COCO 5K test
set to investigate the effectiveness of each component of
our CHAN. Without additional notation, we use the BiGRU-
based CHAN as our baseline.

Effects of Network Structure. In Table 3 we investi-
gate the effectiveness of different coding structures in our
CHAN:
• Coding Types. We first compare the coding types for

cross-modal retrieval, e.g., hard assignment coding with
text query and visual codebook (denoted as Visual Code-
book), with visual query and text codebook (Text Code-
book) and soft assignment coding with the cross-attention
mechanism (Cross-Attention). Compared with cross-
attention-based CHAN, our CHAN baseline using visual
codebook achieves an improvement of 4.1% at RSUM,
which verifies the advantage of accuracy improvement
by attending to the most relevant fragment rather than
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Table 1. Image-Text Retrieval Results of CHAN method on COCO 5K and COCO 5-fold 1K test set, using different visual and text
backbones (denoted by bold section title). ⋆: Ensemble results of two models. The best (in RSUM) are marked bold in red. Global,
Fragment and Aligning refer to global embedding method, fragment embedding method and fragment aligning method mentioned in § 1.

METHOD TYPE
COCO 5-fold 1K Test [5] COCO 5KTest [5]

IMG → TEXT TEXT → IMG
RSUM

IMG → TEXT TEXT → IMG
RSUM

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

ResNet-152 [15] + BiGRU
VSE++ [11]2017 Global 64.6 90.0 95.7 52.0 84.3 92.0 478.6 41.3 71.1 81.2 30.3 59.4 72.4 355.7
VSE∞ [4]2021 Global 76.5 95.3 98.5 62.9 90.6 95.8 519.6 55.1 81.9 89.9 40.9 70.6 81.5 419.9

BUTD [1] + BiGRU
VSRN⋆ [22]2019 Fragment 76.2 94.8 98.2 62.8 89.7 95.1 516.8 53.0 81.1 89.4 40.5 70.6 81.1 415.7
VSE∞ [4]2021 Fragment 78.5 96.0 98.7 61.7 90.3 95.6 520.8 56.6 83.6 91.4 39.3 69.9 81.1 421.9
SCAN⋆ [21]2018 Aligning 72.7 94.8 98.4 58.8 88.4 94.8 507.9 50.4 82.2 90.0 38.6 69.3 80.4 410.9
IMRAM⋆ [3]2020 Aligning 76.7 95.6 98.5 61.7 89.1 95.0 516.6 53.7 83.2 91.0 39.7 69.1 79.8 416.5
SGRAF⋆ [10]2021 Aligning 79.3 96.7 98.3 64.5 90.0 95.8 524.6 55.8 83.0 91.0 42.0 72.4 82.1 426.3
CGMN [6]2022 Aligning 76.8 95.4 98.3 63.8 90.7 95.7 520.7 53.4 81.3 89.6 41.2 71.9 82.4 419.8
NAAF [46]2022 Aligning 78.1 96.1 98.6 63.5 89.6 95.3 521.2 58.9 85.2 92.0 42.5 70.9 81.4 430.9
CHAN (ours) Aligning 79.7 96.7 98.7 63.8 90.4 95.8 525.0 60.2 85.9 92.4 41.7 71.5 81.7 433.4
BUTD [1] + BERT [9]
MMCA [41]2020 Aligning 74.8 95.6 97.7 61.6 89.8 95.2 514.7 54.0 82.5 90.7 38.7 69.7 80.8 416.4
VSE∞ [4]2021 Aligning 79.7 96.4 98.9 64.8 91.4 96.3 527.5 58.3 85.3 92.3 42.4 72.7 83.2 434.3
TERAN⋆ [28]2021 Aligning 80.2 96.6 99.0 67.0 92.2 96.9 531.9 59.3 85.8 92.4 45.1 76.4 84.4 443.4
VSRN++⋆ [23]2022 Aligning 77.9 96.0 98.5 64.1 91.0 96.1 523.6 54.7 82.9 90.9 42.0 72.2 82.7 425.4
CHAN (ours) Aligning 81.4 96.9 98.9 66.5 92.1 96.7 532.6 59.8 87.2 93.3 44.9 74.5 84.2 443.9

Table 2. Image-Text Retrieval Results of CHAN method on
Flickr30K test set.

METHOD
IMG → TEXT TEXT → IMG

RSUM
R@1 R@5 R@10 R@1 R@5 R@10

ResNet-152 [15] + BiGRU
VSE++ [11]2017 52.9 80.5 87.2 39.6 70.1 79.5 409.8
VSE∞ [4]2021 77.1 94.5 97.1 58.5 84.1 89.6 500.9

BUTD [1] + BiGRU
SCAN⋆ [21]2018 67.4 90.3 95.8 48.6 77.7 85.2 465.0
VSRN⋆ [22]2019 71.3 90.6 96.0 54.7 81.8 88.2 482.6
BFAN⋆ [22]2019 68.1 91.4 96.2 50.8 78.4 86.0 470.9
IMRAM⋆ [3]2020 74.1 93.0 96.6 53.9 79.4 87.2 484.2
VSE∞ [4]2021 76.5 94.2 97.7 56.4 83.4 89.9 498.1
SGRAF⋆ [10]2021 78.4 94.6 97.5 58.2 83.0 89.1 500.8
CGMN [6]2022 77.9 93.8 96.8 59.9 85.1 90.6 504.1
NAAF [46]2022 79.6 96.3 98.3 59.3 83.9 90.2 507.6
CHAN (ours) 79.7 94.5 97.3 60.2 85.3 90.7 507.8
BUTD [1] + BERT [9]
MMCA [41]2020 74.2 92.8 96.4 54.8 81.4 87.8 487.4
VSE∞ [4]2021 81.7 95.4 97.6 61.4 85.9 91.5 513.5
TERAN⋆ [28]2021 79.2 94.4 96.8 63.1 87.3 92.6 513.4
VSRN++⋆ [23]2022 79.2 94.6 97.5 60.6 85.6 91.4 508.9
CHAN (ours) 80.6 96.1 97.8 63.9 87.5 92.6 518.5

maximally mining the shared semantics. While text-
codebook-based CHAN causes degradation of 10.4% at
RSUM, which may be attributed by the cross-modal het-
erogeneity that a natural image is too detailed to be de-
scribed by several words in a sentence.

• Pooling Types. Pooling is important for eliminating the
effect of less informative query words. It can be seen that
LSE-Pooling performs the best while Max-Pooling per-

Table 3. Ablation studies on COCO 5K test set about the network
structure.

METHOD
IMG → TEXT TEXT → IMG

RSUM
R@1 R@5 R@10 R@1 R@5 R@10

Coding Types
Cross-Attention 54.8 83.7 91.2 39.6 69.0 80.3 418.6
Visual Codebook 60.2 85.9 92.4 41.7 71.5 81.7 433.4
Textual Codebook 48.8 80.1 88.9 35.2 66.6 78.4 398.0

Pooling Types
Max-Pooling 34.8 65.1 76.7 20.7 50.1 64.2 311.7
Average-Pooling 58.8 85.4 91.9 42.4 71.5 81.8 431.9
Sum-Pooling 58.4 85.1 92.1 41.3 70.5 80.7 428.1
Softmax-Pooling 54.7 83.0 91.3 40.3 70.0 81.0 420.5
LSE-Pooling 60.2 85.9 92.4 41.7 71.5 81.7 433.4

forms the worst. It’s notable that Sum-Pooling adopted
in [28] performs not better than Average-Pooling in our
setting since the length of a sentence is stochastic, and
the similarity between an image and different sentences
cannot be compared fairly.

Effects of the Size of Codebook K. We visualize the re-
trieval accuracy relative to the total inference time under
different sizes of codebook in Figure 4. It is evident that
as the number of codewords K gets larger, the accuracy-
efficiency curve shifts upper-right, demonstrating that an in-
cremental K benefits the accuracy of hard assignment cod-
ing with sacrifices of the efficiency. This is consistent with
our discussion at the end of § 3.2 but differs from the re-
sult in [21], where K = 36 yields the best results while the
performance drops by introducing noisy information after
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K becomes larger than 36. We attribute this discrepancy to
the property that hard assignment coding can mine the most
informative region and preserve the most shared semantic,
thus performing better with a larger K.

Figure 4. Performance comparison of accuracy (RSUM) and effi-
ciency (ms/pair) between different sizes of codebook K.

4.4. Visualization and Case Study

In order to better understand the intuitive difference be-
tween our CHAN and existing cross-attention-based meth-
ods and verify our effectiveness, we visualize the coding at-
tention weights/assignments {ωij} between the given word
in a sentence and the visual codebook. As shown in Fig-
ure 5, for the final attention map, the attention score at each
pixel location is obtained by adding up scores of all regions
it belongs to, and the region with the maximum attention
is outlined in yellow. We can see that cross-attention-based
methods are either unable to detect the matched alignments
that lead to the deviation between the highlighted/red region
and the ideally semantic matching region, or incompetent
to eliminate the meaningless alignments thus causing the
outlined region far from the ground-truth. As a contrast,
our CHAN solves these problems almost perfectly by intro-
ducing hard assignment coding. Regarding specific cases,
CHAN is capable of learning the relevant region that best
represents the given words, such as "shirt" in Q1 and "log"
in Q4. When it comes to plural nouns like "men" in Q2
and words related to relationships such as "drawing" in Q3,
CHAN tends to represent an appropriate sub-region by unit-
ing the objects, whereas current methods use a series of sub-
regions. These cases demonstrates that both methods are
reasonable for situations involving multiple objects.

5. Conclusion
In this paper, we re-examine existing fine-grained cross-

modal aligning methods, and propose a coding framework
to explore the alignments between salient regions in an im-
age and words in a sentence. Based on the coding frame-
work, we introduce the hard assignment coding scheme

Figure 5. Visual comparison between CHAN and existing cross-
attention-based method. The original image is colorized according
to the attention score at each pixel location; the larger the score,
the warmer the color. The most relevant region with the maximum
attention score is outlined in yellow.

and develop our CHAN model to improve cross-attention-
based approaches. Extensive experiments on MS-COCO
and Fliker30K datasets demonstrate the resulting model
consistently outperforms the state-of-the-art methods, both
in accuracy and efficiency. Ablation study further validates
the theoretical effectiveness of our CHAN model. Our fur-
ther researches include extending our works along the line
of maximizing the mutual information between an image
and a text from the view of the information theory.
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