Slide-Transformer: Hierarchical Vision Transformer with Local Self-Attention

Xuran Pan* Tianzhu Ye* Zhuofan Xia Shiji Song Gao Huang†
Department of Automation, BNRist, Tsinghua University

Abstract

Self-attention mechanism has been a key factor in the recent progress of Vision Transformer (ViT), which enables adaptive feature extraction from global contexts. However, existing self-attention methods either adopt sparse global attention or window attention to reduce the computation complexity, which may compromise the local feature learning or subject to some handcrafted designs. In contrast, local attention, which restricts the receptive field of each query to its own neighboring pixels, enjoys the benefits of both convolution and self-attention, namely local inductive bias and dynamic feature selection. Nevertheless, current local attention modules either use inefficient Im2Col function or rely on specific CUDA kernels that are hard to generalize to devices without CUDA support. In this paper, we propose a novel local attention module, Slide Attention, which leverages common convolution operations to achieve high efficiency, flexibility and generalizability. Specifically, we first re-interpret the column-based Im2Col function from a new row-based perspective and use Depthwise Convolution as an efficient substitution. On this basis, we propose a deformed shifting module based on the re-parameterization technique, which further relaxes the fixed key/value positions to deformed features in the local region. In this way, our module realizes the local attention paradigm in both efficient and flexible manner. Extensive experiments show that our slide attention module is applicable to a variety of advanced Vision Transformer models and compatible with various hardware devices, and achieves consistently improved performances on comprehensive benchmarks.

1. Introduction

Transformer was originally proposed for natural language processing [5, 29] and has gained increasing research interest in recent years. With the advent of Vision Transformer [9], researchers begin to realize its great potential on processing vision data, and further extend Transformer models to a variety of vision tasks including image classification [20, 21, 30], semantic segmentation [26, 36], object detection [2, 16, 22, 39], and multi-modal tasks [23, 24].

Nevertheless, adapting Transformer to vision is a non-trivial task. The computation complexity of self-attention with global receptive field grows quadratically with the sequence length, which leads to excessive computation costs and makes it impractical for vision models that require high-resolution inputs and large memory consumption.

To overcome this challenge, existing works have proposed to limit the global receptive field to smaller regions. For example, PVT [30] and DAT [33] use sparse global attention to select sparse key and value positions from the feature map and share them across all queries. Another line of research including Swin Transformer [20] and CSwin Transformer [8] follow the window attention paradigm. The input is divided into specially designed windows, where features are extracted and aggregated within. Despite be-
ing efficient, these carefully designed attention patterns still suffer from several limitations. On one hand, sparse global attention tends to be inferior in capturing local features, and is susceptible to key and value positions where informative features in other regions may be discarded. On the other hand, window attentions may hinder cross-window communication, and involve extra designs like window shifts that set restrictions on the model structure.

Instead of shrinking the global receptive field, a natural and effective alternative is adopting local attention by constraining receptive field of each query in its own neighboring pixels, where similar pattern has been widely used in traditional convolution design [6, 13]. Compared with the aforementioned attention patterns, local attention has the advantages of convolution with translation-equivariance and local inductive bias, while also enjoying the flexibility and data-dependency of the self-attention mechanism. Several works have already investigated applying local attention to modern convolution or Transformer models. However, they either use the inefficient Im2Col function [25] which results in huge increase in inference time, or rely on carefully written CUDA kernels [11, 37] which restrict the applicability on devices without CUDA support. Therefore, developing a local attention module with both high efficiency and high generalizability remains challenging.

In this paper, we present a novel local attention module, dubbed Slide Attention, that can be efficiently integrated with various Vision Transformer models and hardware devices. We target the inefficient Im2Col function that was adopted in the previous local attention module and view the process from a new perspective. Specifically, the original Im2Col generates the key and value matrix from a column-based view, where each column represents a local region centered at a certain position of the input. Alternatively, we re-formulate the key and value matrix from a row-based view and show that each row corresponds to the input feature shifted in different directions. This new insight gives us the chance to take a further step, that allows us to replace the shifting operation with carefully designed Depthwise Convolutions. In this way, the Im2Col function is replaced with standard convolution operations, which can be realized in a more efficient manner and easily implemented on different hardware devices. To further enhance flexibility, we introduce a novel deformed shifting module that relaxes fixed key and value positions (Fig.1(c)) to deformed features within the local region (Fig.1(d)). By using a re-parameterization technique, we effectively increase the model capacity while preserving inference efficiency.

We empirically validate our module on image classification, semantic segmentation, and object detection tasks under five advanced Vision Transformer models, and show consistent improvements over all baselines. When adopted on devices without CUDA support like Metal Performance Shader (MPS) or iPhone 12, our method also proves to be efficient. For instance, our Slide Attention based on Swin-small outperforms the vanilla Swin-base model while achieving 1.7x inference speedup on iPhone 12.

2. Related Works

2.1. Vision Transformer

Transformer and the self-attention mechanism have shown great progress in the field of Natural Language Processing [5, 29] and successfully applied to vision tasks thanks to the pioneering work of Vision Transformer [9]. Following its path, researchers have extended Vision Transformer models along various directions, including data efficiency [27], position encoding [32], and optimization [35]. To better adapt Vision Transformers to downstream tasks, several works focused on investigating pyramid model structures, and show advanced performances over convolution-based approaches. PVT [30, 31] considers sampling sparse locations in the feature map as key and value pairs. DAT [33] takes a further step and shifts fixed locations toward different directions in a data-dependent way. MViT [10, 17] considers the pooling function on the input to obtain key and value pairs, which can be seen as a lower resolution of the feature map. Other approaches adopt an alternative strategy and restrict the attention to carefully designed patterns. Swin Transformer [20] designs non-overlapped windows and shifts windows between consecutive blocks. On this basis, CSwin Transformer [8] adopts a cross-shape window to further improve model capacity.
2.2. Local Attention

By constraining the attention receptive field of each query in its own neighboring pixels, local attention inherits the advantages from traditional convolution including local inductive bias and translation-equivariance [25]. Researchers follow this path and target improving the efficiency of local attention. HaloNet [28] combines window attention with local attention by first dividing the input into blocks and considering neighborhood windows instead of pixels. Another direction is to design CUDA kernels with high inference speed. SAN [37] designs a novel patchwise attention pattern and achieves better performances based on convolution architectures. NAT [11] adopts neighborhood attention and specifically considers situations for corner pixels. Nevertheless, current local attention models either use inefficient Im2Col function and endure huge increase in inference time, or rely on carefully written CUDA kernels that restrict applicability on CUDA-free devices.

3. Overview of Self-Attention

In this section, we first provide an overview of the self-attention module and its various forms. Compared to the widely used sparse global attention and window attention paradigm, local attention tends to be the most natural implementation while suffering from efficiency limitations.

3.1. Multi-Head Self-Attention

Multi-head self-attention (MHSA) is the core component of Transformer models, which is also the most distinct part among the numerous Transformer researches. In general, an MHSA block with M heads can be formulated as:

$$ q = xW_q, \quad k = xW_k, \quad v = xW_v,$$

$$ z^{(m)} = \sigma(q^{(m)} \cdot k^{(m)}_r) / \sqrt{d} \cdot v^{(m)}_r, \quad m = 1, \ldots, M,$$

$$ z = \text{Concat}(z^{(1)}, \ldots, z^{(M)}) W_o,$$

where $\sigma(\cdot)$ denotes the SoftMax function, and d is the channel dimension of each head. In particular, we denote r_q as the receptive field of a specific query q, and denote $k^{(m)}_{r_q}$ and $v^{(m)}_{r_q}$ as the corresponding key and value pairs respectively.

3.2. Attention Patterns

The implementation of self-attention in the field of computer vision is never a trivial task. Like a coin has two sides, the high flexibility of the self-attention mechanism leads to higher computation complexity and lower efficiency on hard-wares. Therefore, to achieve a better trade-off between performance and efficiency, previous works have investigated injecting different inductive biases into vanilla self-attention paradigm by designing different attention patterns.

(1) Sparse Global Attention [30, 33] considers selecting a sparse set of key and value pairs instead of the dense feature map. However, this also restricts the potential of feature extraction into a limited subset of input. Also, the key and value pairs are the same for all queries. This query-agnostic selection strategy may lead to a homogenization of features throughout the whole feature map.

(2) Window Attention [8, 20] is another option to carefully divide input into particular windows where features are extracted within. Although partially addressing the limitation of query-agnostic key and value pairs, the designed patterns may lead to unnatural circumstances where features at the edge of different windows are totally isolated despite being close in the feature map. Also, window patterns need to shift between consecutive blocks to facilitate connections across windows, involving extra designs in model structure.

(3) Local Attention constrains the receptive field of each query in its own neighboring pixels, sharing a similar pattern with convolution. Compared to former patterns, local attention enjoys the advantages from both convolution and self-attention: 1) Local inductive bias from a query-centric attention pattern; 2) Translation-equivariance like traditional convolution, showing robustness towards shift variances of input; 3) Involving little human design, which sets the least restrictions on the model architecture design.

3.3. Local Attention Implementation

Despite being effective, the local receptive field also poses difficulties in practical implementation. Specifically, due to the fact that the receptive region is different for each query in the feature map, special technique, i.e., Im2Col function needs to be adopted to sample keys and values for all the queries respectively. As illustrated in Fig. 3(1), local window is centered at a particular query and represents the region of its corresponding key/value pairs. The windows are then flattened into columns and consist of the final key/value matrix. However, the process of sampling windows is mainly achieved by independently slicing the feature map, which practically breaks data locality and leads to huge time consumption. In the case of convolution, special tricks like Winograd [15] can be adopted where a portion of computations can be pre-computed before the inference stage. However, the tricks fail to generalize to local attention, since the 'kernel weights' are computed by the dot product of queries and keys in a data-dependent way.

Another line of research [11, 37] focuses on improving the efficiency of local attention by writing CUDA kernels to replace the inefficient Im2Col function. Albeit effective, this inevitably sets restrictions on the potential applicability, making it impractical on hardwares without CUDA support, especially on edge devices like smartphones.

To show a thorough comparison between the aforementioned approaches, we practically analyze the performance
and runtime of these two implementations of local self-attention and compare it with the window attention in Swin-Transformer. As illustrated in Fig.2, Im2Col-based local attention is less favorable in both efficiency and performance. The CUDA-based approaches can maintain comparable inference speed with vectorized operations like window attention, while only achieving marginal improvements. Considering the difficulty of adopting CUDA kernels on different hardwares, we still lack a local attention module that has both high efficiency and high generalizability.

4. Method

As analyzed above, local attention suffers from the efficiency problem that prevents it from practical implementation. In this section, we first show that the inefficient Im2Col function can be re-interpreted from another perspective and proved to be equivalent to a group of simple feature shifts. On this basis, we substitute feature shift operations with efficient depthwise convolutions. Equipped with a novel deformed shifting module to relax the fixed local key/value positions to deformed features, we finally propose a local attention module, dubbed Slide Attention, with high efficiency and flexibility.

4.1. New Perspective on Im2Col

For better understanding, we first review the process of the Im2Col function. We take the operations on keys as an example in the following section, and the case for values is exactly the same. Let $K \in \mathbb{R}^{H \times W \times C}$ denote the keys of the self-attention module and k denote the local window size, the output of Im2Col can be represented as:

$$O_k[u \ast k + v, i \ast H + j] = K[i + u, j + v],$$

(4)

for $i \in [0, W-1], j \in [0, H-1], u, v \in [-\lfloor k/2 \rfloor, \lfloor k/2 \rfloor]$. (5)

From the column-based view, as illustrated in Fig.3[1], the key/value matrix contains HW columns where each col-
umn corresponds to a local window centered at a particular query. Specifically, if we carefully check each column of the output, the above equations can be reformulated as:

$$O_k[i, i \cdot H + j] = \text{Column}^{(i,j)}$$,

where $\text{Column}^{(i,j)}(u, v) = K[i + u, j + v]$

represents a local window centered at (i, j). This is in accordance with motivation of Im2Col function, where receptive windows of all queries are sampled and placed in order.

However, an interesting observation is we can also view the Im2Col function in a different way. From the row-based view, as illustrated in Fig.3(2), the key/value matrix contains k^2 rows, where each row corresponds to shifting input towards a certain direction. Specifically, we focus on each row of the output and reformulate the above equations as:

$$O_k[u \cdot k + v, :] = \text{Row}^{(u,v)}$$,

where $\text{Row}^{(u,v)}(i, j) = K[i + u, j + v]$

is equivalent to shifting the original feature map towards a certain direction $(u, v) \in [-k/2, k/2]$.

In this way, we offer a new alternative to understanding the Im2Col function by substituting the column-based view with a novel row-based view. Take $k = 3$ as an example, if we first shift the original feature map towards 9 different directions (Fig.3(2.b)), then flatten these features into rows and finally concatenate them in column (Fig.3(2.c)), the obtained key/value matrix is proved equivalent to HW local windows which can recover the exact same output of the original Im2Col function (Fig.3(1.c)).

4.2. Shift as Depthwise Convolution

Although the re-interpretation in Sec.4.1 provides us a new way to understand the Im2Col function, simply shifting features towards different directions still involves inefficient slicing operations, which provide little help in promoting the efficiency of local attention. Nevertheless, unlike sampling windows of all queries in Im2Col, feature shifting can be achieved in a more efficient way.

Specifically, we resort to applying depthwise convolution with designed kernels as a replacement for the inefficient feature shifts, as shown in Fig.3(3). Take $u = -1$ and $v = -1$ in Eq.(9) as an example, for a input $f \in R^{H \times W \times C}$, shifting towards direction $(-1, -1)$ can be formulated as:

$$\hat{f}[i - 1, j - 1, :] = f[i - 1, j - 1, :]$$,

On the other hand, if we denote the depthwise convolution kernel (kernel size $k = 3$) as:

$$K[; ; c] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$, \forall c,

the corresponding output can be formulated as:

$$f^{(dwc)}[i, j, c] = \sum_{p, q \in \{0, 1, 2\}} K[p, q, c]f[i + p - 1, j + q - 1, c]$$

$$= f[i - 1, j - 1, c] = \hat{f}[i, j, c], \forall i, j, c.$$

In general, we can integrate the findings from Sec.4.1 and Sec.4.2 and propose an efficient implementation of local attention. For local attention with window size k, we can re-implement the Im2Col function as k^2 carefully defined depthwise convolutions, alleviating the main overhead. Moreover, these depthwise convolutions can be further boiled down to a single group convolution, which not only avoids the inefficient slicing operation, but also can benefit from the optimized implementation of convolution operations on many hardwares [6, 15].

4.3. Deformed Shifting Module

By switching the original Im2Col function to depthwise convolutions, the efficiency of the local attention is greatly improved. Nevertheless, the carefully designed kernel weights still constrain keys and values to the fixed neighboring positions, which may not be the optimal solution for capturing diverse features.

Therefore, we propose a novel deformed shifting module to further enhance the flexibility of local attention. In specific, we take advantage of design paradigm in our shift-wise convolution, and introduce a parallel convolution path where the kernel parameters are randomly initialized and learnable in the training process. Compared to fixed kernels that shift features towards different directions, learn-

![Figure 4. Deformed shifting module with re-parameterization.](image)
able kernels can be interpreted as a linear combination of all local features. This is in analogy with the deformed receptive field in Deformable Convolutional Network [3], where our module practically relaxes the fixed key and value positions to deformed features in the local region.

As illustrated in Fig. 4, the additional convolution path improves local attention module from several perspectives:

1. The key and value pairs in the local attention are extracted by a more flexible module, that greatly improves model capacity and can capture diverse features.

2. The learnable convolution kernel shows a resemblance with the deformable technique in DCN. Similar to the bilinear interpolation of four neighboring pixels in DCN, our deformed shifting module can be viewed as a linear combination of features within the local window. This finally contributes to augmenting the spatial sampling locations and model geometric transformation of inputs.

3. We use the re-parameterization technique [7] to transform the two parallel paths into a single convolution. In this way, we can improve the model capacity while maintaining inference efficiency.

4.4. Implementation

On the basis of the aforementioned design, we propose a novel Slide Attention module that enables a highly efficient and flexible local attention pattern and poses little restriction on model architecture design. Our block can serve as a plug-in module and is easily adopted on a variety of modern vision Transformer architectures and hardware devices. As a showcase, we empirically implement our module on five advanced models including PVT [30], PVT-v2 [31], Swin Transformer [20], CSwin Transformer [8] and NAT [11], and conduct experiments on several environments including Nvidia GPU, Medal Performance Shader and iPhone 12.

Also, previous works [35] have demonstrated that the locality and translation-equivariant property in convolutions are beneficial at early stages of vision Transformers. Considering the similar design pattern and characteristics between our module and traditional convolution, we simply adopt the slide attention block at the early stages of vision Transformer models, and keep the rest of the block unchanged. The detailed architectures are shown in Appendix.

5. Experiments

We conduct experiments on several datasets to verify the performance of our Slide Attention module. We show comparison results on ImageNet [4] classification, ADE20K [38] semantic segmentation and COCO [19] object detection tasks. We also provide a detailed comparison with other local attention modules based on two representative model structures. In addition, ablation studies are conducted to show the effectiveness of the designs in our module. See Appendix for detailed dataset and training configurations.

5.1. ImageNet-1K Classification

We show the classification results in Fig. 5. It is shown that our method achieves consistent improvements against baseline models under comparable FLOPs or parameters.
Table 1. Results on COCO dataset. The FLOPs are computed over backbone, FPN and detection head with input resolution of 1280×800.

Table 2. Results on COCO object detection with RetinaNet [18]. The FLOPs are computed over backbone, FPN, and detection head with an input resolution of 1280×800.

Table 3. Results of semantic segmentation. The FLOPs are computed over encoders and decoders with an input image at the resolution of 512×2048. S-FPN is short for SemanticFPN [14] model.

For example, based on PVT, our model achieves even 0.5% higher performance, with 60% FLOPs. Our model based on PVTv2 and Swin Transformer also achieve comparable performance with 60%-70% FLOPs of competitive baselines. These results demonstrate that our module is applicable to various model structures and shows a better trade-off between computation cost and model performance.

5.2. ADE20K Semantic Segmentation

ADE20K [38] is a widely adopted benchmark for semantic segmentation with 20K training and 2K validation images. We employ our model on two representative segmentation models, SemanticFPN [14] and UperNet [34]. The comparison results show that our model can be adopted on various segmentation frameworks and effectively improve the model performance on dense prediction task.

5.3. COCO Object Detection

COCO [19] object detection and instance segmentation dataset has 118K training and 5K validation images. We use ImageNet pretrained model as the backbone in RetinaNet [18], Mask R-CNN [12] and Cascade Mask R-CNN [1] frameworks to evaluate the effectiveness of our method.

We conduct experiments on both 1x and 3x schedules with different detection heads and show results in Tab.1 and Tab.2. Our model shows better results under all settings. Also, our model achieves more significant improvements in detecting small objects (up to 4.5% improvement), which demonstrates the effectiveness of injecting local inductive bias towards Vision Transformer backbones.

5.4. Comparison with Other Local Attentions

To show a fair comparison with other local attention modules, we select two representative Vision Transformer models, Swin Transformer [20] and NAT [11], that are originally constructed based on window attention and local attention respectively. We adapt previous local attention approaches, including SASA [25], SAN [37], and NAT [11] into these two models, and compare performance with ours.

As shown in Tab.4, our model achieves significantly
better results than Im2Col-based approach SASA. When comparing with CUDA-based approaches SAN and NAT, our model achieves higher performances (0.5%-1.3%) with comparable inference speed. This demonstrates the comprehensive superiority of our model on the accuracy-efficiency trade-off against other local attention approaches.

5.5. Inference Time

We further investigate the practical inference time of our method under different hardware, including computation units like Metal Performance Shader (MPS) and edge devices like iPhone 12. We show comparison results with two competitive baselines in Fig.6. We can see that our module shows significantly better trade-off between runtime and model performance on different devices, and achieves up to 2.3x speed up on advanced Vision Transformer models. For other local attention modules, due to the fact that CUDA-based approaches cannot be implemented on these devices, we only compare our method with Im2Col-based approach. As shown in Fig.6(c), our model achieves 3.7x-3.9x speed up while maintaining higher performances.

5.6. Ablation Study

To further validate the effectiveness of the designs in our model, we conduct several ablation studies. As shown in

![Figure 6. Runtime comparison on Metal Performance Shader and iPhone 12 devices.](image)

(a) Comparison on Swin-T Setting

<table>
<thead>
<tr>
<th>Local Attention</th>
<th>FLOPs</th>
<th>#Param</th>
<th>Acc.</th>
<th>FPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SASA [25]</td>
<td>4.5G</td>
<td>29M</td>
<td>81.6</td>
<td>644</td>
</tr>
<tr>
<td>SAN [37]</td>
<td>4.5G</td>
<td>29M</td>
<td>81.4</td>
<td>670</td>
</tr>
<tr>
<td>NAT [11]</td>
<td>4.5G</td>
<td>29M</td>
<td>81.8</td>
<td>821</td>
</tr>
<tr>
<td>Ours</td>
<td>4.6G</td>
<td>30M</td>
<td>82.3</td>
<td>790</td>
</tr>
</tbody>
</table>

(b) Comparison on NAT-Mini Setting

<table>
<thead>
<tr>
<th>Local Attention</th>
<th>FLOPs</th>
<th>#Param</th>
<th>Acc.</th>
<th>FPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SASA [25]</td>
<td>2.7G</td>
<td>20M</td>
<td>81.2</td>
<td>791</td>
</tr>
<tr>
<td>SAN [37]</td>
<td>2.7G</td>
<td>20M</td>
<td>81.1</td>
<td>815</td>
</tr>
<tr>
<td>NAT [11]</td>
<td>2.7G</td>
<td>20M</td>
<td>81.8</td>
<td>1045</td>
</tr>
<tr>
<td>Ours</td>
<td>2.7G</td>
<td>20M</td>
<td>82.4</td>
<td>998</td>
</tr>
</tbody>
</table>

Table 4. Comparison of different local attention modules on different model structures. We use Swin-Transformer and NAT as the basic settings. FPS is tested on a single RTX3090 GPU.

Tab.5, we can see that our slide attention module shows better performances when adopted at the early stages of Transformer models. Considering that our module has a similar design pattern with convolution, we believe this result is in accordance with the previous finding in [35], that convolutions are more useful at the early stages of Vision Transformer. We also show the effectiveness of each module in slide attention in Fig.2, which contributes to better model performance or efficiency respectively.

6. Conclusion

In this paper, we revisit the local attention mechanism and address its efficiency overhead by proposing a novel Slide Attention module with only common convolution operations. By substituting the inefficient Im2Col function with depthwise convolutions and equipped with a deformed shifting module, our module realizes local attention in high efficiency, flexibility, and generalizability. Extensive experiments demonstrated that our module can be widely adopted on a variety of Vision Transformers and different hardware devices while achieving a better trade-off between computation efficiency and model performance.

Acknowledgement

This work is supported in part by the National Key R&D Program of China (2019YFC1408703), the National Natural Science Foundation of China (62022048, 62276150), Guoqiang Institute of Tsinghua University and Beijing Academy of Artificial Intelligence. We also appreciate generous donation of computing resources by High-Flyer AI.
References

[10] Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li, Zhicheng Yan, Jitendra Malik, and Christoph Feichtenhofer. Multiscale Vision Transformers. In International Conference on Computer Vision, 2021. 2

[17] Yanghao Li, Chao-Yuan Wu, Haoqi Fan, Karttikeya Mangalam, Bo Xiong, Jitendra Malik, and Christoph Feichtenhofer. MViTv2: Improved Multiscale Vision Transformers for Classification and Detection. In Conference on Computer Vision and Pattern Recognition, 2022. 2

[22] Xuran Pan, Zhuofan Xia, Shiji Song, Li Erran Li, and Gao Huang. 3D Object Detection with Pointform. In Conference on Computer Vision and Pattern Recognition, 2021. 1

