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Figure 1. Compared with previous scalable deep learning frameworks. (a) Network compression shrinks a large network into a small one by
techniques such as pruning, quantization and knowledge distillation, etc., which is a one-to-one mapping. (b) One-shot neural architecture
search first trains a supernet that supports diverse architectural settings and then specializes a subnet given the target resource constraint
during deployment, which is a case of one-to-many. (c) Our proposed Stitchable Neural Network directly stitches the off-the-rack family
of pretrained models and quickly obtains new networks for efficient model design and deployment in a novel many-to-many paradigm.

Abstract

The public model zoo containing enormous powerful
pretrained model families (e.g., ResNet/DeiT) has reached
an unprecedented scope than ever, which significantly con-
tributes to the success of deep learning. As each model fam-
ily consists of pretrained models with diverse scales (e.g.,
DeiT-Ti/S/B), it naturally arises a fundamental question of
how to efficiently assemble these readily available models
in a family for dynamic accuracy-efficiency trade-offs at
runtime. To this end, we present Stitchable Neural Net-
works (SN-Net), a novel scalable and efficient framework
for model deployment. It cheaply produces numerous net-
works with different complexity and performance trade-offs
given a family of pretrained neural networks, which we call
anchors. Specifically, SN-Net splits the anchors across the
blocks/layers and then stitches them together with simple
stitching layers to map the activations from one anchor to
another. With only a few epochs of training, SN-Net effec-
tively interpolates between the performance of anchors with
varying scales. At runtime, SN-Net can instantly adapt to
dynamic resource constraints by switching the stitching po-
sitions. Extensive experiments on ImageNet classification
demonstrate that SN-Net can obtain on-par or even bet-
ter performance than many individually trained networks
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while supporting diverse deployment scenarios. For exam-
ple, by stitching Swin Transformers, we challenge hundreds
of models in Timm model zoo with a single network. We be-
lieve this new elastic model framework can serve as a strong
baseline for further research in wider communities.

1. Introduction
The vast computational resources available and large

amount of data have driven researchers to build tens of thou-
sands of powerful deep neural networks with strong per-
formance, which have largely underpinned the most recent
breakthroughs in machine learning and much broader arti-
ficial intelligence. Up to now, there are ∼81k models on
HuggingFace [53] and ∼800 models on Timm [52] that
are ready to be downloaded and executed without the over-
head of reproducing. Despite the large model zoo, a model
family (e.g., DeiT-Ti/S/B [48]) that contains pretrained
models with functionally similar architectures but different
scales only covers a coarse-grained level of model complex-
ity/performance, where each model only targets a specific
resource budget (e.g., FLOPs). Moreover, the model fam-
ily is not flexible to adapt to dynamic resource constraints
since each individual model is not re-configurable due to the
fixed computational graph. In reality, we usually need to
deploy models to diverse platforms with different resource
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Figure 2. One Stitchable Neural Network vs. 200 models in Timm
model zoo [52]. It shows an example of SN-Net by stitching
ImageNet-22K pretrained Swin-Ti/S/B. Compared to each indi-
vidual network, SN-Net is able to instantly switch network topol-
ogy at runtime and covers a wide range of computing resource
budgets. Larger and darker dots indicate a larger model with more
parameters and higher complexity.

constraints (e.g., energy, latency, on-chip memory). For in-
stance, a mobile app in Google Play has to support tens of
thousands of unique Android devices, from a high-end Sam-
sung Galaxy S22 to a low-end Nokia X5. Therefore, given
a family of pretrained models in the model zoo, a funda-
mental research question naturally arises: how to effectively
utilise these off-the-shelf pretrained models to handle di-
verse deployment scenarios for Green AI [45]?

To answer this question, a naive solution is to train indi-
vidual models with different accuracy-efficiency trade-offs
from scratch. However, such method has a linearly in-
creased training and time cost with the number of possi-
ble cases. Therefore, one may consider the existing scal-
able deep learning frameworks, such as model compres-
sion and neural architecture search (NAS), to obtain mod-
els at different scales for diverse deployment requirements.
Specifically, network compression approaches such as prun-
ing [20,22,25], quantization [32,42,62] and knowledge dis-
tillation [7,43,47] aim to obtain a small model from a large
and well-trained network, which however only target one
specific resource budget (see Figure 1 (a)), thus not flexible
to meet the requirements of real-world deployment scenar-
ios. On the other hand, one-shot NAS [28, 37], a typical
NAS framework that decouples training and specialization
stages, seeks to train an over-parameterized supernet that
supports many sub-networks for run-time dynamics (see
Figure 1 (b)), but training the supernet is extremely time-
consuming and computationally expensive (e.g., 1,200 GPU
hours on 32 V100 GPUs in OFA [4]). To summarize, the
existing scalable deep learning frameworks are still limited
within a single model design space, which cannot inherit the
rich knowledge from pretrained model families in a model
zoo for better flexibility and accuracy. Besides, they also

require complicated training strategies to guarantee a good
model performance.

In this work, we present Stitchable Neural Network (SN-
Net), a novel scalable deep learning framework for efficient
model design and deployment which quickly stitches an
off-the-shelf pretrained model family with much less train-
ing effort to cover a fine-grained level of model complex-
ity/performance for a wide range of deployment scenarios
(see Figure 1 (c)). Specifically, SN-Net is motivated by
the previous observations [2, 10, 21] that the typical min-
ima reached by SGD can be stitched to each other with low
loss penalty, which implies architectures of the same model
family pretrained on the same task can be stitched. Based
on this insight, SN-Net directly selects the well-performed
pretrained models in a model family as “anchors”, and then
inserts a few simple stitching layers at different positions
to transform the activations from one anchor to its nearest
anchor in terms of complexity. In this way, SN-Net nat-
urally interpolates a path between neighbouring anchors of
different accuracy-efficiency trade-offs, and thus can handle
dynamic resource constraints with a single neural network
at runtime. An example is shown in Figure 2, where a single
Swin-based SN-Net is able to do what hundreds of models
can do with only 50 epochs training on ImageNet-1K.

We systematically study the design principles for SN-
Net, including the choice of anchors, the design of stitching
layers, the stitching direction and strategy, along with a suf-
ficiently simple but effective training strategy. With com-
prehensive experiments, we show that SN-Net demonstrates
promising advantages: 1) Compared to the existing preva-
lent scalable deep learning frameworks (Figure 1), SN-Net
is a new universal paradigm which breaks the limit of a sin-
gle pretrained model or supernet design by extending the
design space into a large number of model families in the
model zoo, forming a “many-to-many” pipeline. 2) Differ-
ent from NAS training that requires complex optimization
techniques [4,61], training SN-Net is as easy as training in-
dividual models while getting rid of the huge computational
cost of training from scratch. 3) The final performance of
stitches is almost predictable due to the interpolation-like
performance curve between anchors, which implies that we
can selectively train a number of stitches prior to training
based on different deployment scenarios.

In a nutshell, we summarize our contributions as follows:

• We introduce Stitchable Neural Networks, a new uni-
versal framework for elastic deep learning by directly
utilising the pretrained model families in model zoo
via model stitching.

• We provide practical principles to design and train SN-
Net, laying down the foundations for future research.

• Extensive experiments demonstrate that compared to
training individual networks from scratch, e.g., a single
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DeiT-based [48] SN-Net can achieve flexible accuracy-
efficiency trade-offs at runtime while reducing 22×
training cost and local disk storage.

2. Related Work
Model stitching. Model stitching was initially proposed
by Lenc et al. [21] to study the equivalence of representa-
tions. Specifically, they showed that the early portion of a
trained network can be connected with the last portion of
another trained network by a 1 × 1 convolution stitching
layer without significant performance drop. Most recently,
Yamini et al. [2] revealed that neural networks, even with
different architectures or trained with different strategies,
can also be stitched together with small effect on perfor-
mance. As a concurrent work to [2], Adrián et al. [10]
studied using model stitching as an experimental tool to
match neural network representations. They demonstrated
that common similarity indices (e.g., CKA [19], CCA [12],
SVCCA [40]) are not correlated to the performance of the
stitched model. Unlike these previous works which view
model stitching as a tool to measure neural network repre-
sentations, this paper unleashes the power of model stitch-
ing as a general approach for utilising the pretrained model
families in the large-scale model zoo to obtain a single scal-
able neural network at a low cost that can instantly adapt
to diverse deployment scenarios. More recently, Yang et
al. proposed DeRy [58] to dissect and reassemble arbi-
trary pretrained models into a new network for a certain re-
source constraint (e.g., FLOPs) one at a time. Unlike DeRy,
the proposed SN-Net supports numerous sub-networks by
stitching the off-the-shelf model families, being capable of
handling diverse resource budgets at deployment time.

Neural architecture search. Neural architecture search
(NAS) [64] aims to automatically search for the well-
performed network architecture in a pre-defined search
space under different resource constraints. In the early at-
tempts [64, 65], NAS consumes prohibitive computational
cost (e.g., 500 GPUs across 4 days in [65]) due the require-
ment of training individual sub-networks until convergence
for accurate performance estimation. To address this prob-
lem, one-shot NAS [5, 28, 30, 37, 56] has been proposed to
improve NAS efficiency by weight sharing, where multiple
subnets share the same weights with the supernet. How-
ever, training a supernet still requires intensive computing
resources. Most recently, zero-shot NAS [1, 8, 18, 31] has
been proposed to identify good architectures prior to train-
ing. However, obtaining the final model still requires train-
ing from scratch. Compared to NAS, our method builds
upon the off-the-shelf family of pretrained models in model
zoo, which exploits the large model design space and is
able to assemble the existing rich knowledge from heteroge-
neous models for flexible and diverse model deployments.

Vision Transformers. Vision Transformers [11] are
emerging deep neural networks which have challenged the
de-facto standard of convolutional neural networks on vi-
sion tasks. The majority of the existing efforts focus on
improving the performance of ViT as a single general vi-
sion backbone [29, 34, 49, 50, 57] or adopting ViT as a
strong module for modeling global relationships to address
downstream tasks [23, 46, 54]. Another line of works fo-
cus on improving ViT efficiency by token pruning [35, 41],
quantization [24, 27] and dynamic inference [41, 51], etc.
Most recently, large-scale self-supervised pretraining has
helped ViTs achieve promising results on ImageNet, in-
cluding contrastive learning [6, 9] and masked image mod-
eling [3, 13, 17, 63]. However, these models are designed to
be over-parameterized and have a fixed computational cost,
which is inflexible at the inference stage and cannot adapt
to diverse and dynamic deployment environment. Instead
of proposing or pretraining a new ViT architecture, we uti-
lize different pretrained ViTs or even CNNs [15,55] to show
that the proposed SN-Net is a general framework to assem-
ble the existing model families.

3. Method
In this section, we first introduce the preliminary of

model stitching at Section 3.1. Next, we describe the details
of our proposed stitchable neural networks at Section 3.2.

3.1. Preliminaries of Model Stitching

Let θ be the model parameters of a pretrained neural net-
work and fi represent the function of the i-th layer. A typ-
ical feed-forward neural network with L layers can be de-
fined as a composition of functions: fθ = fL◦···◦f1, where
◦ indicates the composition, and fθ : X → Y maps the in-
puts in an input space X to the output space Y . Let X ∈ X
be an input to the network. The basic idea of model stitch-
ing involves splitting a neural network into two portions of
functions at a layer index l. The first portion of layers com-
pose the front part that maps the input X into the activation
space of the l-th layer Aθ,l, which can be formulated as

Hθ,l(X) = fl ◦ · · · ◦ f1(X) = Xl, (1)

where Xl ∈ Aθ,l denotes the output feature map at the l-th
layer. Next, the last portion of layers maps Xl into the final
output

Tθ,l(Xl) = fL ◦ · · · ◦ fl+1(Xl). (2)

In this case, the original neural network function fθ can be
defined as a composition of the above functions fθ = Tθ,l ◦
Hθ,l for all layer indexes l = 1, ..., L− 1.

Now suppose we have another pretrained neural network
fϕ. Let S : Aθ,l → Aϕ,m be a stitching layer which im-
plements a transformation between the activation space of
the l-th layer of fθ to the activation space of the m-th layer
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Figure 3. Illustration of the proposed Stitchable Neural Network, where three pretrained variants of DeiTs are connected with simple
stitching layers (1× 1 convolutions). We share the same stitching layer among neighboring blocks (e.g., 2 blocks with a stride of 2 in this
example) between two models. Apart from the basic anchor models, we obtain many sub-networks (stitches) by stitching the nearest pairs
of anchors in complexity, e.g., DeiT-Ti and DeiT-S (the blue line), DeiT-S and DeiT-B (the green line). Best viewed in color.

of fϕ. The basic idea of model stitching to obtain a new
network defined by S can be expressed as

FS(X) = Tϕ,m ◦ S ◦Hθ,l(X). (3)

By controlling the stitched layer indexes l and m, model
stitching can produce a sequence of stitched networks. It
has been observed by [21] that models of the same archi-
tecture but with different initializations (i.e., random seeds)
can be stitched together with low loss penalty. Further ex-
periments by [2, 10] have demonstrated that different archi-
tectures (e.g., ViTs and CNNs) may also be stitched with-
out significant performance drop, regardless they are trained
in different ways such as self-supervised learning or super-
vised learning.

3.2. Stitchable Neural Networks

Based on the insight of model stitching, we propose
Stitchable Neural Networks (SN-Net), a new “many-to-
many” elastic model paradigm. SN-Net is motivated by
an increasing number of pretrained models in the publicly
available model zoo [52], where most of the individually
trained models are not directly adjustable to dynamic re-
source constraints. To this end, SN-Net inserts a few stitch-
ing layers to smoothly connect a family of pretrained mod-
els to form diverse stitched networks permitting run-time
network selection. The framework of SN-Net is illustrated
in Figure 3 by taking plain ViTs [11] as an example. For
brevity, we will refer to the models that to be stitched as
“anchors” and the derived models by stitching anchors as
“stitches”. In the following, we describe the concrete ap-
proach in detail, including what, how and where to stitch,
the stitching strategy and space, as well as an effective and
efficient training strategy for SN-Net.

What to stitch: the choice of anchors. In general, the
large-scale model zoo determines the powerful represen-
tation capability of SN-Net as it is a universal framework
for assembling the prevalent families of architectures. As
shown in Section 4, SN-Net works for stitching representa-
tive ViTs and CNNs. However, intuitively, anchors that are
pretrained on different tasks can learn very different repre-
sentations (e.g., ImageNet [44] and COCO [26]) due to the
large distribution gap of different domains [33], thus mak-
ing it difficult for stitching layers to learn to transform ac-
tivations among anchors. Therefore, the selected anchors
should be consistent in terms of the pretrained domain.

How to stitch: the stitching layer and its initialization.
Conceptually, the stitching layer should be as simple as pos-
sible since its aim is not to improve the model performance,
but to transform the feature maps from one activation space
to another [2]. To this end, the stitching layers in SN-Net
are simply 1 × 1 convolutional layers. By default in Py-
Torch [36], these layers are initialized based on Kaiming
initialization [14].

However, different from training a network from scratch
as in most works [3, 29, 49, 50], SN-Net is built upon pre-
trained models. In this case, the anchors have already
learned good representations, which allows to directly ob-
tain an accurate transformation matrix by solving the fol-
lowing least squares problem

∥AMo −B∥F = min ∥AM−B∥F , (4)

where A ∈ RN×D1 and B ∈ RN×D2 are two feature maps
of the same spatial size but with different number of hidden
dimensions. N denotes the length of the input sequence and
D1, D2 refer to the number of hidden dimensions. M ∈
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Figure 4. Stitching direction: Fast-to-Slow vs. Slow-to-Fast.

RD1×D2 is the targeted transformation matrix.
One can observe that Eq. (4) indicates a closed form ex-

pression based on singular value decomposition, in which
case the optimal solution can be achieved through an or-
thogonal projection in the space of matrices,

Mo = A†B, (5)

where A† denotes the Moore-Penrose pseudoinverse of A.
To obtain Mo requires only a few seconds on one CPU with
hundreds of samples. However, we will show in Section 4.2
that directly using with least-squares solution achieves un-
stable performance for stitches, but it actually provides a
good initialization for learning stitching layers with SGD.
Therefore, the least-squares solution serves as the default
initialization approach for the stitching layers in SN-Net.

Where to stitch: the stitching directions. Given anchors
with different scales and complexities, there are two op-
tions to stitch them together: Fast-to-Slow and Slow-to-
Fast. Taking two anchors as an example (Figure 4), Fast-
to-Slow takes the first portion of layers (i.e., Eq. (1)) from
a smaller and faster model, and the last portion of layers
(i.e., Eq. (1)) from a larger and slower model, where Slow-
to-Fast goes in a reverse direction. However, as Fast-to-
Slow is more aligned with the existing model design princi-
ple (i.e., increasing the network width as it goes deeper),
we will show in Section 4.2 that it achieves more stable
and better performance than Slow-to-Fast. In this case, we
take Fast-to-Slow as the default stitching direction in SN-
Net. Besides, as different anchors may reach very different
minima, we propose a nearest stitching strategy by limit-
ing the stitching between two anchors of the nearest model
complexity/performance. Thus, each stitch in SN-Net as-
sembles a pair of neighbouring anchors. We will show in
Section 4.2 that stitching across anchors without the nearest
stitching constraint achieves inferior performance.

Way to stitch: stitching as sliding windows. Our stitch-
ing strategy is inspired by the main observation: neighbor-
ing layers dealing with the same scale feature maps share
similar representations [19]. To this end, we propose to
stitch anchors as sliding windows, where the same window

Stitching
Layer

Stitching
Layer

Stitching
Layer

Stitching
Layer

Paired Stitching Unpaired Stitching

Figure 5. Stitching as sliding windows, where paired stitching
is proposed for stitching models with equal depth and unpaired
stitching is utilised for models with unequal depth.

shares a common stitching layer, as shown in Figure 5. Let
L1 and L2 be depth of two anchors. Then intuitively, there
are two cases when stitching layers/blocks between the two
anchors: paired stitching (L1 = L2) and unpaired stitch-
ing (L1 ̸= L2). In the case of L1 = L2, the sliding win-
dows can be controlled as sliding windows with a window
size k and a stride s. Figure 5 left shows an example with
k = 2, s = 1. However, in most cases we have unequal
depth as different model architectures have different scales.
Even though, matching L1 layers to L2 layers can be eas-
ily done by nearest interpolation where each layer from the
shallower anchor can be stitched with more than one layers
of the deeper anchor, as shown in Figure 5 right.

Stitching space. In SN-Net, we first split the anchors
along the internal layers/blocks at each stage then apply
our stitching strategy within each stage. As different an-
chors have different architectural configurations, the size
of the stitching space can be variant based on the depth
of the selected anchors and the stitching settings (i.e., the
kernel size k and stride s). For example, with k = 2 and
s = 1, DeiT-based SN-Net can have 71 stitches under the
constraint of our nearest stitching principle, or 732 stitches
without this constraint, as shown in Figure 9 (b). We pro-
vide detailed illustrations for this figure in the supplemen-
tary material. More stitches can be obtained by choosing
anchors with larger scales or configuring the sliding win-
dows by using a larger window size or smaller stride. Over-
all, compared to one-shot NAS which can support more
than 1020 sub-networks, SN-Net has a relatively smaller
space (up to hundreds or thousands). However, we point out
that even though NAS has a much larger architecture space,
during deployment, it only focuses on the sub-networks on
the Pareto frontier of performance and resource consump-
tion [60]. Thus the vast majority of sub-networks are ig-
nored. In contrast, we will show in Section 4.2 that the
stitches in SN-Net smoothly distribute among the anchors,
which indicates that the analogous performance curve can
almost be estimated without too much searching cost, per-
mitting fast deployment.
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Training strategy. Given the anchors with different
accuracy-efficiency trade-offs from the model zoo, our aim
is to train an elastic joint network that covers a large num-
ber of stitches in a highly efficient way so that it can fit
diverse resource constraints with low energy cost. The de-
tailed training algorithm is provided in Algorithm 1 with
PyTorch style, where we firstly define a configuration set
that contains all possible stitches and initialize all stitch-
ing layers with least-squares matching by solving Eq. (4).
Next, at each training iteration, we randomly sample a
stitch and follow the standard training process as in com-
mon practices [29, 50]. To further improve the perfor-
mance of stitches, we also adopt knowledge distillation
with RegNetY-160 [39] as the teacher model. The over-
all training process requires only a few epochs (e.g., 50)
on ImageNet, which is far less than the supernet training
in NAS [4, 5, 56] and other techniques [59, 61] that train
networks from scratch. Moreover, as anchors are already
well-trained, we do not observe significant interference [4]
among stitches, as shown in the experiments.

Algorithm 1 Training Stitchable Neural Networks

Require: M pretrained anchors to be stitched. Configura-
tion set E = {e1, ..., eQ} with Q stitching positions.

1: Initialize all stitching layers by least-squares matching
2: for i = 1, ..., niters do
3: Get next mini-batch of data X and label Y.
4: Clear gradients, optimizer.zero grad().
5: Randomly sample a stitching eq from set E.
6: Execute the current stitch, Ŷ = Feq (X).
7: Compute loss, loss = criterion(Ŷ,Y).
8: Compute gradients, loss.backward().
9: Update weights, optimizer.step().

10: end for

4. Experiment
Implementation details. We conduct all experiments on
ImageNet-1K [44], a large-scale image dataset which con-
tains ∼1.2M training images and 50K validation images
from 1K categories. Model performance is measured
by Top-1 accuracy. Furthermore, we report the FLOPs
and throughput as indicators of theoretical complexity and
real speed on hardware, respectively. We study stitching
plain ViTs, hierarchical ViTs, CNNs, and CNN with ViT.
We choose the representative model families as anchors:
DeiT [48], Swin Transformer [29] and ResNet [15]. By
default, we randomly sample 100 images from the training
set to initialize the stitching layers. For paired stitching,
we set the default sliding kernel size as 2 and the stride
as 1. For unpaired stitching, we match layers by nearest
interpolation. Unless otherwise specified, all experiments
adopt a total batch size of 1,024 on 8 V100 GPUs. We train

DeiT/Swin with 50 epochs with an initial learning rate of
1 × 10−4. For the experiments with ResNet, we train with
30 epochs based on the training scripts from timm [52] with
an initial learning rate of 0.05. All other hyperparameters
adopt the default setting as in [29, 48, 52]. For hierarchical
models, we scale the learning rate of the anchor parameters
by 1/10 compared to that of stitching layers.

4.1. Main Results

Stitching plain ViTs. Based on Algorithm 1, we first gen-
erate a stitching configuration set by assembling ImageNet-
1K pretrained DeiT-Ti/S/B, which contains 71 stitches in-
cluding 3 anchors. Then we jointly train the stitches in
DeiT-based SN-Net on ImageNet with 50 epochs. The
whole training and evaluation process takes only around
110 and 3 GPU hours on V100 GPUs, respectively. In Fig-
ure 6 left, we visualize the performance of all 71 stitches,
including the anchors DeiT-Ti/S/B (highlighted as yellow
stars). In general, SN-Net achieves a wide range of success-
ful stitches, where they achieve smoothly increased perfor-
mance when stitching more blocks from a larger anchor. We
also observe a phenomenon of model-level interpolation
between two anchors: with the architectures of the stitches
become more similar to the nearest larger anchor, the per-
formance also gradually gets closer to it.

Moreover, we compare individually trained models from
scratch and select stitches from our jointly optimized SN-
Net. For brevity, we denote “Ti-S” as the stitches with
DeiT-Ti/S as anchors and “S-B” as the stitches with DeiT-
S/B as anchors. The results are shown in Table 1. As it
indicates, compared to individually trained “S-B” stitches,
SN-Net achieves even better performance. It is worth noting
that some stitches can fail to converge when training from
scratch. However, due to all anchors in SN-Net have been
well-trained, the stitches can be easily interpolated among
them. Also note that “Ti-S” stitches achieve inferior per-
formance than individual ones. We speculate that due to
a slightly larger performance gap between DeiT-Ti/S com-
pared to DeiT-S/B, training Ti-S stitches from scratch may
help to find a better local optimum. We also notice a per-
formance drop for anchor DeiT-Ti, for which we assume a
more intelligent stitch sampling strategy can help in future
works. Overall, a single SN-Net can cover a wide range
of accuracy-efficiency trade-offs while achieving competi-
tive performance with models that trained from scratch. To
be emphasized, SN-Net reduces around 22× training cost
(71 × 300 epochs vs. 3 × 300 + 50 epochs) and local disk
storage (2,630M vs. 118M) compared to training and saving
all individual networks.
Stitching hierarchical ViTs. Furthermore, we conduct ex-
periment by stitching hierarchical ViTs. In particular, we
assemble Swin-Ti/S/B trained on ImageNet-22K by stitch-
ing the blocks at the first three stages. Note that we do
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Table 1. Performance comparisons on ImageNet-1K between individually trained models from scratch with 300 epochs and stitches
selected from our proposed SN-Net trained with 50 epochs. A single SN-Net with 118.4M parameters can include all possible stitches. We
denote “# Ti/S/B Blocks” as the number of stitched blocks chosen from DeiT-Ti/S/B, respectively. “failed” means training such stitched
model from scratch fails to converge and incurs “loss is nan”. Throughput is measured on one RTX 3090 and averaged over 30 runs, with
a batch size of 64 and input resolution of 224× 224.

# Ti Blocks # S Blocks # B Blocks FLOPs
(G)

Throughput
(images/s)

Individually Trained SN-Net
Params (M) Top-1 (%) Params (M) Top-1 (%)

12 0 0 1.3 2,839 5.7 72.1

118.4

70.6
9 3 0 2.1 2,352 10.0 75.9 72.6
6 6 0 2.9 1,963 14.0 78.2 76.5
3 9 0 3.8 1,673 18.0 79.4 78.2
0 12 0 4.6 1,458 22.1 79.8 79.5
0 9 3 7.9 1,060 38.7 79.4 80.0
0 6 6 11.2 828 54.6 failed 81.5
0 3 9 14.3 679 70.6 80.3 82.0
0 0 12 17.6 577 86.6 81.8 81.9
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Figure 6. Performance of SN-Net by stitching DeiT-Ti/S/B and Swin-Ti/S/B.
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Figure 7. Effect of stitching CNNs and CNN-ViT.

not choose ImageNet-1K pretrained Swin models due to
the minor performance gap (83.1% vs. 83.5%) but the large
difference in FLOPs (8.7G vs. 15.4G) between Swin-S/B.
We visualize the results at Figure 6 right. It shows that
the Swin-based SN-Net also achieves flexible accuracy-
efficiency trade-offs among the three anchors. This strongly
demonstrates that the proposed SN-Net is a general solution
for both plain and hierarchical models.
Stitching CNNs and CNN-ViT. We show that SN-Net
also works for stitching CNN models and even connecting
CNNs with ViTs. As Figure 7 shows, with only 30 epochs
of training, the stitches by assembling from ResNet-18 [15]
to ResNet-50/Swin-Ti perform favourably, which again em-
phasizes that SN-Net can be general for both CNNs and
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Figure 8. Different learning strategies for stitching layers.

ViTs. Also note that ResNet-18/50 and Swin-Ti are shal-
low models, so we obtain a small number of stitches.

4.2. Ablation Study

In this section, we ablate the design principles for SN-
Net. Unless otherwise specified, our experiments are based
on stitching DeiT-Ti/S/B with k = 2, s = 1 and knowl-
edge distillation with RegNetY-160. By default, the train-
ing strategy is the same as in Section 4.1, e.g., 50 epochs on
ImageNet. We provide more ablation studies in the supple-
mentary material, such as the effect of kernel size and stride
for controlling the sliding windows during stitching, etc.
Effect of different stitching layer learning strategies. To
study the effect of different learning strategies for stitching
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Figure 9. From left to right, Figure (a) shows the effect of different stitching directions. Figure (b) presents the effect of nearest stitching
based on DeiT, where “Ti”, “S”, “B” denote the stitched anchors. For example, “Ti-S-B” refers to a stitch that defined by connecting the
tiny, small and base variants of DeiT, sequentially. Figure (c) shows the comparison of full model tuning vs. tuning stitching layers only.

layers, we consider 4 cases: 1) Kaiming Init, the default
initialization method in PyTorch. 2) Least-squares (LS)
Init, the LS solution by solving Eq. (4). 3) Kaiming Init
+ SGD, learning with gradients update on ImageNet after
Kaiming Init. 4) LS Init + SGD, learning with gradients
update on ImageNet after LS Init. We report the experi-
ment results in Figure 8. Overall, we find LS Init serves as
a good starting point for learning stitching layers compared
to the default Kaiming Init. Interestingly, we observe some
stitches by directly matching with LS solution perform quite
well compared to Kaiming Init, as shown in Figure 8 right.
However, in general, directly matching with LS solution re-
sults in an unstable performance curve. This indicates that
LS Init is not fully aware of the final performance of the
stitches and updating the stitching layers is essential.
Effect of stitching directions. In Figure 9 (a), we com-
pare the stitching directions of Fast-to-Slow and Slow-to-
Fast based on DeiT. In general, Fast-to-Slow helps to en-
sure a better performance for most stitches. On the other
hand, Slow-to-Fast obtains a more unstable performance
curve, especially for stitching DeiT-S/B. Compared to Fast-
to-Slow which increases feature representation capacity by
expanding the hidden dimension of activations from a nar-
rower model to a wider one, Slow-to-Fast shrinks the hid-
den dimension, which contradicts to the existing model de-
sign principle [15, 16, 39] that gradually expands the hid-
den dimension to encode rich semantics as the network goes
deeper. Therefore, the resulting information loss of Slow-
to-Fast may increase the optimization difficulty.
Effect of nearest stitching. In SN-Net, we adopt the near-
est stitching strategy which limits a stitch to connect with
a pair of anchors that have the nearest model complex-
ity/performance. However, it is possible to simultaneously
stitching more than two anchors (e.g., stitching all DeiT-
Ti/S/B sequentially) or anchors with a large gap in com-
plexity/performance (e.g., stitching DeiT-Ti with DeiT-B).
With the same 50 epochs training, this approach helps to
produce 10× more stitches than our default settings (732 vs.
71). However, as shown in Figure 9 (b), even though Ti-B
and Ti-S-B achieve good interpolated performance among

the anchors (i.e., they are stitchable), most of them cannot
outperform Ti-S and S-B stitches. In the case of Ti-B, we
speculate that without a better minima as a guide in the mid-
dle (e.g., DeiT-S), the local minima that found by stitch-
ing layers can be sub-optimal due to the large complex-
ity/performance gap between two anchors. Besides, stitch-
ing more than two anchors simultaneously does not bring
obvious gain at this stage, which we leave for future work.
Effect of tuning full model vs. stitching layers only. In
SN-Net, the role of stitching layers is to map the feature
maps from one activation space to another. However, since
the anchors have been well-trained, one question is how the
performance changes if we only update the stitching lay-
ers during training. In Figure 9 (c), we show that tuning
stitching layers is only promising for some stitches. In con-
trast, we observe that the performance of stitches can be im-
proved by tuning the full model. Therefore, we by default
make SN-Net to be fully updated during training.

5. Conclusion

We have introduced Stitchable Neural Networks, a novel
general framework for developing elastic neural networks
that directly inherit the rich knowledge from pretrained
model families in the large-scale model zoo. Extensive ex-
periments have shown that SN-Net can deliver fast and flex-
ible accuracy-efficiency trade-offs at runtime with low cost,
fostering the massive deployment of deep models for real-
world applications. With the rapid growth of the number of
large-scale pretrained models [13, 38], we believe our work
paves a new way for efficient model development and de-
ployment, yielding a significant step towards Green AI. In
future works, SN-Net can be extended into more tasks, such
as natural language processing, dense prediction and trans-
fer learning.
Limitations and societal impact. Our current training
strategy randomly samples a stitch at each training iteration,
which implies that with a much larger stitching space, the
stitches may not be sufficiently trained unless using more
training epochs. We leave this for future work.
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gosz, Gergely Papp, and Dániel Varga. Similarity and match-
ing of neural network representations. In NeurIPS, pages
5656–5668, 2021. 2, 3, 4

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. ICLR, 2021. 3, 4

[12] David R. Hardoon, Sándor Szedmák, and John Shawe-
Taylor. Canonical correlation analysis: An overview
with application to learning methods. Neural Computing,
16(12):2639–2664, 2004. 3

[13] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross B. Girshick. Masked autoencoders are scal-
able vision learners. In CVPR, pages 15979–15988, 2022. 3,
8

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In ICCV, pages 1026–
1034, 2015. 4

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016. 3, 6, 7, 8

[16] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-
ian Q. Weinberger. Densely connected convolutional net-
works. In CVPR, pages 2261–2269, 2017. 8

[17] Lang Huang, Shan You, Mingkai Zheng, Fei Wang, Chen
Qian, and Toshihiko Yamasaki. Green hierarchical vision
transformer for masked image modeling. In NeurIPS, 2022.
3

[18] Roxana Istrate, Florian Scheidegger, Giovanni Mariani,
Dimitrios S. Nikolopoulos, Constantine Bekas, and Adelmo
Cristiano Innocenza Malossi. TAPAS: train-less accuracy
predictor for architecture search. In AAAI, pages 3927–3934,
2019. 3

[19] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and
Geoffrey E. Hinton. Similarity of neural network represen-
tations revisited. In ICML, volume 97, pages 3519–3529,
2019. 3, 5

[20] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip H. S.
Torr. Snip: single-shot network pruning based on connection
sensitivity. In ICLR, 2019. 2

[21] Karel Lenc and Andrea Vedaldi. Understanding image repre-
sentations by measuring their equivariance and equivalence.
In CVPR, pages 991–999, 2015. 2, 3, 4

[22] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning filters for efficient convnets. In
ICLR, 2017. 2

[23] Yanghao Li, Hanzi Mao, Ross B. Girshick, and Kaiming He.
Exploring plain vision transformer backbones for object de-
tection. In ECCV, 2022. 3

[24] Yanjing Li, Sheng Xu, Baochang Zhang, Xianbin Cao, Peng
Gao, and Guodong Guo. Q-vit: Accurate and fully quantized
low-bit vision transformer. In NeurIPS, 2022. 3

[25] Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang,
Baochang Zhang, Yonghong Tian, and Ling Shao. Hrank:
Filter pruning using high-rank feature map. In CVPR, pages
1526–1535, 2020. 2

[26] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. Microsoft COCO: common objects in
context. In David J. Fleet, Tomás Pajdla, Bernt Schiele, and
Tinne Tuytelaars, editors, ECCV, pages 740–755, 2014. 4

[27] Yang Lin, Tianyu Zhang, Peiqin Sun, Zheng Li, and
Shuchang Zhou. Fq-vit: Post-training quantization for fully
quantized vision transformer. In IJCAI, pages 1173–1179,
2022. 3

[28] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:
differentiable architecture search. In ICLR, 2019. 2, 3

[29] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
ICCV, pages 9992–10002, 2021. 3, 4, 6

[30] Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan
Liu. Neural architecture optimization. In NeurIPS, pages
7827–7838, 2018. 3

[31] Joe Mellor, Jack Turner, Amos J. Storkey, and Elliot J. Crow-
ley. Neural architecture search without training. In ICML,
volume 139, pages 7588–7598, 2021. 3

[32] Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and
Max Welling. Data-free quantization through weight equal-
ization and bias correction. In ICCV, pages 1325–1334,
2019. 2

16110



[33] Sinno Jialin Pan and Qiang Yang. A survey on transfer learn-
ing. TKDE, pages 1345–1359, 2010. 4

[34] Zizheng Pan, Bohan Zhuang, Haoyu He, Jing Liu, and Jian-
fei Cai. Less is more: Pay less attention in vision transform-
ers. In AAAI, pages 2035–2043, 2022. 3

[35] Zizheng Pan, Bohan Zhuang, Jing Liu, Haoyu He, and Jian-
fei Cai. Scalable visual transformers with hierarchical pool-
ing. In ICCV, pages 377–386, 2021. 3

[36] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An
Imperative Style, High-Performance Deep Learning Library.
In NeurIPS, pages 8024–8035, 2019. 4

[37] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and
Jeff Dean. Efficient neural architecture search via parameter
sharing. In ICML, volume 80, pages 4092–4101, 2018. 2, 3

[38] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision. In ICML, pages
8748–8763, 2021. 8

[39] Ilija Radosavovic, Raj Prateek Kosaraju, Ross B. Girshick,
Kaiming He, and Piotr Dollár. Designing network design
spaces. In CVPR, pages 10425–10433, 2020. 6, 8

[40] Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha
Sohl-Dickstein. SVCCA: singular vector canonical correla-
tion analysis for deep learning dynamics and interpretability.
In NeurIPS, pages 6076–6085, 2017. 3

[41] Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie
Zhou, and Cho-Jui Hsieh. Dynamicvit: Efficient vision
transformers with dynamic token sparsification. In NeurIPS,
pages 13937–13949, 2021. 3

[42] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,
and Ali Farhadi. Xnor-net: Imagenet classification using bi-
nary convolutional neural networks. In ECCV, pages 525–
542, 2016. 2

[43] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou,
Antoine Chassang, Carlo Gatta, and Yoshua Bengio. Fitnets:
Hints for thin deep nets. In ICLR, 2015. 2

[44] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. IJCV, pages 211–252,
2015. 4, 6

[45] Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Et-
zioni. Green ai. Commun. ACM, 63(12):54–63, nov 2020.
2

[46] Robin Strudel, Ricardo Garcia Pinel, Ivan Laptev, and
Cordelia Schmid. Segmenter: Transformer for semantic seg-
mentation. In ICCV, pages 7242–7252, 2021. 3

[47] Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient
knowledge distillation for BERT model compression. In
EMNLP-IJCNLP, pages 4322–4331, 2019. 2

[48] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
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