Backdoor Cleansing with Unlabeled Data

Lu Pang, Tao Sun, Haibin Ling, Chao Chen
Stony Brook University
{luppang,tao,hling}@cs.stonybrook.edu, chao.chen.1@stonybrook.edu

Abstract

Due to the increasing computational demand of Deep Neural Networks (DNNs), companies and organizations have begun to outsource the training process. However, the externally trained DNNs can potentially be backdoor attacked. It is crucial to defend against such attacks, i.e., to postprocess a suspicious model so that its backdoor behavior is mitigated while its normal prediction power on clean inputs remains uncompromised. To remove the abnormal backdoor behavior, existing methods mostly rely on additional labeled clean samples. However, such requirement may be unrealistic as the training data are often unavailable to end users. In this paper, we investigate the possibility of circumventing such barrier. We propose a novel defense method that does not require training labels. Through a carefully designed layer-wise weight reinitialization and knowledge distillation, our method can effectively cleanse backdoor behaviors of a suspicious network with negligible compromise in its normal behavior. In experiments, we show that our method, trained without labels, is on-par with state-of-the-art defense methods trained using labels. We also observe promising defense results even on out-of-distribution data. This makes our method very practical. Code is available at: https://github.com/luluppang/BCU.

1. Introduction

Deep Neural Networks (DNNs) have achieved impressive performance in many tasks, e.g., image classification [6], 3D point cloud generation [21] and object tracking [45]. However, the success usually relies on abundant training data and computational resources. Companies and organizations thus often outsource the training process to cloud computing or utilize pretrained models from third-party platforms. Unfortunately, the untrustworthy providers may potentially introduce backdoor attacks to the externally trained DNNs [9, 19]. During the training stage of a backdoor attack, an adversary stealthily injects a small portion of poisoned training data to associate a particular trigger with target class labels. During the inference stage, backdoor models predict accurately on clean samples but misclassify samples with triggers to the target class. Common triggers include black-white checkerboard [9], random noise pattern [5], physical object [37], etc.

To defend against backdoor attacks, one needs to postprocess a suspicious model so that its backdoor behavior is mitigated, and meanwhile, its normal prediction power on clean inputs remains uncompromised. To remove the abnormal backdoor behavior, existing methods mostly rely on additional labeled in-distribution clean samples [16, 18, 38, 40, 43, 44]. For example, Fine-Pruning [18] first prunes the dormant neurons for clean samples and then finetunes the model using ground-truth labels. Neural Attention Distillation (NAD) [16], a knowledge distillation-based method, uses labeled clean data to supervise the learning of a student model. Adversarial Neuron Pruning (ANP) [38] learns a mask to prune sensitive neurons with labeled clean data. These methods require 1%–5% labeled clean training samples to effectively remove backdoor. Such requirement, however, is unrealistic in practice as the training data are often unavailable to end-users.

In this paper, we explore the possibility of circumventing such barrier with unlabeled data. As shown in Figure 1,
we propose a novel defense method that does not require training labels. Meanwhile, we explore the ambitious goal of using only out-of-distribution data. These goals make the proposed defense method much more practical. End-users can be completely agnostic of the training set. To run the defense algorithm, they only need to collect some unlabeled data that do not have to resemble the training samples.

Inspired by knowledge distillation [8], we use a student model to acquire benign knowledge from a suspicious teacher model through their predictions on the readily available unlabeled data. Since the unlabeled data are usually clean images or images with slightly random noise, they are distinct from poisoned images with triggers. Therefore, trigger-related behaviors will not be evoked during the distillation. This effectively cleanses backdoor behaviors without significantly compromising the model’s normal behavior. To ensure the student model focuses on the benign knowledge, which can be layer dependent, we propose an adaptive layer-wise weight re-initialization for the student model. Empirically, we demonstrate that even without labels, the proposed method can still successfully defend against the backdoor attacks. We also observe very promising defense results even with out-of-distribution unlabeled data that do not belong to the original training classes.

Our contributions are summarized as follows:
1. For the first time, we propose to defend against backdoor attacks using unlabeled data. This provides a practical solution to end-users under threat.
2. We devise a framework with knowledge distillation to transfer normal behavior of a suspicious teacher model to a student model while cleansing backdoor behaviors. Since the normal/backdoor knowledge can be layer-dependent, we design an adaptive layer-wise initialization strategy for the student model.
3. Extensive experiments are conducted on two benchmark datasets, CIFAR10 [14] and GTSRB [31]. Our method, trained without labels, is on-par with state-of-the-art defense methods trained with labels.
4. Meanwhile, we carry out an empirical study with out-of-distribution data. Our method achieves satisfactory defense performance against a majority of attacks. This sheds lights on a promising practical solution for end-users: they can use any collected images to cleanse a suspicious model.

2. Related Work

2.1. Backdoor Attack

During a backdoor attack, the adversary embeds a trigger into a DNN model by poisoning a portion of the training dataset at the training stage. At the inference stage, the backdoor model classifies clean samples accurately while predicts backdoor samples as the target label. The poisoned training samples are attached with a specific trigger and re-labeled as the target label. A simple trigger can be a black-white checkerboard [9] or a single pixel [33]. These triggers are not stealthy since they can be perceived by human eyes. More complex triggers are developed such as a sinusoidal strip [1], an input-aware dynamic pattern [26, 29], etc. Recent works [7, 20, 25, 36] design more imperceptible triggers. Refool [20] utilizes a natural reflection phenomenon to design triggers. WaNet [25] uses elastic image warping technique to generate triggers. Lira [7] jointly optimizes trigger injection function and classification loss function to get stealthy triggers. BppAttack [36] improves the quality of triggers by using image quantization and injects triggers effectively with contrastive adversarial learning. Besides, some methods [1, 27, 30, 34] keep the original label of poisoned samples same as the target label. Such clean-label setting is more imperceptive for human inspectors. The key of these methods is to make models misclassify the clean target-label samples during the training process. Also, recent works show that backdoor attacks can be applied to federated learning [42], transfer learning [27], self-supervised learning [28], 3D point cloud classification [41], visual object tracking [17] and crowd counting [32].

2.2. Backdoor Defense

In model reconstruction-based defense, given a trained suspicious model, defenders modify the model directly to eliminate backdoor effects. Most methods in this category first synthesize possible triggers and then utilize synthesized triggers to mitigate backdoor effects [3, 4, 10, 35, 46]. With some clean samples, Neural Cleanse (NC) [35] synthesizes a trigger for each class and uses a Median Absolute Deviation (MAD) outlier detection algorithm to detect the final trigger. Then, an unlearning strategy is designed to unlearn the backdoor effects. Following NC [35], other methods [3, 4, 10, 46] are proposed to improve the quality of synthesized triggers. For example, ShapPruning [10] employs Shapley estimation to synthesize triggers and then detect sensitive neurons to synthesized triggers. Chen et al. [4] locates a “wining backdoor lottery ticket” to preserve trigger-related information. These methods heavily depend on the quality of the synthesized triggers, and thus can be unsatisfactory when facing more advanced triggers [7, 29].

Other works explore pruning-based defense methods [18, 38]. The core idea is to detect and prune bad neurons. For example, Fine-Pruning [18] prunes bad neurons of the last convolution layer, and then uses clean samples to finetune the pruned model. Adversarial Neuron Pruning (ANP) [38] treats pruning sensitive neurons as a minimax problem under adversarial neuron perturbations. The Implicit Backdoor Adversarial Unlearning (I-BAU) algorithm [43] solves the minimax optimization by utilizing the implicit hyper-gradient. Besides, Mode Connectivity Re-
3. Method

Our main idea is to directly use knowledge distillation to cleanse backdoor behaviors. The rationale is three-folds. First, knowledge distillation directly transfers knowledge through the logits output, which carries the rich posterior probability distribution information of a model. By approximating the logits output on samples, the student model can naturally mimic the normal behavior of the teacher model. Second, we argue that the backdoor behavior is an abnormal phenomenon forced into the teacher model. Knowledge distillation through clean samples will implicitly regularize the transferred knowledge, and “smooth” out the abnormal behavior. Finally, prior study has observed that backdoor behavior is embodied in certain neurons whose distribution is layer dependent [22]. By designing an adaptive weight initialization, we can more effectively transfer normal knowledge of the teacher model and filter out backdoor behavior. The framework of our method is illustrated in Figure 2.

3.1. Preliminary

Attack Setting. In backdoor attack for classification task, a DNN model $f_\theta : \mathcal{X} \rightarrow \mathcal{Y}$ is trained, where $\mathcal{X} \subset \mathbb{R}^d$ is the input space and $\mathcal{Y} = \{1, 2, ..., K\}$ is the label space. An image dataset $D_{\text{attack}} = \{(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}\}^{n}_{i=1}$ is split by $D_{\text{attack}} = D_{\text{clean}} \cup D_{\text{backdoor}}$, where D_{backdoor} is used to create backdoor images. The backdoor injection rate is defined as $\gamma = \frac{|D_{\text{backdoor}}|}{|D_{\text{attack}}|}$. An image transformation function $\Phi(\cdot)$ transforms a clean image into a backdoor image, e.g., through stacking a checkerboard pattern to the original image. $\eta(\cdot, \cdot)$ transforms its ground truth label into a target label. The objective function for backdoor attack is

$$L_{\text{attack}} = \mathbb{E}_{(x, y) \sim D_{\text{clean}}} [\ell_{\text{ce}}(f_\theta(x), y)] + \mathbb{E}_{(x, y) \sim D_{\text{backdoor}}} [\ell_{\text{ce}}(f_\theta(\Phi(x)), \eta(x, y))]$$

where ℓ_{ce} is the cross entropy loss function. With this loss function, the obtained backdoor model is expected to be-

![Figure 2. Proposed backdoor cleansing framework. The student model learns normal behavior from the teacher model through knowledge distillation on unlabeled images. Backdoor behavior of the teacher model is neglected.](image-url)
have normally on clean test images, while misclassify backdoor images to the target class label.

Defense Setting. We assume that defenders download a backdoored model from an untrustworthy platform and cannot access the training process. Some clean images D_{defense} are given for backdoor defense. The goal of defense is to preserve the classification accuracy (ACC) on clean data and decrease the classification accuracy on backdoor images i.e. attack success rate (ASR).

3.2. Backdoor Cleansing via Knowledge Distillation

Our motivation is to directly extract clean information (or knowledge) from a suspicious model. Since a backdoor model usually behaves differently for clean and backdoor images, the trigger-related behaviors will not be evoked when the model is fed with clean images. Inspired by response-based knowledge distillation [12], we adopt the teacher-student framework to distillate benign knowledge from a suspicious teacher model through its predictions on clean images. As illustrated in Figure 2, the normal behaviors of the teacher model are transferred to the student model, while the backdoor behaviors are neglected. This effectively cleanses backdoor behaviors without significantly compromising the model’s performances on clean images.

Since we use the logits output of the teacher model as the supervision, our proposed framework does not need ground-truth labels. In fact, even when the input images are out-of-distribution data that do not belong to the training classes, the student model can acquire useful knowledge from the teacher model’s predicted probabilities.

Let z^t and z^s be the output logits of the teacher model and student model, respectively. Their temperature scaled probability vectors can be obtained as $p_T^t[k] = \frac{\exp(z^t_k/T)}{\sum_j \exp(z^t_j/T)}$ and $p_T^s[k] = \frac{\exp(z^s_k/T)}{\sum_j \exp(z^s_j/T)}$. T is a temperature hyper-parameter. Our defense objective function is

$$L_{\text{defense}} = \mathbb{E}_{(x,y)\sim D_{\text{val}}} D_{\text{KL}}[p_T^s||p_T^t]$$

where $D_{\text{KL}}[\cdot||\cdot]$ is the KL divergence.

Qualitative Analysis. To show the effectiveness of knowledge distillation, we visualize the penultimate feature representations of clean and backdoor images throughout the process of knowledge distillation, and plot in the top row of Figure 3. The compactness and separability of clean image clusters reflect the model’s prediction ability on normal data. Also, if backdoor behaviors are cleansed, the backdoor images will fall into the corresponding clean clusters. In Fig. 3a, we can see that the clean images form 10 clusters, indicating a high ACC of the teacher model. The backdoor images are distant to the clean images and form separate clusters. Hence the teacher model behaves abnormally on backdoor data. For the student model after adaptive layer-wise initialization in Fig. 3b, clean images from the same class are still close to each other, showing that some benign knowledge are preserved after initialization. This provides a good starting point for the following knowledge distillation. Figures 3c-3e show the results after training for some epochs. The normal behaviors are gradually transferred to the student model. With this, clean images form...
tighter clusters and are better separated. Backdoor images turn to overlap with the clean images with the same class labels, showing that the backdoor behaviors are successfully cleansed.

3.3. Adaptive Layer-wise Initialization

It is generally believed that backdoor behavior is embodied through “bad” neurons. By random weight initialization and knowledge distillation on clean samples, we expect such neurons will be naturally cleansed. Previous observations [22] reveal that these “bad” neurons can be distributed differently at different layers, and the distribution is architecture- and dataset-dependent. In order to (1) break connection between triggers and target label and (2) preserve more normal knowledge simultaneously, we propose an adaptive layer-wise initialization strategy to initialize the student model.

Assuming the suspicious teacher model has L layers, the weights can be represented as $W^t = \{W^t_l| 1 \leq l \leq L\}$ where $W^t_l \in \mathbb{R}^{C_{out} \times C_{in} \times K \times K}$ for a convolution layer and $W^t_l \in \mathbb{R}^{C_{out} \times C_{in}}$ for a linear layer. We also have another random initialized student model, whose architecture is same as teacher model. Similarly, the weights of random initialized student model can be represented as $W^s = \{W^s_l| 1 \leq l \leq L\}$ where $W^s_l \in \mathbb{R}^{C_{out} \times C_{in} \times K \times K}$ for a convolution layer and $W^s_l \in \mathbb{R}^{C_{out} \times C_{in}}$ for a linear layer. Here, we consider a tuned hyperparameter δ_l for l-th layer. Then the initialization mask is defined as $M = \{m_l| 1 \leq l \leq L, m_l \in \{0, 1\}\}$ shape(W^s_l), $\sum m_l = \delta_l |m_l|$ where $|m_l|$ is the size of initializing mask. Then, initialized student model W^{**} can be formulated as follows:

$$ALI(W^{**}, \delta) = \bigcup_{i=1}^{L}((1 - m_l) \odot W^t_l + m_l \odot W^s_l)$$ \hspace{1cm} (3)

where $\delta = \{\delta_l| 1 \leq l \leq L\}$ is the ratio of random initializing weights per layer.

Qualitative Analysis. Similar to previous analysis in Sec. 3.3, we study the effects of adaptive layer-wise initialization for the student model through visualizing clean and backdoor sample features. The comparison strategies include uniform initialization that uses a same random initialization ratio for every layer, and single-layer initialization. To match our adaptive layer-wise initialization, we choose a specific ratio for the uniform initialization so that the total number of randomized weights equals in the two strategies. The same ratio is used for single-layer initialization.

Comparing Figure 3f with Figure 3b, we can find that uniform initialization breaks the connection between trigger and target label. However, the benign information is also discarded as all clean images clutter together in the

Algorithm 1 Backdoor Cleansing with Unlabeled Data

Input: Backdoor model f^t with weights W^t, random initialized student model f^s with weights W^s, adaptive ratios δ, unlabeled clean data D_{defense}, training epochs E, iterations per epoch I and temperature T.

Output: Clean model f

1. for $l = 0$ to $|W^t|$ do
2. Sample R^lshape(W^t_l) \sim Uniform(0, 1)
3. Obtain boolean weight mask $m_l = I[R_l < \delta_l]$
4. $W^s_l = (1 - m_l) \odot W^t_l + m_l \odot W^s_l$
5. end for
6. for $e = 0$ to E do
7. for $i = 0$ to I do
8. Sample mini-batches B_{val} from D_{defense}
9. Obtain temperature scaled probability p^t_I from f^t, and p^s_I from f^s
10. Update student model weights W^s with $L_{\text{defense}} = D_{\text{KL}}[p^t_I \parallel p^s_I]$
11. end for
12. $f \leftarrow f^s$
13. end for

4. Experiments

4.1. Experiment settings

Datasets and Architecture. We conduct all backdoor models on two datasets include CIFAR10 [14] and GTSRB [31]. For CIFAR10 and GTSRB, we split their original test datasets into defense dataset and test dataset. The total size of each defense dataset is 5000. Tiny-ImageNet [39] is used as the out-of-distribution dataset. We also construct another out-of-distribution dataset “Tiny-ImageNet++” from ImageNet [6]. Tiny-ImageNet++ contains 20,000 images distributed evenly in 1000 classes. Its image resolution is the same as Tiny-ImageNet. ResNet-18 [11] is adopted as the model architecture. From shallow to deep, ResNet-18 includes 1 convolution layer, 8 basic blocks and 1 FC layer. Except for FC layer, the more shallow the layer is, the less the weights are. The ratios of first convolution layer and FC
layer are set 0.01 and 0.1. The ratios of eight basic blocks are 0.01, 0.01, 0.03, 0.03, 0.09, 0.09, 0.27 and 0.27.

Backdoor attacks setting. We evaluate all defenses on six representative backdoor attacks including Badnets [9], Blended attack [5], Label-consistent backdoor attack (LC) [34], Sinusoidal signal backdoor attack (SIG) [1], Input-aware dynamic backdoor attack (IAB) [26] and WaNet [25]. LC and SIG represent two classic clean-label backdoor attacks. Badnets, Blended, IAB and WaNet are representatives of label-poisoned backdoor attack. Specifically, Badnets is a patch-based visible backdoor attack. Blended is a noise-based invisible attack. IAB is a dynamic backdoor attack. WaNet is an image-transformation-based invisible attack. For a fair comparison, the poison ratio for label-poisoned attacks is set as 0.1. For label-poisoned attacks, we poison 80% samples of target label. The all-to-one strategy is adopted for all backdoor attacks.

Backdoor defense setting. We compare our method with six state-of-the-art defense methods including standard finetuning, Fine-pruning [18], Mode Connectivity Repair (MCR) [44], Adversarial Neuron Pruning (ANP) [38], Neural Attention Distillation (NAD) [16] and Implicit Backdoor Adversarial Unlearning (I-BAU) [43].

For each attack, we train 14 backdoor models with different target labels and random seeds. We conduct all defenses on 14 models and the average is the final results. For fair comparison, we train 100 epochs for all defense methods. We set the batch size as 256 and optimize our framework using Stochastic Gradient Descent (SGD) with a momentum of 0.9, and a weight decay of 0.0005. The adopted data augmentation techniques include random crop and random horizontal flipping. For MCR, we get a benign model by finetuning the original backdoor model with 10 epochs.

4.2. Comparison with other defense methods

Results using unlabeled in-distribution data. We compare with six state-of-the-art defenses with regard to ACC and ASR. Other six defenses use labeled clean samples, while our framework uses unlabeled samples. We assume that all defenses can access 2500 clean samples. For our method, we also present results using 5000 unlabeled samples in the last two columns. Results on CIFAR10 [14] and GTSRB [31] are shown in Table 1 and Table 2, separately. Despite that our framework is trained without using ground-truth labels, its performance is still comparative with other methods that require labels. For CIFAR10, due to the usage of labels, existing works get the highest ACC of 92.25%. However, these works can not decrease ASRs largely while keep high ACC. Our method reduces ASR to 3.74% with negligible ACC reduction of 1.15%. For GTSRB, since ground-truth labels are utilized, ACCs increase slightly in five of six defenses. However, our framework obtains a robust model by reducing average ASR to less than 1%, which is better than other label-based methods. Meanwhile, the ACC reduction of our framework is only 0.86%. With 5000 unlabeled data, our ACC increases 0.25%.

For both datasets, ANP succeeds in dropping ASR of most attacks, but at the expense of lower accuracies compared other methods. ANP aims to prune the bad neurons without re-training backdoor model. However, the backdoor neurons are difficult to distinguish from normal neu-

<table>
<thead>
<tr>
<th>Backdoor Attacks</th>
<th>Original</th>
<th>In-distribution Labeled</th>
<th>In-distribution Unlabeled</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ASR ACC</td>
<td>ASR ACC</td>
<td>ASR ACC</td>
</tr>
<tr>
<td></td>
<td>Finetuning</td>
<td>Fine-pruning</td>
<td>MCR (t=0.3)</td>
</tr>
<tr>
<td></td>
<td>ANP ACC</td>
<td>NAD</td>
<td>I-BAU</td>
</tr>
<tr>
<td></td>
<td>Ours</td>
<td>Ours</td>
<td>Ours</td>
</tr>
<tr>
<td>Badnets</td>
<td>99.93 92.76</td>
<td>99.01 89.47</td>
<td>99.01 89.47</td>
</tr>
<tr>
<td>Blended</td>
<td>98.74 98.01</td>
<td>98.01 97.97</td>
<td>98.01 97.97</td>
</tr>
<tr>
<td>LC</td>
<td>94.74 95.75</td>
<td>94.74 95.75</td>
<td>94.74 95.75</td>
</tr>
<tr>
<td>SIG</td>
<td>97.80 98.87</td>
<td>98.01 97.97</td>
<td>98.01 97.97</td>
</tr>
<tr>
<td>WaNet</td>
<td>97.80 98.87</td>
<td>98.01 97.97</td>
<td>98.01 97.97</td>
</tr>
<tr>
<td>Mean</td>
<td>97.80 98.87</td>
<td>98.01 97.97</td>
<td>98.01 97.97</td>
</tr>
<tr>
<td>Drop ↓</td>
<td>0.01 0.01</td>
<td>0.01 0.01</td>
<td>0.01 0.01</td>
</tr>
</tbody>
</table>

Table 1. Defense results on backdoor models trained on CIFAR10. ("Using double unlabeled data.)

<table>
<thead>
<tr>
<th>Backdoor Attacks</th>
<th>Original</th>
<th>In-distribution Labeled</th>
<th>In-distribution Unlabeled</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ASR ACC</td>
<td>ASR ACC</td>
<td>ASR ACC</td>
</tr>
<tr>
<td></td>
<td>Finetuning</td>
<td>Fine-pruning</td>
<td>MCR (t=0.3)</td>
</tr>
<tr>
<td></td>
<td>ANP ACC</td>
<td>NAD</td>
<td>I-BAU</td>
</tr>
<tr>
<td></td>
<td>Ours</td>
<td>Ours</td>
<td>Ours</td>
</tr>
<tr>
<td>Badnets</td>
<td>100.00 97.22</td>
<td>99.99 99.80</td>
<td>99.99 99.80</td>
</tr>
<tr>
<td>Blended</td>
<td>100.00 98.89</td>
<td>98.01 97.97</td>
<td>98.01 97.97</td>
</tr>
<tr>
<td>IAB</td>
<td>100.00 98.89</td>
<td>98.01 97.97</td>
<td>98.01 97.97</td>
</tr>
<tr>
<td>LC</td>
<td>99.55 94.51</td>
<td>99.55 94.51</td>
<td>99.55 94.51</td>
</tr>
<tr>
<td>SIG</td>
<td>97.15 93.53</td>
<td>97.15 93.53</td>
<td>97.15 93.53</td>
</tr>
<tr>
<td>WaNet</td>
<td>97.15 93.53</td>
<td>97.15 93.53</td>
<td>97.15 93.53</td>
</tr>
<tr>
<td>Mean</td>
<td>97.15 93.53</td>
<td>97.15 93.53</td>
<td>97.15 93.53</td>
</tr>
<tr>
<td>Drop ↓</td>
<td>0.01 0.01</td>
<td>0.01 0.01</td>
<td>0.01 0.01</td>
</tr>
</tbody>
</table>

Table 2. Defense results on backdoor models trained on GTSRB. ("Using double unlabeled data.)
Table 3. Defense results on CIFAR10 using different unlabeled out-of-distribution data.

<table>
<thead>
<tr>
<th>Backdoor Attacks</th>
<th>Uniform</th>
<th>Adaptive decreasing</th>
<th>Adaptive increasing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Badnets</td>
<td>4.88</td>
<td>2.38</td>
<td>86.75</td>
</tr>
<tr>
<td>Blended</td>
<td>4.54</td>
<td>3.32</td>
<td>88.33</td>
</tr>
<tr>
<td>IAB</td>
<td>1.72</td>
<td>2.68</td>
<td>81.51</td>
</tr>
<tr>
<td>LC</td>
<td>4.18</td>
<td>1.05</td>
<td>88.22</td>
</tr>
<tr>
<td>SIG</td>
<td>0.58</td>
<td>1.07</td>
<td>88.24</td>
</tr>
<tr>
<td>WaNet</td>
<td>7.35</td>
<td>2.17</td>
<td>84.76</td>
</tr>
<tr>
<td>Mean</td>
<td>3.87</td>
<td>2.11</td>
<td>86.30</td>
</tr>
</tbody>
</table>

Table 4. Comparison of weights initialization strategies for student model on CIFAR10 (in-distribution).

<table>
<thead>
<tr>
<th>Backdoor Attacks</th>
<th>Uniform</th>
<th>Adaptive decreasing</th>
<th>Adaptive increasing</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASR</td>
<td>ACC</td>
<td>ASR</td>
<td>ACC</td>
</tr>
<tr>
<td>Badnets</td>
<td>4.88</td>
<td>2.38</td>
<td>86.75</td>
</tr>
<tr>
<td>Blended</td>
<td>4.54</td>
<td>3.32</td>
<td>88.33</td>
</tr>
<tr>
<td>IAB</td>
<td>1.72</td>
<td>2.68</td>
<td>81.51</td>
</tr>
<tr>
<td>LC</td>
<td>4.18</td>
<td>1.05</td>
<td>88.22</td>
</tr>
<tr>
<td>SIG</td>
<td>0.58</td>
<td>1.07</td>
<td>88.24</td>
</tr>
<tr>
<td>WaNet</td>
<td>7.35</td>
<td>2.17</td>
<td>84.76</td>
</tr>
<tr>
<td>Mean</td>
<td>3.87</td>
<td>2.11</td>
<td>86.30</td>
</tr>
</tbody>
</table>

4.3. Analysis

Size of unlabeled samples. We use CIFAR10 to analyze influence of the size of unlabeled samples. Figure 4 (a–c) show the results using in-distribution CIFAR10, out-of-distribution Tiny-ImageNet and Tiny-ImageNet++. For three datasets, we randomly sample 500, 1000, 2500, 5000 images, separately. As the number of samples increases, ACCs increase and ASRs decrease for most cases. However, with the number of unlabeled Tiny-ImageNet and Tiny-ImageNet++ data increasing, ASRs raise up on Blended, SIG and WaNet attacks. Blended attack injects backdoor by blending clean images and random noise. The trigger of SIG is a sinusoidal signal. WaNet applies elastic warping to design triggers. All three triggers are stealthy and cause slight change to images. Some images in Tiny-ImageNet++ are downloaded from the internet and might include light noise similar to the three triggers. Therefore, using more out-of-distribution unlabeled images from Tiny-ImageNet or Tiny-ImageNet++ might cause ASRs increasing for the three attacks.

Adaptive layer-wise initialization. We analyze the effectiveness of different adaptive layer-wise initialization strategies by conducting experiments on CIFAR10. Three strategies are designed including random initialize weights of student model with uniform ratio, increasing ratio and decreasing ratio. For fair comparison, the overall ratio of random initialization keeps around 0.2 for three strategies. The results are presented in Table 4. All of three strategies can reduce ASRs to less than 15%, while other two datasets reduce ASRs to more than 15%. Tiny-ImageNet++ can also keep ACC high after defense.
related to low-level features. It is difficult to recover effectively only by aligning two probability distributions between student and teacher models. Compared to uniform initializing strategy, adaptive increasing layer-wise initialization obtains lowest ASR and highest ACC.

Effectiveness of knowledge distillation. To evaluate the effectiveness of knowledge distillation, we compare the performances using soft labels and hard labels. Hard labels are class labels with the maximum probability of teacher model outputs. Soft labels are soft probability with temperature τ described in Section 3. Cross-Entropy loss function is employed for hard labels setting. The experiments are conducted on CIFAR10 and out-of-distribution dataset is Tiny-ImageNet. Table 5 shows the results. It shows that hard and soft labels achieve comparative performance for in-distribution unlabeled data. The reason is that backdoor teacher model predicts high ACC for in-distribution images. Therefore, most hard labels are ground-truth labels. However, backdoor teacher model can not predict correct hard labels for out-of-distribution data. Some classes of out-of-distribution images even does not exist in the CIFAR10. Therefore, using soft labels is better than hard labels. Specifically, ASR of using soft labels is 1.21% lower than ASR of using hard labels. ACC of using soft labels is 2.29% higher than ACC of using hard labels.

Diversity of out-of-distribution data. To study how diversity of out-of-distribution data influences defense performance, we create several versions of Tiny-ImageNet++ with different configurations of (number of class, number of samples per class). The total number of unlabeled images is fixed to 2000. Then we apply them to cleanse backdoor models trained on CIFAR10. Figure 5 plots the curves of ACC and ASR. ACCs are close for different configurations. However, as the unique number of classes in the training data increases, ASR has a tendency to decrease, showing that backdoor behaviors are more effectively eliminated. In principle, increasing the diversity of out-of-distribution unlabeled data is beneficial as more data modes are covered. It is more likely that data similar to the training distribution are included. Also, the student model can learn more general knowledge in making classification than specific ones.

Table 5. Comparisons of using soft predictions and hard predictions of backdoor models for distillation on CIFAR10.

<table>
<thead>
<tr>
<th>Backdoor Attacks</th>
<th>In-distribution</th>
<th>Out-of-distribution (Tiny-IN)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Soft ACC</td>
<td>Hard ACC</td>
</tr>
<tr>
<td>Badnets</td>
<td>3.00</td>
<td>92.15</td>
</tr>
<tr>
<td>Blended</td>
<td>4.90</td>
<td>93.16</td>
</tr>
<tr>
<td>IAB</td>
<td>1.96</td>
<td>86.42</td>
</tr>
<tr>
<td>LC</td>
<td>1.81</td>
<td>93.17</td>
</tr>
<tr>
<td>SIG</td>
<td>0.91</td>
<td>92.58</td>
</tr>
<tr>
<td>WaNet</td>
<td>9.86</td>
<td>92.05</td>
</tr>
<tr>
<td>Mean</td>
<td>3.74</td>
<td>91.59</td>
</tr>
</tbody>
</table>

Figure 4. Defense results on CIFAR10 using different numbers of unlabeled samples.

Figure 5. Defense results on CIFAR10 using Tiny-ImageNet++ created with different configurations.

5. Conclusion

In this paper, for the first time, we explore the possibility of using unlabeled data including in-distribution and out-of-distribution data to remove backdoor from a backdoor model. A knowledge distillation framework with a carefully designed adaptive layer-wise initialization strategy is proposed. We conduct experiments on two datasets including CIFAR10 and GTSRB against six representative backdoor attacks. Results show that our framework can successfully defend backdoor attacks with negligible clean accuracy decrease, compared with existing methods using labeled in-distribution data.

Acknowledgements This effort was partially supported by the Intelligence Advanced Research Projects Agency (IARPA) and Army Research Office (ARO) under Contract No. W911NF20C0038, and by US National Science Foundation Grants (No. 2128187, No. 2128350 and No. 2006655). Any opinions, findings, and conclusions in this paper are those of the authors only and do not necessarily reflect the views of our sponsors.
References

[19] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and Xiangyu Zhang. Trojaning attack on neural networks. 1

