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Abstract

Due to the difficulty of annotating the 3D LiDAR data of
autonomous driving, an efficient unsupervised 3D represen-
tation learning method is important. In this paper, we de-
sign the Triangle Constrained Contrast (TriCC) framework
tailored for autonomous driving scenes which learns 3D un-
supervised representations through both the multimodal in-
formation and dynamic of temporal sequences. We treat one
camera image and two LiDAR point clouds with different
timestamps as a triplet. And our key design is the consistent
constraint that automatically finds matching relationships
among the triplet through “self-cycle” and learns represen-
tations from it. With the matching relations across the tem-
poral dimension and modalities, we can further conduct a
triplet contrast to improve learning efficiency. To the best
of our knowledge, TriCC is the first framework that unifies
both the temporal and multimodal semantics, which means
it utilizes almost all the information in autonomous driving
scenes. And compared with previous contrastive methods,
it can automatically dig out contrasting pairs with higher
difficulty, instead of relying on handcrafted ones. Extensive
experiments are conducted with Minkowski-UNet and Vox-
elNet on several semantic segmentation and 3D detection
datasets. Results show that TriCC learns effective repre-
sentations with much fewer training iterations and improves
the SOTA results greatly on all the downstream tasks. Code
and models can be found at https://bopang1996.github.io/.

1. Introduction
For the perception of autonomous driving, semantic seg-

mentation and 3D object detection on point cloud are two

fundamental tasks [18, 89]. At present, deep learning al-

gorithms based on supervised learning have pushed their

performances to the applicable level [37, 42, 83] with large
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Figure 1. Brief illustration of the Triangle Constrained Contrast

(TriCC). In order to learn dense 3D point cloud representations

from temporal information and multimodal semantics in one uni-

fied algorithm, TriCC is designed to adopt the triangle consistent

constraint to automatically find the pixel (point)-level matching

relationships among each triangle (the red cycle) and learn effec-

tive representations spanning temporal and modality dimensions,

instead of relying on hand-crafted pre-defined dense positive pairs

that traditional contrastive learning methods adopt. Thus, it can

unify all the semantics in one concise and compact algorithm.

scale datasets [7, 47, 66, 86]. Nevertheless, in the super-

vised process, obtaining annotations for these dense local-

ization tasks is expensive and time-consuming. Thus, a

mass of easy-collected perception data lacks efficient uti-

lization [7,86] and it needs much repetitive work to transfer

supervised trained models to different scenes which makes

the extension of applications difficult. Based on this, in

this paper, we build an unsupervised dense 3D point cloud

representation learning framework tailored for autonomous

driving scenes, aiming at achieving better performance on

dense tasks with less annotated data.

Inspired by contrastive learning, a mainstream unsuper-
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vised framework, we choose to adopt the same discrimi-

native route to build our algorithm. Compared with cur-

rently popular generative models like MAE [17,28,90], dis-

criminative methods are more propitious to temporal and

multimodal information, and have better applicability for

structures of point cloud models. Some previous works try

to utilize contrastive learning in point cloud tasks. Point-

Contrast [78] and PPKT [44] adopt affine transformation

and multimodal information respectively to get positive dis-

crimination pairs. However, this kind of hand-crafted man-

ner leads to many false negatives. STRL [34] learns seman-

tics from video temporal frames. Though the positive pairs

have more diversity, it learns global semantics which is not

optimal for dense tasks. More importantly, these methods

cannot learn from the complete multimodal & temporal in-

formation since they model these two sources of semantics

in two different ways which cannot extend to each other.

This makes them incapable of efficient unsupervised learn-

ing in autonomous driving scenarios where multimodal and

temporal information is commonly available.

In this paper, we design a new unsupervised represen-

tation learning framework: Triangle Constrained Contrast

(TriCC) for the autonomous driving scene. It aims at get-

ting rid of discriminative unsupervised algorithms’ demand

on hand-crafted positive temporal dense pairs and replac-

ing it with an elegant self-driven scheme so that TriCC can

learn both the dense temporal semantics and multimodal se-

mantics in one unified end-to-end model. Inspired by [74],

the core idea of TriCC is to treat a camera image, a Li-

DAR point cloud with timestamp t0, and a point cloud with

nearby timestamp t1 as a triple-pair. Then it learns repre-

sentations and gets dense matching relationships among the

triplet through the designed triangle consistent constraint

which forces the pixels or points to match back with them-

selves after transition through the triplet-cycle as Fig. 1

shows. The implicitly learned dense relationships among

the temporal dimension and multiple modalities are harder

and more effective positive pairs for discrimination which

are important for representation learning. Moreover, we de-

sign the cycle shortcut technique and triplet contrast to en-

hance the learning efficiency, allowing TriCC to learn better

representations with half iterations of previous methods.

The proposed TriCC framework is effective and simple

to implement. We adopt nuScenes dataset [7] to learn the

point cloud representation and evaluate it on point cloud se-

mantic segmentation and 3D object detection downstream

tasks with several datasets and backbones. TriCC pushes all

the performances to the new state-of-the-art even if it only

adopts half of the pre-training iterations than baselines. In

particular, on nuScenes semantic segmentation, TriCC rela-

tively improves Res16UNet’s fine-tuning performance with

1% annotations by 7.9% and on KITTI [20] 3D object de-

tection with 5% annotations, it produces a 4% relative im-

provements. We hope this new framework will provide the

community with new insights.

2. Related Work
2D Image Unsupervised Representation Learning Up

to now, the contrastive learning method [9, 13, 29] is the

mainstream discriminative framework for image represen-

tation learning and has received lots of success on many

downstream tasks [4, 51, 54, 75, 77]. To learn good rep-

resentations, its core idea is to make the features of posi-

tive samples closer and repulse the negative ones with In-

foNCE loss [50] or its variants [9, 10, 13, 52]. In practice,

contrastive learning methods benefit from large amounts

of negative samples in a batch [13] or memory bank [29].

Also, there are methods [8–10, 52] that adopt clustering-

based methods to reduce the dependence on negatives. Fur-

ther on, BYOL [21] learns representations without nega-

tives. Moreover, generative frameworks [17,28,90] achieve

great progress in unsupervised representation learning, but

they are more suitable for Transformer-based backbones in-

stead of others like convolution. In this work, we follow the

discrimination way to build our TriCC.

3D Point Cloud Unsupervised Representation Learning
For point cloud, unsupervised representation learning meth-

ods can also be classified into generative methods and dis-

criminative methods. For the former, GAN [1, 26, 69],

self-reconstruction [19, 63, 82], up-sampling [39, 56], point

cloud completion [60, 71, 76] are proposed as pretext tasks.

And recently, masked auto-encoders [31, 53] are adopted

inspired from the success of them on 2D image repre-

sentation learning. For discriminative frameworks, con-

trastive method [11, 16, 27, 32, 38, 58, 72, 87] is also pop-

ular recently and for outdoor scenes that we focus on, many

methods adopt it [34, 41, 78, 88]. STRL [34] learns rep-

resentations from instance invariance in temporal dimen-

sion. GCC-3D [41] generates pseudo instances for cluster-

ing. COˆ3 [12] utilizes vehicle-side and infrastructure-side

LiDAR points to learn. ProposalContrast [84] learns robust

3D representations for detection by extending the contrast

operation from point level to region proposals.

Multimodal Unsupervised Representation Learning
Previously, much effort has been made into multimodal rep-

resentation learning. Inspired from the success in paired

image and text [55], paired audio and images [24], multi-

modal approach also extends to 3D area. [3,23] transfers se-

mantics between RGB and depth images. [33,40] propose a

distillation method that train 2D image backbones with 3D

point cloud geometric information. While [2, 43, 45, 59],

on the contrary, learn 3D representation with the help of

pre-trained 2D image backbones. For autonomous driving,

camera sensors are commonly available. Thus, we also take

multimodal information as one of TriCC’s source of seman-

tics for helping 3D point cloud representation learning.
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Figure 2. The pipeline of our TriCC. The triplet input composed of camera images, point cloud in the current key frame, and point cloud

in the next key frame are augmented by a group of transformations (Tp for point clouds and Tc for images). After forward propagation in

the backbones and projection heads, we get their feature maps. The feature maps from the “cycle” heads participate in the calculation of

consistent constraint loss (the blue triangle and red double sided arrows in the figure) to learn representations and get matching relationships.

And the relationships guide the triplet contrast loss (the green arrows) conducted on feature maps from the “contrast” heads.

Unsupervised Dense Temporal Correspondence TriCC

also learns representations from temporal semantics. There-

fore, unsupervised dense temporal correspondence learning

is related to this paper. Optical flow [22, 46, 64, 67] is a

well known technique for dense temporal correspondence.

Dense tracking [65, 79] is a task to predict mask in latter

frames of a given current mask. To free it from the costly

annotation, many unsupervised methods have been devel-

oped [25, 49, 68, 70, 73, 92]. [36, 74] use cycle-consistency

as the pretext task which inspires us to design the TriCC.

3. Triangle Constrained Contrast
In autonomous driving scene, abundant multimodal in-

formation with temporal dimension is commonly available.

Due to the expensive annotation cost of dense tasks, in this

paper we design an unsupervised 3D representation learning

algorithm named TriCC tailored for autonomous driving.

Our core objective is to provide a unified semantic learn-

ing method that can simultaneously utilize multimodal and

temporal information so that it can boost the performance

of outdoor point cloud semantic segmentation and 3D ob-

ject detection to the hilt.

Our TriCC is composed of two main designs: 1) the Tri-

angle Consistent Constraint (Sec. 3.1) and 2) the Triplet

Contrast (Sec. 3.2). The former solves the methodolog-

ical problem of uniformly utilizing the dense temporal

and dense multimodal information under the discriminative

framework. While the latter extends the traditional con-

trastive learning to the triplet contrast, a unified unsuper-

vised framework for autonomous driving, as Fig. 2 shows.

3.1. Triangle Consistent Constraint
For dense 3D point cloud semantic segmentation and

object detection task, current mainstream discrimination-

based unsupervised representation framework contrastive

learning relies on handcrafted positive pairs to learn effec-

tive representations. Its algorithm can be summarized by

the following equation:

L = −log(
exp(sim(xa,xb)/τ)∑
j exp(sim(xa,xj)/τ)

) (1)

where xa and xb are the features of the positive pairs and

{xj} is the set containing all the negative samples and xb.

Motivation In previous works, dense matching relation-

ships of different views from the same point cloud [78, 88],

or relationships of calibrated camera image and LiDAR

points [44, 59] are adopted as the positive pairs. However,

dense relations in temporal dimension are hard to obtain and

previous methods [34] can only contrast in frame level. This

makes it difficult to unify the temporal semantics into the

discriminative representation learning frameworks of other

semantics. Thus, we design the Triangle Consistent Con-

straint to automatically find the temporal matching relations

and learn representations from all the semantics uniformly.

Basic Framework The core design of the consistent con-

straint is to find matching relations and learn representations

from a “self-cycle” formed among a group of dense fea-

ture maps. Specifically, we first get this feature map group
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X = {xi ∈ R
ni×c, i = 1, ..., k} by backbone networks,

where the features can be in any modality and with differ-

ent timestamps. There is one restriction for the features in

the group that they need to be under the same scenes with

similar semantics so that their similarity can be calculated.

On this group of feature maps, the built “self-cycle” can

be formulated in the following steps:

• Define the transition matrix between two feature maps:

M = {mi,j = sm(〈xi,xj〉 /τ) ∈ R
ni×nj} (2)

where〈〉 is the similarity function and sm is the soft-

max function in the second dimension which trans-

forms the similarity matrix to the transition matrix of

the pixel (point)-level features. τ is the temperature for

softmax for better optimization.

• To build our “self-cycle”, we only need the transition

matrices of adjacent features to form a cycle:

S ∈ R
n1×n1 = (

k−1∏

i=1

mi,i+1)mk,1 = P (x1|x1) (3)

where
∏

denotes the accumulated matrix multiplica-

tion. S is the consistent matrix of our “self-cycle”,

which links all the transition matrices of adjacent fea-

tures and connects the tail and head to form a cycle.

Each row in S represents the probability of one pixel

(point) transferring back to every pixel (point) in its

own feature map.

• A good representation should make every feature vec-

tor in the feature map return to itself with a higher

probability after the cycle transition, since this kind of

feature maps has better discrimination. We call this

cycle-back to self as the consistent constraint and it

can be optimized by:

Ls = CrossEntropy(log(S), I) (4)

where I is the identity matrix. Ls forces M to contain

meaningful transition matrices through learning effec-

tive discrimination representations.

Practice Details In our experiments, we adopt the trian-

gle consistent constraint. That is the feature map group is

X = {Ct,Pt+1,Pt}, where Pt, Ct are the point cloud

feature and camera image feature of the tth key frame and

Pt+1 is the point cloud feature of the next key frame. Thus,

we call it the triangle consistent constraint as Fig. 1 shows.

We adopt cosine similarity as our similarity function.

Derived from the basic framework, we adopt the cali-

brated relationship m̂Pt,Ct
between Pt and Ct to replace

the original mPt,Ct
gotten from feature similarity. Each

row of m̂Pt,Ct
is a one-hot vector representing the one

(many) -to-one projected mapping from Pt to Ct. This cal-

ibrated relationship is easy to obtain by the poses of the Li-

DAR and camera sensors in autonomous driving scene and

will provide the optimization process with extra guidances.

This relatively short-term cycle method has a higher op-

timization efficiency. And we can also get the long-term

temporal feature matching relationships through the learned

representations (e.g. sim(Pt,Pt+Δt) = 〈Pt,Pt+Δt〉) for

further utilization as discussed in ablation study (Sec 4.4).

Advantages Consistent constraint forms an effective

chain of feature similarity matching. Thus, it does not need

any handcrafted temporal pixel (point)-level positive pairs

to learn unsupervised representations simultaneously from

both the multimodal and temporal information, instead, au-

tomatically finding matching relationships M across the

modality and temporal dimensions. Therefore, it is tailored

for the autonomous driving perception scenes with temporal

multimodal information.

3.1.1 Cycle Shortcut
To improve the optimization efficiency, we add a mini cycle

between Pt and Pt+1 as a shortcut, which can be repre-

sented as:

Sd = sm(〈Pt,Pt+1〉 /τ)× sm(〈Pt+1,Pt〉 /τ)
Lshortcut = CrossEntropy(log(Sd), I)

(5)

This is a small trick that learns a simpler consistent con-

straint to speed up the main constraint. In terms of sym-

metry, we should add three shortcuts on all the edges of the

triangle cycle respectively, but from experiments, we find

that one shortcut between Pt and Pt+1 is enough.

3.2. Triplet Contrast
After introducing our core consistent constraint, we have

an effective method to get the matching relationships among

multimodal and temporal information. To enhance the rep-

resentation learning efficiency, we further design a triplet

contrastive loss based on these matching relationships. That

is to contrast all the feature maps within the cycle chain to

further strengthen the discrimination of representations on

the feature hypersphere. Taking Ct and Pt+1 as an exam-

ple, the contrastive loss can be written as:

LCt,Pt+1
c =

1

nCt

∑

q

−log
exp(sim(Cq

t ,P
σ(mq

Ct,Pt+1
)

t+1 )/τ)
∑

k exp(sim(Cq
t ,P

k
t+1)/τ)

(6)

where Cq,Pq ∈ R
c denote the qth feature vector in the

feature map and mq
Ct,Pt+1

is the qth row of the transition

matrix between Ct and Pt+1. σ is the argmax function.

In our triplet contrast, this kind of contrast is also con-

ducted between (Pt,Pt+1) and (Ct,Pt). Thus, the inte-

grated triplet contrast loss is:

Lc = LCt,Pt+1
c + LPt,Pt+1

c + LCt,Pt
c (7)
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Following SLidR [59] we also aggregate the image pix-

els into super-pixels and conduct triplet contrast in the unit

of super-pixel (see supplementary for details).

3.3. Pipeline & Analysis
With the basic learning framework of our TriCC, we

follow the current mainstream discriminative unsupervised

learning structure to build our networks. The learning net-

work is composed of a 2D backbone fc, a 3D point cloud

backbone fp, and their projection heads for consistent con-

straint and contrast: gcyclec , gcontrastc , gcyclep , and gcontrastp ,

which means that the consistent constraint loss and contrast

loss share the same 2D and 3D backbones but have their

own heads. In previous sections, we do not distinguish these

two kinds of features in our constraint and contrast losses

for concision since this is only the network design, not the

core algorithm. The projection heads are simple MLPs to

assist the representation learning as the mainstream meth-

ods do [9, 10, 13, 29] and they are removed from the back-

bones in downstream transferring. The overall pipeline of

TriCC is shown in Fig. 2. All the inputs are augmented by a

group of transformation T and the outputs of the projection

heads attached on the backbones are the feature maps we

adopt in losses. The total training loss of TriCC is just:

L = Ls + Lshortcut + Lc (8)

One limitation of our TriCC is that it needs the 2D and

3D backbones to keep the number of pixels and points.

Thus, a UNet [57] like backbone is preferred. When apply-

ing it on backbones with large strides like VoxelNet [91],

straightforward methods to satisfy this requirement can be

adding a small decoder or adopting an interpolation layer.

Compared with previous discriminative unsupervised

methods, TriCC is the first method that gets rid of depen-

dences on pre-defined temporal positive pairs for 3D point

cloud representation learning. The consistent constraint and

the contrast loss divide the work of positive relationship dig-

ging and representation learning in a concise and compact

algorithm. TriCC is the first method that can learn 3D rep-

resentations from both multimodal and temporal semantics.

4. Experiments
To evaluate the proposed TriCC method, we transfer

our pre-trained backbones (Res16UNet [15] and Voxel-

Net [91]) to several semantic segmentation (nuScenes [7]

and SemanticKITTI [5]) and 3D object detection datasets

(nuScenes and KITTI [20]) to compare with our baselines

(PPKT [44] and SLidR [59]) and other SOTA unsupervised

algorithms. Ablation studies are provided to show the ef-

fectiveness of each designed technique.

4.1. Pre-Training Details
Backbone & Training Structure We pre-train two 3D

point cloud backbones with our TriCC: Res16UNet imple-

mented by Minkowski Engine [15] and VoxelNet [91]. We

apply kernels with size of 3× 3× 3 for all sparse convolu-

tions in Res16UNet as what is done in [59]. Different from

Res16UNet which generates features for each input point,

VoxelNet downsamples the feature maps with a 16× 8× 8
stride and we get the features of each point by bilinear in-

terpolation. Res16UNet takes in input with cylindrical co-

ordinates and the voxel size is 0.1m for z − axis and ra-

dius and 1◦ for azimuth angle. While VoxelNet takes in-

put with Cartesian coordinates and the voxel size is (0.1m,

0.1m, 0.2m) for (x, y, z)-axis. As what is commonly ac-

cepted in the mainstream contrastive unsupervised learning

methods [9, 10, 13, 21, 29], we adopt MLP projection heads

(gcyclep , gcontrastp ) composed of two 1 × 1 × 1 convolution

layers and the first one is followed by a batchnorm [35] and

a ReLU [48] layer. The selected 2D backbone is ResNet-

50 [30] and uses the pre-trained weights obtained by unsu-

pervised learning through MoCov2 [14]. The last 3 strided

convolution layers are replaced by dilated convolution to get

a total 4 stride for the whole backbone. We fix the param-

eters of ResNet and only train its projection heads gcyclec ,

gcontrastc : a 1 × 1 convolution layer followed by a 4 times

bilinear upsampling layer.

Pre-training Details We pre-train all models on

nuScenes [7] dataset, which is a public large-scale dataset

for autonomous driving containing 1000 20s scenes,

1,400,000 camera images as well as 90,000 LiDAR sweeps

covering 16 semantic classes, designed for point cloud

semantic segmentation and 3D object detection tasks.

Models are trained on the official training set with 700

training scenes without any annotations. All the baselines

are pre-trained for 50 epochs. For Res16UNet backbone,

we train our TriCC on 8 GPU for 20 or 50 epochs using

SGD with a initial learning rate of 2.0, momentum of 0.9,

weight decay of 10−4. The batch size is 16 and a cosine

annealing scheduler that decreases the learning rate from its

initial value to 0 is adopted. For the VoxelNet pre-training,

the differences lie in that the initial learning rate is set to

0.4, the mini-batch size is 24. For TriCC, the temperature τ
is 0.1 for consistent constraint and 0.07 for contrast.

Data Augmentation Basically we follow the data aug-

mentation adopted in SLidR [59]. For 3D point cloud, a

random rotation around the z-axis, a random flip with 50%

probability over the direction of the x and y-axis, and a ran-

dom cuboid dropping are applied to the points. On the other

hand, images are transformed under a random horizontal

flip and a random crop-resizing.

4.2. Transfer to Semantic Segmentation
Firstly, we evaluate TriCC’s learned representation on

semantic segmentation task and compare it with the base-

lines. We choose nuScenes [7] with 16 categories and Se-

manticKITTI [5] covering 19 categories as the transferring
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Table 1. Comparisons of different pre-training methods and different backbones under the linear probing and few-shots fine-tuning evalu-

ation protocols. On nuScenes, we use 100% annotated scans for linear probing and 1%, 5%, 10%, 25%, 100% annotation for fine-tuning.

The results we report is the mIoU on the validation set of nuScenes. “P” and “C” denote point cloud and camera image modality.

Pre-training Method
Pretrain Linear Fine-tuning

Modality 100% 1% 5% 10% 25% 100%

Res16UNet as the backbone
fine-tune from scratch - 8.1 30.3 47.7 56.6 64.8 74.2

PointContrast [78] P 21.9 32.5 (+2.2) - 57.1 (+0.5) - 74.3 (+0.1)

DepthContrast [88] P 22.1 31.7 (+1.4) - 57.3 (+0.7) - 74.1 (-0.1)

PPKT [44] P, C 36.4 37.8 (+7.5) 51.7 (+4.0) 59.2 (+2.6) 66.8 (+2.0) 73.8 (-0.4)

SLidR [59] P, C 38.0 38.2 (+7.9) 52.2 (+4.5) 58.8 (+2.2) 66.2 (+1.4) 74.6 (+0.4)

TriCC(ours), 20 epoch P, C 37.8 40.8 (+10.5) 54.1 (+6.4) 60.2 (+3.6) 67.6 (+2.8) 75.3 (+1.1)

TriCC(ours), 50 epoch P, C 38.0 41.2 (+10.9) 54.1 (+6.4) 60.4 (+3.8) 67.6 (+2.8) 75.6 (+1.4)

VoxelNet as the backbone
fine-tune from scratch - 2.6 24.5 35.7 43.1 48.1 53.9

SLidR [59] P, C 33.5 32.1 (+7.6) 40.3 (+4.6) 45.4 (+2.3) 50.3 (+2.2) 54.3 (+0.4)

TriCC (ours), 20 epoch P, C 33.6 34.0 (+9.5) 42.0 (+6.3) 46.7 (+3.6) 51.6 (+3.5) 56.0 (+2.1)

Table 2. Comparisons of different pre-training methods and dif-

ferent backbones for few-shots fine-tuning on SemanticKITTI. We

use 1%, 5%, and 10% annotated scans. The results we report is the

mIoU on the validation set of SemanticKITTI.

Pre-training Method
Fine-tuning

1% 5% 10%

Res16UNet as the backbone
fine-tune from scratch 39.5 52.1 55.6

PPKT [44] 43.9 (+4.4) 53.1 (+1.0) 57.3 (+1.7)

SLidR [59] 44.6 (+5.1) 52.6 (+0.5) 56.0 (+0.4)

TriCC (ours), 20 epoch 45.8 (+6.3) 55.7 (+3.6) 58.4 (+2.8)

TriCC (ours), 50 epoch 45.9 (+6.4) 55.9 (+3.8) 59.0 (+3.4)

VoxelNet as the backbone
fine-tune from scratch 28.8 40.8 46.4

SLidR [59] 35.2 (+6.4) 45.5 (+4.7) 48.6 (+2.2)

TriCC (ours), 20 epoch 36.5 (+7.7) 46.8 (+6.0) 49.8 (+3.4)

datasets. Following the common setting [5,59,80], we eval-

uate the results using the validation set of nuScenes and the

sequence 08 of SemanticKITTI. The fine-tuning and linear

probing training details can be found in supplementary.

On nuScenes The semantic segmentation models are

built by adding a point-wise linear classification head on

pre-trained backbones. Two evaluation protocols are uti-

lized to evaluate the pre-trained models: 1) linear probing

and 2) fine-tuning. For the former, we initialize the parame-

ters of the backbones with the pre-trained weights, fix them,

and only train the linear segmentation head. For fine-tuning,

we train the whole segmentation models with different pro-

portions of available annotated training data to compare the

annotation efficiency. The training objective is the combi-

nation of the cross-entropy and Lovász loss [6]. PPKT [44]

and SLidR [59] are also tested as baselines serving as com-

parisons to our models. Results are reported in Tab. 1.

Table 3. Comparisons of different pre-training methods for few-

shots fine-tuning on KITTI. We use 5%, 10%, and 20% annotated

scans. The results we report are the mAP R40 in easy, moderate,

and hard level on the validation set of KITTI dataset.

Pretrain

Fine-tuning

5% label 10% label 20% label

E M H E M H E M H

Res16UNet + PointRCNN
random 73.7 56.6 50.7 74.6 58.8 53.9 77.9 63.7 59.2

PPKT [44] 75.7 59.6 54.4 78.3 63.7 58.4 78.9 64.8 59.9

SLidR [59] 74.5 58.8 52.9 78.1 63.5 58.3 77.6 63.8 59.2

Ours, 20ep 77.9 61.3 56.2 79.6 64.6 59.3 80.0 65.9 60.7
VoxelNet + PV-RCNN
random 79.4 65.4 61.6 78.8 67.1 63.2 81.9 70.1 66.9

SLidR [59] 80.5 67.9 63.9 80.8 68.2 64.5 81.6 70.5 67.1

Ours, 20ep 81.4 68.6 64.7 82.3 69.4 65.8 83.3 72.1 68.5
VoxelNet + SECOND
random 68.0 54.7 51.7 71.9 60.2 56.8 73.2 61.8 58.5

SLidR [59] 69.7 57.8 54.5 73.0 62.3 59.0 73.9 63.0 59.6

Ours, 20ep 70.7 59.6 56.4 73.5 62.0 58.8 74.6 63.8 60.7

From the results, we can see that all the unsupervised

pre-trained methods achieve better results than the ran-

dom initialization. Compared with pure point-cloud unsu-

pervised methods, methods that learn representations from

multimodal semantics achieve better performances, reveal-

ing the importance of multimodal information.

Compared with all the baselines, our TriCC on

Res16UNet achieves much better performances and pushes

the SOTA fine-tuning results by 1.0 mIoU. And its learning

efficiency is much higher too since TriCC pre-trained for 20

epochs surpasses all the baselines pre-trained for 50 epochs
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Table 4. Comparisons of different pre-training methods for few-

shots fine-tuning on nuScenes. We use 5%, 10%, and 20% anno-

tated scans. We report the mAP and NDS metrics.

Pretrain

Fine-tuning

5% label 10% label 20% label

mAP NDS mAP NDS mAP NDS

VoxelNet + CenterPoint
random 38.0 44.3 46.9 55.5 50.2 59.7

Point Con. [78] 39.8 45.1 47.7 56.0 - -

GCC-3D [41] 41.1 46.8 48.4 56.7 - -

SLidR [59] 43.3 52.4 47.5 56.8 50.4 59.9

TriCC, 20epoch 44.6 54.4 48.9 58.1 50.9 60.3
VoxelNet + SECOND
random 35.8 45.9 39.0 51.2 43.1 55.7

SLidR [59] 36.6 48.1 39.8 52.1 44.2 56.3

TriCC, 20epoch 37.8 50.0 41.4 53.5 45.5 57.7

a large gap. For few-shot fine-tuning, TriCC on Res16UNet

improves 10.9 mIoU than the random initialization setting,

3.0 mIoU better than the previous SOTA results, under the

1% fine-tuning setting. And for 25% fine-tuning, TriCC

also improves the SOTA by 1.4 mIoU. For the VoxelNet

backbone, our TriCC achieves similar improvements: 1.9%,

1.3%, 1.7% mIoU boost for 1%, 25%, 100% fine-tuning.

All the above results prove the effectiveness of the new pro-

posed unified method TriCC that integrates all the seman-

tics in the autonomous driving scene. As for linear probing

results, regrettably, TriCC does not learn obviously better

linearly-separable representations. We believe the reason is

that non-linear features are important here as [28] shows.

On SemanticKITTI We also conduct experiments on Se-

manticKITTI [5] dataset with 1%, 5%, and 10% few-shot

fine-tuning setting. We adopt PPKT and SLidR as our base-

lines and the results are reported in Tab. 2.

From the results, we can see that TriCC achieves much

better performances than the baselines on both Res16UNet

and VoxelNet backbones, and pushes the results by ∼2.5

mIoU for Res16UNet and ∼1.3 mIoU for VoxelNet.

4.3. Transfer to 3D Object Detection
Here, we further evaluate TriCC on 3D object detection

task with the nuScenes [7] and KITTI [20] datasets. Base-

lines are pre-trained for 50 epochs (except GCC-3D, also 20

epochs) while TriCC is only pre-trained for 20 epochs. De-

tailed fine-tuning settings can be found in supplementary.

Results The few-shot fine-tuning results on KITTI [20]

are reported in Tab. 3 and the results on nuScenes [7] are

reported in Tab. 4. It’s obviously seen that TriCC gives a

higher performance on almost all the detection models in-

cluding PointRCNN [62], PV-RCNN [61], SECOND [81],

and CenterPoint [85]. The non-ideal results on 10% KITTI

Table 5. Comparisons with SOTA unsupervised 3D representation

learning methods on KITTI fine-tuning with 100% annotations.

We report mAP@R11 for SECOND models and mAP@R40 for

PV-RCNN models.

Pretrain Det.
Fine-tuning

Easy Moderate Hard

mAP@R11 w/o road planes
random Sec. 73.3 63.2 60.3

SwAV [9] Sec. 73.2 (-0.1) 64.0 (+0.8) 60.9 (+0.6)

DeepCluster [8] Sec. 73.2 (-0.1) 63.4 (+0.2) 60.1 (-0.2)

BYOL [21] Sec. 71.1 (-2.2) 60.4 (-2.8) 57.0 (-3.3)

Point Con. [78] Sec. 72.7 (-0.6) 62.7 (-0.5) 59.2 (-1.1)

GCC-3D [41] Sec. 73.9 (+0.6) 63.5 (+0.3) 59.8 (-0.5)

STRL [34] Sec. 74.0 (+0.7) 63.9 (+0.7) 60.9 (+0.6)

SLidR [59] Sec. 73.6 (+0.3) 64.6 (+1.4) 61.5 (+1.2)

COˆ3 [12] Sec. 74.4 (+1.1) 64.4 (+1.2) 60.9 (+0.6)

TriCC (ours) Sec. 75.0 (+1.7) 65.7(+2.5) 62.2 (+1.9)

mAP@R40 with road planes
random PV 81.3 70.6 66.1

Point Con. [78] PV 82.8 (+1.5) 71.6 (+1.0) 67.5 (+1.4)

GCC-3D [41] PV - 71.3 (+0.7) -

STRL [34] PV - 71.5 (+0.9) -

SLidR [59] PV 82.9 (+1.6) 71.9 (+1.3) 68.0 (+1.9)

Pro. Con. [84] PV 84.5 (+3.2) 72.9 (+2.3) 69.0 (+2.9)

TriCC (ours) PV 84.1 (+2.8) 73.3 (+2.7) 69.4 (+3.3)

with SECOND model are strange and may be due to the

coincidence of uniform sampling of training data.

Comparison with SOTA In Tab. 5, we report the KITTI

detection fine-tuning results with 100% annotation and

comparisons with previous SOTA unsupervised represen-

tation learning methods. From the results, we can see that

TriCC provides a 2.5 mAP and 2.7 mAP performance boost

over the random initialization for SECOND and PV-RCNN

models. And TriCC achieves new SOTA results even com-

pared with ProposalContrast [84], a pre-training method tai-

lored for 3D object detection, and COˆ3 that adopts extra

LiDAR point clouds from the infrastructure side.

4.4. Ablation Study
We conduct ablation studies on core techniques of TriCC

and the results are shown in Tab. 6. All the ablation stud-

ies are conduct on 1% nuScenes segmentation fine-tuning.

From Tab. 6a, we can see that the three designed losses

are important for learning better representations. Besides,

the consistent constraint alone can learn effective represen-

tations by itself, and results are competitive to previous

methods. From Tab. 6b, it is shown that with the contrast

pairs of (Pt,Ct) and (Pt+1,Ct), our TriCC can work well.

(Pt+1,Pt) boosts the performance a bit. Since it does not
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Table 6. Ablations on nuScenes semantic segmentation. We pre-train the backbones for 20 epochs and fine-tune them with 1% annotations.

(a) The three sub-losses are necessary for the

TriCC framework.

backbone losses mIoU

Res16UNet Ls 38.1

Res16UNet Ls + Lc 39.7

Res16UNet Ls + Lc + Lshortcut 40.8

VoxelNet Ls 32.2

VoxelNet Ls + Lc 33.1

VoxelNet Ls + Lc + Lshortcut 34.0

(b) Three components in Lc are enough. Long-

term contrast leads to no further improvement.

contrast items mIoU

(Pt,Ct) 39.6

(Pt,Ct), (Pt+1,Ct) 40.6

(Pt,Ct), (Pt+1,Ct), (Pt+1,Pt) 40.8

Triplet Contrast + (Pt,Pt+2) 40.2

Triplet Contrast + (Ct,Pt+2) 39.9

(c) Standalone heads for Ls, Lc are necessary

for avoiding mutual interference.

backbone heads setting mIoU

Res16UNet Only Ls 38.1

Res16UNet Ls Lc share head 39.5

Res16UNet Two heads for Ls, Lc 40.8

VoxelNet Only Ls 32.2

VoxelNet Ls Lc share head 32.8

VoxelNet Two heads for Ls, Lc 34.0
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Figure 3. Visualization of the dense matching quality. We pick a pixel from the input image and show the similarity heat maps of all the

point cloud points in the current and next key frame according to the features from the “cycle” head. It is seen that all the target pixels are

successfully matched to points with the right semantics and this matching is not a one-to-one pre-defined matching since many positive

areas are dug out as the blue dashed cycles show. This reveals our consistent constraint can efficiently find positive pairs for discrimination.

lead to much overhead, we keep it in our algorithm. When

further adding long-term contrast pairs, the performances

get worse. We believe this is because the long-term match-

ing relationships contain too much noises to guide the rep-

resentation learning. In Tab. 6c, we can see that two stan-

dalone heads for contrast and consistent constraint lead to

better results than sharing one head.

4.5. Visualization & Analysis
We visualize the matching quality through the similarity

heat map in Fig. 3. We can find that the proposed consistent

constraint can successfully match the right semantics across

the multimodal and temporal information. Due to the soft

matching algorithm in the constraint, TriCC can dig out all

the similar pairs as the blue dashed cycle shows, which is

another key advantage over the handcrafted one-to-one pos-

itive pairs, besides the automatically pairing process.

5. Conclusion
We propose the Triangle Constrained Contrast (TriCC)

model for learning unsupervised dense 3D point cloud rep-

resentations from both multimodal and temporal informa-

tion. TriCC follows the mainstream discriminative frame-

work but does not need the pre-defined handcrafted dense

temporal positive pairs. Triangle consistent constraint and

triplet contrast are its two main components which are de-

signed to find dense temporal matching relations automati-

cally and learn representations. Thus, TriCC can unify mul-

timodal and temporal semantics which are commonly avail-

able in autonomous driving scenes in one concise algorithm.

Experiments show its superiorities in downstream semantic

segmentation and 3D object detection. We hope it provides

new insights for the community of representation learning.
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