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Abstract

Large scale vision and language models can achieve im-
pressive zero-shot recognition performance by mapping class
specific text queries to image content. Two distinct challenges
that remain however, are high sensitivity to the choice of hand-
crafted class names that define queries, and the difficulty of
adaptation to new, smaller datasets. Towards addressing these
problems, we propose to leverage available data to learn, for
each class, an optimal word embedding as a function of the
visual content. By learning new word embeddings on an other-
wise frozen model, we are able to retain zero-shot capabilities
for new classes, easily adapt models to new datasets, and ad-
Jjust potentially erroneous, non-descriptive or ambiguous class
names. We show that our solution can easily be integrated in
image classification and object detection pipelines, yields sig-
nificant performance gains in multiple scenarios and provides
insights into model biases and labelling errors.

1. Introduction

The introduction of large-scale vision and language pre-
training techniques has led to significant breakthroughs in object
recognition, notably for tasks where data efficiency forms a
crucial component (e.g. zero-shot scenarios). The key idea is to
learn a mapping between image and text spaces such that a latent
image representation will be close to sentences that describe the
image content, in representation space [33,36]. Learning from
image-specific descriptions, rather than a fixed and common
class label, with limited semantic meaning, yields models with
very strong representational power [36]. Such multi-modal
approaches address one key shortcoming of visual-only recog-
nition methods; they provide an ability to seamlessly expand
the model’s output space without the requirement of additional
training (i.e. open-set recognition). In contrast, visual-only
classification and object detection methods have historically
relied on training a linear classification layer in order to identify
objects of interest, resulting in the undesirable consequence that
any introduction of new classes (with or without available data)
is very challenging. A plethora of complex mechanisms have
been proposed, towards addressing this problem [12, 19]. Vision

Both named “bow” Both named “bar”

(a) Ambiguous class names

Class name:
“A3400-200”

Class name:
“2007 Cadillac Escalade EXT Crew Cab”

(b) Technical class names

Figure 1. Vision and language recognition models are highly sensitive
to class prompts. Ambiguous or highly technical class names can lead
to poor classification performance. Rather than adjusting class names
directly, current solutions rely on prompt context to reduce ambiguity,
e.g.: ‘a photo of a bow, a type of weapon’.

and language multi-modal approaches alternatively perform
classification by computing a similarity between image features
and a set of textual features, corresponding to text descriptions
from the classes of interest. As the text component constitutes
an input, such models naturally enable a route to identify new
categories, simply by modifying the queried text, yielding very
strong zero-shot and open-set performance [22, 36].

We draw attention to the fact that such performant
multi-modal models suffer from two remaining key limitations.
Firstly, performance is highly sensitive to class-prompt textual
content; both in terms of (¢) the selected class name and (i)
the surrounding sentence context. Class name sensitivity can
be illustrated by considering class homonyms; words that have
the same spelling but different meanings and origins (Figure
1a). These lead to ambiguous queries that negatively effect per-
formance and mitigation necessitates time consuming prompt
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engineering. A further example of class name sensitivity can be
demonstrated by classes exhibiting highly technical character-
isations (Figure 1b). Poor performance is typically observed for
datasets exhibiting such complex naming strategies [36]. We
hypothesise that lack of clear semantic meaning leave it difficult
for multi-modal models to obtain valuable embeddings.

Secondly; model adaptation to new data, that becomes avail-
able, is not straightforward — especially when datasets are small.
A natural solution is to use the existing representation layers and
learn a new classification layer (i.e. linear probing). However
this strategy must sacrifice the flexibility of text input, for poten-
tial subsequent adaptations [36]. Alternatives consider replacing
text queries with image queries [33], or learning optimal prompt
contexts from the new data [6, 50, 51]. The former can struggle
to leverage larger amounts of available data successfully as im-
age queries are averaged over all available class specific data.
The latter alternatively updates a fixed set of parameters, which
can lead to forgetting issues under sequential adaptation. Fur-
thermore, the approach fails to learn a new class representation
or mapping from the new data, as the focus lies solely with the
prompt context. Finally; while context learning is highly success-
ful in simple classification tasks, it becomes more challenging
for object detection purposes and requires more complex train-
ing mechanisms [6]. We conjecture that this may be attributed
to the fact that context then depends on the spatial region of the
image, in addition to object type (i.e. foreground or background).

These considerations lead us to propose a complementary
solution to prompt learning, which can be successfully leveraged
for both classification and detection problems, without any
task-specific tailoring or requirements. We build upon ideas
from the field of text to image generation, and propose to
leverage the concept of textual inversion [10] to adapt models
to new data and thus address suboptimal, and potentially wrong,
labels (e.g. incorrect class names, mislabelled data). The crux
of our idea is to supersede manual word engineering, describing
categories of interest, by leveraging available data to learn
optimal word embeddings, as a function of the visual content.
This simple solution affords several advantages: 1) in contrast
to linear probing, open-set capabilities are maintained; learned
class representations remain in text space, 2) our approach learns
class specific parameters, therefore preventing forgetting under
sequential training, 3) direct applicability to any classification
or object detection technique that utilises textual input, 4)
interpretability properties, with regards to learned class names.

Experimentally, we realise our ideas in conjunction with two
contemporary models; for image classification [36] and object
detection [33]. Given a pre-trained model and (potentially pre-
viously unseen, additional) training dataset, we introduce a new
set of word embeddings in the model text branch, each corre-
sponding to a class of interest. Following context tuning meth-
ods [50,51], embeddings are learned using standard losses on
an otherwise frozen model. Comprehensive experiments across
thirteen classification and detection datasets help to evidence that

learning optimal class names can significantly enhance model

performance, maintain open-vocabulary properties, successfully

enable continual model adaptation, and improve performance

for rare and longtail classes. Last but not least, we demonstrate

the method’s potential for interpretability, notably with regards

to mislabelling and inadequately chosen original class names.
Our main contributions can be summarised as:

* A simple proposition for data-efficient adaptation of large
vision-language models: optimisation of class names
from visual content that retains attractive open-vocabulary
properties.

* Performance improvements complementary to those of
prompt tuning; consistent experimental gains across 13
classification and detection datasets. Strong sequential
adaptation, open-vocabulary and long tail performance.

* Model interpretability insights: we visualise class name
changes and related semantic meanings. We highlight how
model biases and labelling errors can be identified, and
how vision-language models suffer from long-tail issues.

2. Related work

Vision and language models. Early vision and language
multi-modal alignment work tended to enable learning by
encoding distinct modalities individually and independently.
Model branch outputs would then be connected by losses [41].
Cross-modality alignment has been performed using techniques
including metric learning [8], multi-label classification [20] and
transformers [48]. A contemporary alternative approach pertains
to so called “vision-language” models [9, 1 8,29,36] that recently
gain popularity and instead are designed to jointly learn modality
encoders; sharing information between modalities to the benefit
of the global model. A representative approach is CLIP [36],
which trains two neural network-based encoders on a very
large image-caption dataset using a contrastive cross-entropy
loss, to match pairs of images and texts, and shows impressive
zero-shot image recognition performance. This seminal work
has been extensively investigated in recent literature, and several
improvements have been proposed [9, 18,46].

Open vocabulary object detection was originally explored in
a two-step manner [45]: firstly learning a mapping between the
two modalities using a large-scale dataset, then leveraging the
obtained encoders and mapping layers to learn an object detector
that can perform classification by computing a distance to class
names’ text embeddings. More recent methods fully integrate
vision-language mappings into the object detection training pro-
cess, providing more flexible and adaptable multi-modal detec-
tion solutions [2,13,22,26,31,33]. Alternative methods generate
a multi-modal joint representation via a fusion block [22,31],
while contemporary solutions adopt a CLIP-like parallel training
strategy [2, 13, 33], facilitating querying of large numbers of
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classes. Similarly to the classification setting, multi-modal
detection models achieve impressive zero-shot performance.

Prompting methods. Prompt learning aims to exploit the rich
knowledge contained in large pre-trained language models
(e.g. GPT [37]), to predict new downstream tasks. The idea
prescribes that we can reformulate these new tasks to “look
more like” those solved during the original pre-training stage,
through the help of an appropriate textual prompt, such that the
model can be used to predict the desired output without any
additional training [!1,30,37,39]. The disadvantage with such
methods, is the necessity for prompt engineering; searching
for the most suitable prompt to allow the language model to
solve the desired task. Recent work has looked to learn optimal
prompts c¢f. manually designing them. Work on continuous
prompt learning methods [24,28,49] can be considered closely
related to our work, where the main idea is to convert the
prompt into a set of continuous vectors that can be optimised,
with respect to an objective function, in end-to-end manner.

The benefits of the prompting strategy have recently started
to be explored in computer vision [21,38,44,47,51]. CoOp [51]
can be considered the first work to bring continuous prompt
learning to the vision domain, towards offering efficient solu-
tions for adaptation of pre-trained vision-language models to
downstream vision tasks. CoOp was recently extended by [50]
where they propose to learn an additional light-weight neural
network to generate, for each image, an input-conditional token
that yields an image-specific dynamic prompt, outperforming
CoOp’s static prompts. This comes at the price of efficiency
however, as the proposed extension is substantially both more
memory and computationally expensive. We note that [50,51]
facilitate model adaptation to new domains in a highly param-
eter efficient manner, yet may still struggle in settings where
new classes (and their names) widely differ from that which the
model has initially learned. A more complex context prompting
strategy has been recently proposed, specifically for detection
tasks [6]; integrating a background specific loss function, as well
as a context dependent scheme in the prompt learning process.

Crucially, for all of these methods, classification is still per-
formed with respect to a handcrafted class name, making accu-
racy highly dependent on the quality of chosen names. In certain
settings, finding an accurate semantic description of a class can
be challenging, and a poor choice can impair the model’s per-
formance. To the best of our knowledge, this limitation has not
been addressed yet in classification and object detection settings.
Textual Inversion. Textual inversion was recently introduced
in [10] for text to image generative diffusion models, as a means
to condition image generation towards incorporating specific ob-
jects or visual components. Given a set of images, all displaying
the same object in diverse settings, a specific word embedding is
learned so as to ensure the model is able to reconstruct images,
sampled from this small set. Simple prompt contexts are used
(e.g. ‘a photo of”) to ensure a simple image of the object is
generated. After training, the model displays impressive ability

A photo of a [CLASS] /Frozen pre-trained word embeddings

G

ﬁearnable class embeddings

Replace cat: Select matching ~ Cat
placeholder C:W‘ % embedding Car
token . ——— Cow
Table: Bed

O S —
N

Queried classes

Frozen
Text transformer
encoder

—>» Frozen
Pre-trained
multimodal

classification

—>» model

P “Cat”

Text transformer

encoder I, i
Frozen - _H.J -

- Pre-trained §
e/ multimodal ’ A
= > detection o
\G model

Figure 2. Overview of our method. Classes of interest are mapped to
a set of learnable word embeddings, and integrated within the input
sentence representation. These embeddings can be learned for classifi-
cation and object detection tasks using standard losses, and used in con-
junction with pre-trained word embeddings in open-vocabulary settings.

to integrate specific objects in generated images, via inputting
learned words at specific locations in the input sentence. In the
solution proposed by [10], each word is learned individually.

3. Methodology

We consider a vision and language object recognition
model pre-trained on a large-scale dataset.  Following
the multi-modal architecture, the model takes as input an
image-text pair x = {I, T}, where the text provides a list
of N candidate classes t; to recognise; T'=[t1,ta,....tN]-
We assume the i-th class specific text ¢; to be in the for-
mat: t; = [prompt prefix]+[CLASS]+ [prompt suffix], where
prompt prefixes and suffixes are shared across all classes. To
obtain text feature representations, a tokenizer converts each
sentence into a series of tokens such that each token maps
to a pre-trained word embedding ex. Embeddings are then
concatenated and used as input to a text transformer. Our final
text representation is the transformer output for the End Of
Sequence (EOS) token f(T)= fi(t;), where i € {1,...,N }.

3.1. Baseline multi-modal models

Multi-modal Image classification. In the context of image
classification [36], our objective is to assign a specific category
to the image as a whole. Image inputs are processed in parallel
to the text input through an image encoder g(-), yielding repre-
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sentation g(I). The classification task is then simply performed
by evaluating the cosine similarity between image and text em-
beddings, and selecting the class with the highest similarity.
Multi-modal Object detection. There are two main con-
temporary strategies for vision and language based object
detection. The first (simpler) strategy is similar to multi-modal
classification, wherein image and text information are
only combined latterly at the bounding box classification
stage [2, 13,33]. In this setting, the image input is processed
through an object detector entirely disjointly from the text
modality. The detector outputs a set of coordinates and a class
embedding for each bounding box candidate. We then compute
class embedding similarity with text representations f(7")
following the multi-modal classification approach to assign a
classification label to each bounding box.

The second class of strategies propose to fuse image and text
inputs; either when generating text and image embeddings [27]
or via a third encoder h(g(I),f (7)) that outputs bounding box
coordinates and class embeddings [13,22,31]. For this latter
fusion strategy, classification is performed over sentence tokens
rather than across sentences, with an aim of associating bound-
ing boxes with a keyword. This technique is typically more com-
putationally expensive than the first method class as it requires
computation of new image features, for each queried class.

3.2. Learning optimal class names

We conjecture that the performance of pre-trained recogni-
tion models is intrinsically linked to the suitability of the class
names, chosen to represent certain visual categories. Selecting
class names that do not reflect an object’s visual appearance can
substantially alter recognition performance. We thus propose
to remove the model’s sensitivity to hand crafted class names,
by learning class specific word embeddings from image content.
An overview of the method is provided in Figure 2.

We consider the matrix of pre-trained word embeddings
EcRV*F where V is the vocabulary size, and F' the feature
dimension. We propose to extend this matrix with a set of new,
learnable word embeddings E' € RV ¥, where each row of
E' corresponds to a class specific learnable embedding and N
pertains to the total number of dataset classes. In this setting,
we replace the class name in each text query with a class spe-
cific placeholder ;= [prompt prefix]+ [pl‘] 4 [prompt suffix].
While the tokenizer maps context prompts to matrix E, our
placeholder maps to its corresponding class embedding e!.
This new class query is used as input to the text transformer
encoder, and the remainder of the recognition model is
unchanged. We note that it is possible to map one category
to a series of m word embeddings, using queries of the type
t; = [prompt prefix] -+ [pl} ]+ [pl’, ] + [prompt suffix].
Training. During training, we freeze the entire pre-trained
model (including pre-trained word embeddings) and learn our
new set of word embeddings E' with the standard losses used
to train the base model (e.g. cross entropy loss for classification,

and bounding box regression losses for detection). We identify
three key scenarios where our approach can be beneficial: 1)
adapting the pre-trained model on a new dataset with a new set of
classes; 2) adjusting suboptimal class names on the same dataset
used to train the model; 3) continual adaptation of a pre-trained
model, where new classes are available after a first training stage.
Inference. At inference time, we follow the process described in
Section 3.1. Categories whose names were learned are mapped
to their new embeddings ¢! € E'. For unseen object categories
(i.e. not in our new dataset) we use their original embeddings,
e € E, from the pre-trained model. As a result, our solution
maintains the ability to perform open-vocabulary recognition.

4. Experiments

We evaluate the impact of learning class names for the tasks
of image classification and object detection. We consider four
settings where our strategy can be beneficial:

Task 1: Model adaptation to new datasets: considering a
new dataset of interest, we adapt our pre-trained model to this
new set of potentially unseen classes by learning optimal class
names from the new image content.

Task 2: Post-training class name adjustment: the model
is first fine-tuned on our target dataset, then class names
are optimised in a subsequent learning stage. This setting is
more valuable for object detection where fine-tuning can have
important impact on bounding box localisation.

Task 3: Open-vocabulary recognition: open-vocabulary is
one of the key advantages of vision-language models, and
maintaining strong performance is crucial. Evaluation of the
compatibility between our learned word embeddings, and
standard pre-trained word embeddings can provide a measure
of strength on this axis. We adapt the model to only a subset of
classes from our new dataset and measure overall performance
on all classes, such that inference combines learned and text
based word embeddings.

Task 4: Continual model adaptation: to measure the model
ability for sequential learning of new word embeddings, we first
adapt the model to a subset of classes, then learn the remaining
class names in a second, separate, training stage.

We highlight that we do not seek state of the art performance,
as this is intrinsically linked to the pre-trained model’s base
performance, pre-training data, and architecture. Rather, our
objective is to demonstrate the potential of learning class
names to improve model performance, while maintaining
zero-shot properties. We therefore perform experiments
on models with simple multi-modal mechanisms, use a
single word embedding per class, and a standard prompt:
(prompt prefix = ‘a photo of a’; prompt suffix=""), in all
experimental settings unless specified otherwise.

4.1. Image classification: CLIP model

To evaluate our method on classification tasks, we employ
CLIP [36] as our base pre-trained model with a vision
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Class group || CLIP* | CoOp | Ours | Ours*

Base classes || 69.4 82.6 82.7 | 82.8
New classes || 74.2 64.1 73.1 | 74.2
All classes 65.2 65.7 66.5 | 68.7

Table 1. CLIP model: Base to new classification accuracy. Results
on Base classes show method ability to adapt to new data (Task 1).
Results on New and All classes show open vocabulary ability (Task
3). * Manually engineered prompt templates.

transformer ViT-B/16 [5] fulfilling the image encoder g(-)
role. Here, we seek to evaluate method performance in
previously described Tasks 1, 3 and 4; i.e. model adaptation,
open-vocabulary performance, and continual adaptation.
Datasets. We follow the setting proposed in [50,51]. We adapt
the CLIP model to a selection of eleven diverse datasets, focus-
ing on different types of recognition tasks: standard image clas-
sification (ImageNet [4], Caltech 101 [7]), fine-grained classi-
fication (Stanford cars [23], Oxford Pets [35], Flowers 102 [34],
Food 101 [1] and FGVC Aircraft [32]), scene recognition (SUN
397 [43]), action recognition (UCF 101 [42]), texture classifi-
cation (DTD [3]) and satellite image recognition (Eurosat [17]).
Training details. We adopt a set of parameters similar to [51].
For each dataset, we learn class names with a batch size of 32,
over 200 epochs (50 for ImageNet), SGD optimiser with a learn-
ing rate of 2¢~* and cosine scheduling, with one warm up epoch.
We initialise our learnable word embeddings using the average
embedding of all word tokens associated with hand-crafted class
names. For each dataset, 16 training images per category are
sampled, and we report mean statistics over three random seeds.
Baselines. The method we directly compare to is the zero-shot
CLIP model, as we aim to evaluate the benefits of learning
class names. We additionally report classification accuracy for
the CoOp model [51], which learns optimal prompt context
with fixed handcrafted class names. We retrain CoOp in our
settings of interest and use four context words, initialised with
‘a photo of a’, as in [50] (this differs from the 16 words used
in [51]). This allows to compare advantages and disadvantages
of learning class names over prompt context, and evaluate any
complementary nature between the strategies. We report the
best possible CLIP performance with engineered prompts, and
report our results with a standard prompt, as well as using the
same engineered prompts as CLIP. We note that four of the
datasets (Stanford cars, ImageNet, Caltech 101 and Sun 397) do
not have engineered prompt, and we provide all dataset-specific
prompts in the supplementary materials.

Model adaptation (Task 1) and Open vocabulary (Task 3).
We adopt the base-to-new generalisation setting proposed in [50].
For each dataset, we equally split classes into a set of ‘base’ and
‘new’ classes. We use base classes for training and evaluate per-
formance on new classes in a zero-shot manner. Additionally, to
measure open-vocabulary performance, we report performance
on ‘all’ classes, i.e. a mixture of learned and handcrafted class

Class group || CLIP* | CoOp | Ours | Ours*
74.0 ‘ 84.4 ‘ 85.9 ‘ 85.9

New classes

All classes 65.2 71.7 75.7 | 76.3

Table 2. CLIP model: Classification accuracy for continual model adap-
tation (Task 4) experiments. * manually engineered prompt templates.

names. Results are reported in Table 1. Results on base classes
highlight our ability to perform model adatpation (Task 1) by
learning class names only. For this task, we observe that our
strategy can achieve equivalent gains as context tuning on base
classes (82.6% (CoOP) vs. 82.8% (Ours) average accuracy).
However, our approach guarantees that zero-shot CLIP perfor-
mance is maintained on new classes, as our learned parameters
are class specific. Our open-vocabulary experiments (Task 3)
show that we are able to maintain the CLIP model’s ability to ex-
pand the output set, and to introduce new classes from text alone
(CLIP and Ours 74.2%, new classes). Experiments on all classes
confirm that we are able to use a mixture of learned and new
classes successfully, outperforming CoOp (65.7% CoOp, 68.7%
Ours, all classes). We further note sensitivity to context prompts,
as substantial gains are obtained using engineered prompts
(+2.2% Qurs, all classes). This is to be expected, as new class
performance can be strongly impacted by prompts, and high-
lights the importance of prompt context tuning in this setting.

Sequential adaptation (Task 4). We extend the generalisation
setting to evaluate our ability to perform sequential adaptation;
i.e. after training on base classes, we subsequently train on new
classes with no access to base classes. We measure performance
on new classes, as well as all classes after this second training
stage. For CoOp [51] experiments, we fine-tune prompt pa-
rameters, and adjust learning rate to 2e~* which provided best
empirical performance in this setting. Results are reported in Ta-
ble 2. As in the previous setting, performance on new classes is
highly similar when performing context or class name learning
(84.4% CoOp, 85.9% Ours, new classes), achieving strong gains
over zero-shot CLIP (10+%). On all classes, we can see that
we achieve significant gains (+4%, Ours vs. CoOp), which can
be attributed to the fact that class names are (all) learned inde-
pendently. Last but not least, we note a much higher robustness
to change in prompt context when all classes are learned; we
achieve very similar results when using a standard or engineered
template in this setting (+0.6% vs. +2.2% in Table 1, all classes).

4.2. Object detection: OWL-vit model

For object detection experiments, we evaluate all 4 Tasks. We
select OWL-vit [33] as our base multi-modal detection model
due to noted strong zero-shot performance and clear separation
between vision and language branches. This allows us to eval-
uate the impact of class learning more directly, in contrast to
methods using complex text and image fusion mechanisms [26].
OWL-vit leverages a pre-trained multi-modal classification
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Method

‘ backbone ‘ pre-training (image) ‘ pre-training (detection) ‘ AP ‘ AP/t ‘ AP/c ‘ AP

Zero-shot models

MDETR [27] DETR N/A MDETR data 64 9.8 3.6 19
XDETR [?] DETR N/A MDETR data, LocNar | 164 | 188 | 152 | 9.6
GLIP-T [26] SWIN-T | Cap4M 0365,GOLDG 260 | 31.0 | 214 | 20.8
GLIP-L [26] SWIN-L | Cap24M 0365,FourODs 373 | 415 | 43.3 | 282
Zero-shot OWL-vit base model

OWL-vit zero-shot [33] | VIT B/16 | CLIP 0365, VG 253|270 | 250 | 17.6
Prompt learning all [51] | VIT B/16 | CLIP 0365, VG 244 | 259 | 240 | 17.8
Ours base (Task 3) VIT B/16 | CLIP 0365, VG 257 | 26.8 | 259 | 19.0
Ours sequential (Task 4) | VIT B/16 | CLIP 0365, VG 260 | 26.6 | 259 | 23.1
Ours all (Task 1) VIT B/16 | CLIP 0365, VG 26.6 | 27.0 | 27.5 | 19.8
OWL-vit base model fine-tuned on LVIS base classes

OWL-vit [33] VIT B/16 | CLIP 0365, VG 288 | 344 | 247 | 177
Prompt learning all [51] | VIT B/16 | CLIP 0365, VG 313 | 347 | 292 | 224
Ours base (Task 3) VIT B/16 | CLIP 0365, VG 333 | 352 | 339 | 203
Ours rare (Task 3) VIT B/16 | CLIP 0365, VG 304 | 345 | 254 | 345
Ours sequential (Task 4) | VIT B/16 | CLIP 0365, VG 34.1 | 350 | 33.8 | 30.6
Ours all (Task 2) VIT B/16 | CLIP 0365, VG 345 | 356 | 344 | 285
OWL-vit base model fine-tuned on all LVIS classes

OWL-vit [33] | VITB/16 | CLIP | 0365, VG | 345|385 | 332 | 19.1

Table 3. Average precision results on LVIS mini-validation set for all (AP), frequent (AP/f), common (AP/c) and rare (AP/r) classes. Our method
uses only 10% of the LVIS training dataset. State of the art methods (in grey) use different training datasets and architectures of different capacities.
They are added for context.{base, rare, all} describes which class group is used for training. Sequential means base and rare classes are trained
sequentially. Task 1: model adaptation to new data, Task 2: class name learning after fine-tuning, Task 3: Open vocabulary ability (mixture of
seen and unseen classes), Task 4: continual adaptation (learning class groups in a seqeuntial manner).

model (e.g. CLIP) with a vision transformer backbone. To adapt
this model to the object detection task, the pooling layer that
combines vision transformer outputs is removed, and two new
modules are learned: a class prediction module and a box pre-
diction module that output class embeddings and bounding-box
coordinates, respectively, for all transformer outputs. The OWL-
vit model is fine-tuned from the CLIP weights using a mixture
of standard object detection datasets. Additionally, a set of engi-
neered CLIP prompt templates are used as class prompt contexts.

Datasets. We evaluate the impact of learning class names on
two object detection datasets. Firstly, we consider LVIS [14],
a large scale natural image object detection dataset comprising
over 100k training images and 1203 classes, characterised by
a long tail distribution with ‘frequent’ (x>100), ‘common’
(100>x>10), and ‘rare’ (10>2>1) class groups, for x images
per class. Following prior work [2]; we use pre-defined category
names, but remove the text in the parentheses, e.g., “flip-flop
(sandal)” is replaced by “flip-flop”. We note that this leads to
a few instances of classes sharing the same name (e.g. “bow”).

Secondly, we run experiments on CODA 2.0 [25], a
self-driving dataset focusing on detection of rare, corner case
instances. It comprises validation and test sets containing 5k
images each, and 43 classes, of which only 29 appear in the val-
idation set. In addition to the base OWL-vit model, we consider
a model fine-tuned on the SODA dataset [ 5] (fully labelled in-
stance), closer to our test domain. Designed for semi-supervised

training of self-driving models, SODA comprises six classes
that overlap with CODA classes. Following [25], we refer to
the{pedestrian, cyclist, car, bus, tram, truck, tricycle} classes
as common classes, and remaining classes as corner-cases.

Training details. We fine-tune the pre-trained OWL-vit model
on LVIS, SODA datasets for 10 epochs, using 7 GPUs (batch
size 2/GPU), with learning rates 5e % (main model) and 2e~"
(text branch) using cosine scheduling and an Adam optimiser.
Weight decay is unused and gradient clipping is set to 0.1. For
LVIS fine-tuning, we train two models: one on all classes, and
one on base (frequent + common) classes only, thus following
the evaluation set-up of [33]. For CODA 2.0 experiments, mod-
els are fine-tuned on the SODA and LVIS datasets, to simulate
the setting where corner cases are discovered after training.
For our class learning process, we freeze the entire model
aside from new class embeddings. Embeddings are learned
for 20 epochs, using a learning rate of 1e~2 (cosine schedule),
7 GPUS (batch size 10/GPU). They are initialised with the
average token embedding of the corresponding class name.
For the LVIS dataset, we learn class names with a balanced
subsampling of 10% of the training set.

LVIS experiments. We provide average precision results for all
4 Tasks on the LVIS mini-validation set [22] in Table 3. For con-
text, we report methods competitive with OWL-vit, but highlight
the key point of comparison is with respect to the base model that
exhibits pre-defined class names. We also provide comparison
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Method ‘AP—Com AP-A AR-A  AR-Cor Sum

RetinaNet 0.25 0.38 0.48 0.25 1.36

Faster RCNN 0.28 037 043 0.17 1.27

Cascade RCNN 0.30 0.42 0.48 0.21 141

Zero-shot OWL-vit base model

OWL-vit zero-shot | 0.10 0.20 0.44 0.45 1.19

Ours (Task 3) 0.17 0.31 047 0.50 1.45

OWL-vit model fine-tuned on SODA

OWL-vit 0.21 0.35 0.50 0.44 1.44

Ours (Task 3) 0.23 0.37 0.51 0.47 1.58

OWL-vit model fine-tuned on SODA + LVIS

OWL-vit 0.21 035 052 0.51 1.59

Ours (Task 3) 0.23 0.39 0.53 0.53 1.67
Table 4. Detection results on the CODA test set. AP-Com

(AP-Common): average precision (AP) on common classes, AP-A
(AP-agnostic): AP in the class agnostic setting. AR-A and AR-Cor:
average recall for class agnostic and corner case detection respectively.
Task 3: Open vocabulary ability (mixture of seen and unseen classes)

to prompt learning, using four learnable context words initialised
as ‘a photo of a’, and identical training parameters to ours.

When learning names for all classes, we achieve consistent
performance gains for all class groups in both zero-shot (Task 1:
adapting to a new dataset, +1.3 AP) and fine-tuned settings
(Task 2: post training class adjustment, +5.7 AP). Larger
gains are observed for the fine-tuned model, which can be
attributed to the improved bounding box regression component,
facilitating the classification task. Gains are more substantial
for rare classes (+2.2 AP (zero-shot), +10.8 AP (fine-tuned)),
which can be attributed to the removal of name ambiguity
and the fact that these names are less common in pre-training
datasets, leading to potentially poorer mapping with image
content (e.g. ‘arctic’ shoe class). In contrast, frequent classes
remain mostly stable (+0 AP (zero-shot), +1.2 (fine-tuned)),
highlighting the quality of image to name mapping for this
group. We provide more evidence of this in Section 4.3.

Open vocabulary experiments (Task 3), where class names
are only learned on base classes, show modest gains in the zero-
shot setting (+ 0.5 AP), but large improvements on a fine-tuned
model (+ 4.5 AP), notably highlighting the importance of the lo-
calisation task. Due to the multi-label nature of LVIS, base and
rare classes are not competing, facilitating the open vocabulary
task. Learning base class names additionally reduces ambiguity
with rare class names, improving rare class performance.

Sequential learning experiments (Task 4; training on
base then rare classes) achieve comparable performance to
directly training on all classes (35.0 AP (seq.) vs. 35.6 AP (all
classes)), further highlighting how well suited our approach
is for sequential adaptation. LVIS is a highly imbalanced
dataset. While our 10% subsampling strategy reduces class
imbalance, it is not entirely eliminated. This is evidenced by the
improved rare class performance in the sequential setting (+3.3

Class rarity

0.0 0.2 0.4 0.6 0.8
Self similarity

Figure 3. Correlation between class rarity (log scale) and embedding
similarity between learned and pre-defined class names. LVIS dataset.

(zero-shot), +2.1 (fine-tuned)). Fine-tuning the entire OWL-vit
model on all classes (100% of the data) further evidences the
impact of this imbalance and our model’s potential to address
long tail issues. By reducing data requirements (only 10%
achieves equivalent overall performance; 34.5 AP), we are
able to train on a balanced data subset. In both fine-tuned and
zero-shot settings, learning class names on 10% of the data
achieves better or equivalent rare class performance (AP/r) than
the fine-tuned model (-0.1 to +15.4 AP/r gains).

Finally, prompt tuning methods struggle to achieve good

Task 1 performance in the zero-shot setting (-0.9 AP), but obtain
better gains after fine-tuning (+2.5 AP). We note that prompt
tuning performance is overall poorer than our strategy (-2.2
zero shot, -3.2 fine-tuned vs. ours all), which we hypothesise is
partially linked to OWL-vit pre-training using fixed templates,
and the diversity of object detection contexts.
CODA experiments, Task 3. Experimental results on the
CODA 2.0 dataset are reported in Table 4. Following the
setup proposed in [25], we report average precision (AP) on
common classes (AP-Com), class agnostic AP on all classes
(AP-A), class agnostic average recall on all classes (AR-A)
and on corner classes (AR-Cor). We compare to state of the
art self-driving models, trained in a semi-supervised setting on
the SODA dataset [25]. The zero-shot OWL-vit model is not
trained on any self-driving data, therefore achieves an overall
poorer common class performance (0.10 AP-Com). However,
the open-vocabulary setting allows this model to achieve very
strong corner classes detection (0.45 AR-Cor). Our method
largely improves performance for all metrics, with an overall
performance (1.45 Sum) exceeding that of self-driving models
(1.41 Sum), including our OWL-vit model fine-tuned on SODA
(1.44 Sum). Fine-tuning OWL-vit on SODA, and a mixture of
SODA and LVIS training data further improves results (1.44 and
1.59 Sum, respectively), and our strategy consistently increases
all metrics (1.58 and 1.67 Sum, respectively). Common
class performance remains below the reference models (-0.07
AP-Com), which we conjecture can be attributed to our
relatively small self driving training data (only 10k images).
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Closest to new name
(embedding similarity)

Dataset Original name ‘ Example image

Apperance based Correction

LVIS arctic boot (0.46), ski boot (0.30) E
CODA tricycle cart (0.62), rickshaw (0.67) ﬁ""‘iﬁ
e
CODA misc waterwheel
(0.47), wheel (0.45)

British to American English Correction

laundry basket (0.52), shopping basket (0.39)

clothes hamper

LVIS wall socket outlet (0.62), power outlet (0.60)
garbage trash can (0.47), trashcan (0.45)
postbox mailbox (0.47), telephone booth (0.46)
trousers clothes (0.42), pants (0.41)

Object type first

bell pepper vegetable (0.55), pepper (0.51), bell pepper (0.51)
LVIS bridal gown gown (0.57), dress (0.57), bridal gown (0.55)
horse buggy horse-drawn vehicle (0.66), horse buggy (0.64)
horse carriage horse-drawn vehicle (0.68), horse carriage (0.65)
celery green vegetables (0.50), celery (0.47)
cymbal musical instrument (0.55), cymbal (0.46)

Table 5. Interpretability results: changes to original class names.

4.3. Interpretability

One key advantage of the proposed approach is a beneficial
effect on model interpretability; the method allows evaluation of
the manner in which class names are modified, based on image
content. Here, we aim to evaluate how object classes were
renamed in our object detection experiments. This experiment
can usefully inform us about model biases, sources of classi-
fication errors, potential mislabelling errors and the suitability
of handcrafted names. For this purpose, we build a reference
vocabulary of 3031 object names, using the following dataset
class names (filtered for duplicates): LVIS (1203 classes),
CODA (43 classes), Objects365 [40] (365 classes), ImageNet
(1000 classes), and the THINGS [16] database (1854 concepts).

Individual word embeddings may not have very valuable
meanings in terms of interpretability, especially considering that
certain class names comprise multiple tokens. As a result, we
compare learned representations to our reference vocabulary
at the output of the text transformer encoder, using the shared
prompt template context: ‘a photo of a’. More formally, for
each word €', in our list of learned embeddings, we compute
the sentence representation f(¢(e')), where #(e!) is the sentence
constructed using our prompt prefix and word embedding e.
We repeat the procedure for each instance in our vocabulary,
using the model’s pre-trained word embeddings e”, and obtain
f(t(e”)). We then simply compute the cosine distance between
all pairs of learned and reference word representations.

We carry out this process for models trained on the LVIS
dataset (base model fine-tuned on base classes), and on the
CODA 2.0 dataset (zero-shot model). In Table 5, we show exam-
ples of classes that were renamed towards a semantic meaning

closer to image content, and highlight some labelling errors.
“Arctic” and “misc” are evidence of non representative class
names. The “tricycle” class appears to have been mislabelled,
with labelled vehicles looking closer to “rickshaws” and “carts”.
We additionally report two interesting trends: 1) the model tends
to adjust word embeddings from British English representations
to American English, where the latter is expected to be the
dominant language, on which large scale CLIP models were
trained; 2) fine-grained category representations tend to be
closer to supercategory word types (e.g. vegetable, musical
instrument), suggesting that the model also leverages cross-class
similarities towards the learning of representations for rare
classes. The first observation notably highlights our method’s
potential for cross-lingual model adaptation: given a dataset in
one language, and a model trained in another language, we can
learn optimal class names adapted to the pre-trained language
model without any additional language translation efforts.

In Figure 3 we highlight the relationship connecting class
rarity and embedding similarity between learned and original
class names, on the LVIS dataset. As previously conjectured in
Section 4.2, there is a clear correlation between these variables,
highlighting how multi-modal models also suffer from
common long tail related issues (i.e. poorer semantic mapping
between rare words and their corresponding visual appearance).
Additional results are available in our supplementary materials.

5. Conclusion

This work focuses on the concept of class name and resulting
impact on performance of vision-language recognition models.
Complementary to prompt tuning, which seeks to optimise
the context of text queries, we propose to automatically learn
optimal class names from visual content. Our solution can
easily be integrated in classification and object detection models,
achieving significant gains, with respect to the base model, in all
settings. We additionally demonstrate promising interpretability
properties by showing how class semantic meanings were
adjusted, providing data and model analysis properties.

Learning class names can be viewed as an alternative to
linear probing. The former approach, in contrast to probing,
maintains key properties inherent to vision-language models (e.g.
open-vocabulary). One observed limitation of our approach, in
common with linear probing, is relatively weaker performance,
in comparison with prompt tuning and image queries, under
very low data regimes (i.e. 1-2 shots). Exploring a combination
of learned text and image queries makes for a promising future
avenue. While learning class names reduces dependency
on prompt context, we still observe improvements using
engineering prompts, in particular in open-vocabulary settings.
As such, our method has the potential to further benefit from
combination with prompt tuning techniques [50, 51], where
prompts can provide key domain adaptation properties. Last but
not least, learning class names has the potential to benefit class
agnostic detection, via clustering and learning cluster semantics.
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