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Abstract

In this paper, we efficiently transfer the surpassing rep-
resentation power of the vision foundation models, such as
ViT and Swin, for video understanding with only a few train-
able parameters. Previous adaptation methods have simul-
taneously considered spatial and temporal modeling with a
unified learnable module but still suffered from fully lever-
aging the representative capabilities of image transformers.
We argue that the popular dual-path (two-stream) architec-
ture in video models can mitigate this problem. We pro-
pose a novel DUALPATH adaptation separated into spatial
and temporal adaptation paths, where a lightweight bottle-
neck adapter is employed in each transformer block. Espe-
cially for temporal dynamic modeling, we incorporate con-
secutive frames into a grid-like frameset to precisely imi-
tate vision transformers’ capability that extrapolates rela-
tionships between tokens. In addition, we extensively inves-
tigate the multiple baselines from a unified perspective in
video understanding and compare them with DUALPATH.
Experimental results on four action recognition benchmarks
prove that pretrained image transformers with DUALPATH
can be effectively generalized beyond the data domain.

1. Introduction
Recognizing when, where, and what happened is a fun-

damental capability in the human cognition system to un-
derstand our natural world. The research for video under-
standing inspires such capability for machine intelligence
to comprehend scenes over time flow. Over the last decade,
the development of deep neural networks [10,33,66,73] has
contributed towards advances in video understanding.

Vision Transformer (ViT) [17] has recently emerged,
making an upheaval in the research field of computer vision.
ViT and its variants [16, 46, 72, 78] have demonstrated re-
markable generalizability and transferability of their repre-
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Figure 1. Performance comparison on the Kinetics-400 [38]
dataset. We depict the action recognition performance (vertical
axis, %) with respect to the number of trainable parameters (hori-
zontal axis). The size of circles indicates GFLOPs for inference.

sentations with scaled-up foundation models [34,53,63,69,
77, 79] and large-scale web-collected image data (e.g. JFT-
3B [79], LAION-5B [58]). To capitalize on well-trained vi-
sual foundation models, finetuning entire parameters of the
pretrained models with task-specific objectives has been the
most popular transfer technique. However, it requires high-
quality training data and plenty of computational resources
to update the whole parameters for each downstream task,
making overwhelming efforts for training. While partial
finetuning [28], which trains additional multilayer percep-
tron (MLP) layers to the top of the model, has also been
widely used for affordable training costs, unsatisfactory per-
formance has been pointed out as a problem.

Most recently, parameter-efficient transfer learning
(PETL) methods [25, 26, 31, 32, 41, 61] have been proposed
as an alternative to finetuning in the natural language pro-
cessing area to adapt the large-scale language model, such
as GPT series [8, 54, 55] and T5 [56], for each task. They
have successfully attained comparable or even surpassing
performance to full-tuning parameters by learning a small
number of extra trainable parameters only while keeping the
original parameters of the pretrained model frozen. Thanks
to their effectiveness and simplicity, they have been ex-
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tended to vision models by applying prompt-based meth-
ods [3, 35] and adapter-based methods [11, 49, 64]. They
have efficiently adapted pretrained models to downstream
tasks with significantly reduced tuning parameters, but most
of these works mainly focus on transferring image models
to image tasks [3, 11, 35, 49] and vision-language models
to vision-language tasks [64]. Inspired by the advances of
the prior arts, we raise two conceivable questions: (1) Is it
possible to transfer the parameters of the image foundation
model to another video domain? (2) Is it also possible the
transferred model performs comparably to the carefully de-
signed video models that take the spatiotemporal nature of
the video into account?

While image models have demonstrated strong spatial
context modeling capabilities [34, 53, 63, 79], video trans-
former models [1,47,57,76] require a more complex archi-
tecture (e.g. 539 vs 48912 GFLOPs [57]) with a large num-
ber of parameters (e.g. 84M vs 876M parameters [76]) than
ViT for temporal context reasoning. Therefore, the chal-
lenge in transferring image models for video understanding
is to encode the temporal context of videos while leverag-
ing the discriminative spatial context of the pretrained im-
age models. A naive solution is to finetune image models
on a video dataset by directly applying previous prompt-
/adapter-based approaches [3, 11, 35, 49]. However, these
approaches inevitably ignore the temporal context in videos
because they bridge only the spatial contexts between image
and video data.

In this paper, we propose a novel adapter-based dual-
path parameter efficient tuning method for video under-
standing, namely DUALPATH, which consists of two dis-
tinct paths (spatial path and temporal path). For both paths,
we freeze the pretrained image model and train only ad-
ditional bottleneck adapters for tuning. The spatial path
is designed to encode the spatial contexts that can be in-
ferred from the appearance of individual frames with the
minimum tuning of the pretrained image model. To re-
duce the computation burden, we sparsely use the frames
with a low frame rate in the spatial path. The tempo-
ral path corresponds to the temporal context that should
be encoded by grasping the dynamic relationship over sev-
eral frames sampled with a high frame rate. Especially for
two reasons, we construct a grid-like frameset that con-
sists of consecutive low-resolution frames as an input of
the temporal path: (i) preventing computational efficiency
loss caused by calculating multiple frames simultaneously;
(ii) precisely imitating the ViT’s ability for extrapolating
global dependencies between input tokens. To compare
our DUALPATH with existing methods broadly, we imple-
ment several baselines with a unified perspective on re-
cent domain-specific PETL approaches [11, 35, 49]. Ex-
tensive experiments on several action recognition bench-
marks [23, 38, 39, 42] demonstrate the effectiveness and

high efficiency of our DUALPATH, achieving comparable
and even better performance than the baselines and prior
video models [1,7,18,22,40,43,47,57,68,76]. We achieve
these results with extremely low computational costs for
both training and inference, as demonstrated in Fig. 1.

2. Related Work
Pretraining vision models. To address the burdens of
collecting large-scale labeled datasets for supervised learn-
ing [15, 63, 79], self-supervised learning methods [12, 13,
24,27,28,74] have been introduced to learn general-purpose
visual representations from unlabeled data. Similarly, self-
supervised learning methods for videos have also been
proposed with large-scale unlabeled video/video-language
data [20,51,52,62,65,68,75]. However, collecting even un-
labeled video-language pairs is still quite costly compared
to image-language pairs. In addition, pretraining video
models require more computational power than images. We
thus take advantage of the powerful pretrained image-based
models for efficient video understanding.
Video action recognition. Action recognition is one of the
most fundamental research topics for video understanding.
Early works have been built upon convolution neural net-
works (CNNs) [10, 21, 44, 66, 73] to effectively infer the
spatiotemporal context for action recognition. Since Vi-
sion Transformer (ViT) [17] has become a new paradigm
in computer vision, transformers for video understanding
have been actively studied by extending pretrained image
models. The pretrained image transformers have been used
to initialize the part of the video transformers [1,7,76,80] or
inflated to the video transformers [47]. While transformers
have demonstrated superior performance on video action
recognition, they require full finetuning on video datasets,
making the training inefficient.
Parameter-efficient transfer learning (PETL). To ad-
dress the memory and parameter inefficiency of full-
/partial-finetuning, PETL has first introduced in natural lan-
guage processing (NLP) [6,25,26,31,32,41,61]. The main
objective of PETL is to attain comparable or surpassing per-
formance on downstream tasks by finetuning with only a
small number of trainable parameters. Although PETL ap-
proaches [3, 11, 11, 35, 36, 49, 64] have recently been stud-
ied in computer vision, they are ‘blind’ to other modalities
such that image models are used for image tasks, and so
are the other modalities. In contrast, we share the same ob-
jective as recent works for image-to-video transfer learn-
ing [37, 45, 48, 50], demonstrating the pretrained image
models can be good video learners. However, they have
several limitations in terms of parameter and computational
efficiency. For example, [45] learned an extra decoder that
contains 3D convolution layers and cross-frame attention,
and [50] inserted additional depth-wise 3D convolution lay-
ers between the down-/up-projection layers of the adapter to
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perform temporal reasoning, inducing computational ineffi-
ciency. The most recent works [37,48] require an additional
text encoder branch as a classifier. Moreover, they have
computational efficiency proportional to the temporal res-
olution. Our DUALPATH accomplishes more efficient spa-
tiotemporal modeling while achieving higher performance.

3. Preliminaries and Baselines
3.1. Vision transformers for video

We briefly describe how to apply vision transformers for
video understanding below. Following [67], given a set of
T frames in a video, we split each frame into N patches of
size (P × P ) and tokenize them using a linear projection,
such that

Xt = [xt{[CLS]},x1
t ,x

2
t , · · · ,xN

t ] + p, (1)

where Xt is a set of tokens for the t-th frame, and
xt{[CLS]} and p denote a learnable class token and a
learned positional embedding respectively. We feed (N+1)
tokens of each frame to a sequence of L transformer blocks,
and the output of the l-th block hl,t can be derived by the
following equations:

zl,t = hl−1,t + MHA(LN(hl−1,t)),

hl,t = zl,t + MLP(LN(zl,t)),
(2)

where LN,MHA, and MLP denote a layer normalization [2],
multi-head attention [67], and a multilayer perceptron op-
eration, respectively. We apply layer normalization to the
learned T class tokens from the final transformer block and
treat them as a set of frame representations.

To take minimal temporal modeling into account the fol-
lowing baselines [11, 35, 49], we employ a temporal trans-
former block followed by a full-connected (FC) layer as a
classifier for video action recognition, similar to [37]. We
add learnable temporal positional embeddings ptemp to the
frame representations (i.e., xt{[cls]} ← xt{[cls]} +
ptemp) and feed them into the transformer classifier. For the
ST-adapter [50], we use a single FC layer as a classifier.

3.2. Baselines
The objective of our work is to transfer the superior-

ity of vision transformers pretrained on large-scale image
datasets to the video domain through efficient finetuning
with a small number of learnable parameters, while freez-
ing the pretrained parameters. To compare with other
methods, we generalize four recent PETL methods to the
video domain only with the least possible transformation;
(1) VPT [35] (2) AdaptFormer [11] (3) Pro-tuning [49]
(4) ST-adapter [50]. The most of works have been origi-
nally proposed to adapt pretrained image models to down-
stream image tasks [11, 35, 49] and video models to video
tasks [11], by learning visual prompt tokens [35], adapter
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Figure 2. Baselines for image-to-video transfer learning. (a)
Visual Prompt Tuning [35]; (b) Parallel adapter and (c) serial
adapter [11]; (d) Pro-Tuning [49]; and (e) ST-Adapter [50].

blocks [11] and prompt prediction blocks [49]. Only the ST-
adapter [50] has proposed image-to-video transfer learning.
In this section, we describe baselines for image-to-video
transfer learning in detail. For brevity, we leave out the sub-
scripts in Eq. 2 and arouse them as needed. In addition, we
represent the learnable and frozen parameters in red and
blue colors, respectively.
Visual prompt tuning (VPT) [35] prepends K trainable
prompt tokens to the input space of every transformer
block1 while keeping pretrained parameters frozen. The in-
put tokens for each transformer block can be written as:

h̃ = [e ;h], (3)

where e ∈ RK×d is a set of trainable visual prompt tokens
and d is a channel dimension of the original token.
AdaptFormer [11] learns a trainable bottleneck mod-
ule [26, 31]. The intermediate feature z in Eq. 2 of each
transformer block is fed into the AdapterMLP that consists
of the original MLP layers and a bottleneck structure (par-
allel adapter in Fig. 2b). The output of the AdaptFormer
block can be formulated by:

z̃ = σ(LN (z) · Wdown ) · Wup ,

h = z+ MLP (LN (z)) + s · z̃,
(4)

where Wdown , Wup are trainable down- and up-projection
matrices, σ(·) is an activation function, and s is a scaling
factor.
Pro-tuning [49] predicts task-specific vision prompts v
from the output of each transformer block using consecu-

1While the original work also presented a shallow version (VPT-
Shallow) that inserts prompt tokens to the first layer, we explore a deep
version (VPT-Deep) only.
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Figure 3. Overall architecture of DUALPATH. The pretrained image transformer takes a grid-like frameset and Ts frames as inputs. We
learn the temporal and spatial contexts separately through two distinct paths. During training, we only update newly introduced adapters
and the classifier while freezing the pretrained layers.

tive 2D convolution layers. The output of each block is re-
shaped as RP×P×C to apply 2D convolutions and the final
representation is derived by adding v and h:

v = Reshape(σ(Conv2d (Reshape(h)))),

h̃ = h+ v,
(5)

where Conv2D consists of 1×1 convolution layer followed
by 5×5 depth-wise convolution [14] and 1×1 convolution.
ST-adapter [50] inserts a depth-wise 3D convolution layer
between the down-projection layer and the activation func-
tion of the adapter. Different from the conventional adapters
(e.g. AdaptFormer [11]), the ST-adapter takes tokens for all
frames to enable the model to capture temporality in videos.
The output of the ST-adapter can be represented as:

z̃t = LN (zt),

ẑ = σ(D-Conv3d ([z̃1·Wdown , · · · , z̃T ·Wdown ]))·Wup ,

ht = zt+MLP (z̃t) + s · ẑt,
(6)

where D-Conv3d denotes the depth-wise 3D convolution
layer. Note that the same down-projection matrix Wdown is
applied to all tokens regardless of the frame index t.

We emphasize that most of the baselines [11,35,49] have
not concerned with temporal modeling. Even though ST-
Adapter [50] has employed depth-wise 3D convolution lay-
ers between linear projections, it results in high computa-
tional cost. To entirely leverage a simple and efficient ar-
chitecture of the adapter [11], we incorporate the dual-path
design into the pretrained image transformers.

4. Method
The dual-path design (also called two-stream) is well-

known architecture in CNN-based models for video recog-
nition [10, 21, 60]. They have commonly used an optical

flow [10, 60] or multiple frames with a high temporal reso-
lution [21] to capture rapidly changing motion. Despite the
effectiveness of dual-path architecture, it has yet to be ex-
plored with the transformer due to high computational costs.
In this work, we propose a novel PETL method, called DU-
ALPATH, comprised of spatial and temporal path adapta-
tion. To the best of our knowledge, our DUALPATH is the
first attempt to explicitly build the two-stream architecture
upon the transformer while maintaining the computational
cost similar to the single-stream architecture. The overall
framework is depicted in Fig. 3.

4.1. Spatial adaptation
Since the image foundation models have been trained on

large amounts of web datasets, we can intuitively speculate
that they might be powerful to encode the spatial context
even in videos. In order to make the outstanding ability of
spatial modeling to be more suitable for video understand-
ing with a slight parameter tuning, we adopt two parallel
adapters for MHA and MLP in each transformer block. The
parallel adapters allow the model to learn the spatial con-
text for action recognition from the appearance of target
video data while maintaining the original contexts for ob-
ject recognition.

Specifically, we sample TS frames from a video and tok-
enize each frame. Similar to Eq. 1, the set of spatial tokens
XSP

t includes the learnable positional encodings pSP and
the spatial class token xSP

t {[CLS]} . The spatial adapta-
tion in the l-th transformer block can be formulated by the
following equations:

zSP
l = hSP

l−1 + MHA (LN (hSP
l−1)) + Adapter (LN (hSP

l−1)),

hSP
l = zSP

l + MLP (LN (zSP
l )) + Adapter (LN (zSP

l )),
(7)

where hSP
0 = [xSP

t {[CLS]} ,XSP
t ] + pSP . We average
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the set of the spatial [CLS] tokens from the final trans-
former block to obtain a global spatial representation ySP,
such that,

ySP =
1

TS

TS∑
t=1

xSP
t {[CLS]}. (8)

Recent methods have discussed that a high frame rate only
increases the computation volume and is unnecessary to
understand the semantics of appearance [9, 21]. We thus
sparsely sample TS frames with a low frame rate (e.g. 8
frames per clip).

4.2. Temporal adaptation
While spatial adaptation enables the models to take the

spatial contexts in video data, the image models are still in-
capable of modeling the temporal dynamics. The key com-
ponent that allows video transformers to model the solid
temporal context is to learn relationships between local
patches across frames in the video [1, 7]. To make im-
age models capable of effectively establishing this compo-
nent, we suggest a novel grid-like frameset transform tech-
nique that aggregates multiple frames into a unified grid-
like frameset. Our grid-like frameset design is inspired by
recent visual prompting research [4, 5]. It is simple yet sur-
prisingly effective in imitating temporal modeling as spatial
modeling and certainly reduces the computation. In each
transformer block, we adopt two additional serial adapters
for MHA and MLP, respectively.

More concretely, we sample T frames from a video
and scale them with factors of w and h, such that the
scaled frame size is [W/w × H/h × 3]. We stack w × h
scaled frames according to temporal ordering and reshape a
stacked frame to construct a set of frames in a grid form of
the same size as the original frame (i.e., [W ×H×3]). Note
that the total number of grid-like framesets is TG = T/wh.
The set of temporal tokens XTP

g for the g-th frameset is
obtained in the same way in Eq. 1 and combined with
the learnable temporal class token xTP

g {[CLS]} . Unlike
the spatial adaptation, we use fixed 3D positional encod-
ings [70], pTP, to the tokens to take the absolute tempo-
ral order and spatial positions of patches into account. The
input transformation allows transformers to observe multi-
ple frames at the same level. In experiments, we mainly
construct a grid-like frameset from 16 original frames (i.e.,
scaling factors w = h = 4) to take the computational effi-
ciency and promising performance.

Whereas the parallel adapter is used in the spatial path,
we sequentially append adapters to the top of MHA and MLP
layers in each transformer block. Formally, temporal adap-
tation in the l-th block can be described as:

zTP
l = hTP

l−1 + Adapter (MHA (LN (hTP
l−1))),

hTP
l = zTP

l + Adapter (MLP (LN (zTP
l ))),

(9)

(a) DUALPATH w/o TA (b) DUALPATH w/ TA

Figure 4. Visualization of attention maps (a) without temporal
adaptation (TA) and (b) with temporal adaptation for the action
’Spinning [something] that quickly stops spinning’ in SSv2 [23].

where hTP
0 = [xTP

g {[CLS]} ,XTP
g ] + pTP. Similar to spa-

tial adaptation, a global temporal representation yTP can be
derived by averaging the set of the temporal [CLS] tokens
from the final transformer block, i.e.,

yTP =
1

TG

TG∑
g=1

xTP
g {[CLS]}. (10)

For the final prediction, we concatenate the global spatial
and temporal representations and feed them into the classi-
fier with GeLU activation [29] between two FC layers.

4.3. Does a grid-like frameset really help to encode
temporal context?

This work presents a new standpoint to perform video
action recognition with the pretrained image transformer by
transforming multiple frames into a unified grid-like frame-
set. However, it is still questionable whether the temporal
path of DUALPATH can really capture the temporal con-
text of videos. In this section, we provide some qualita-
tive examples of the attention map. To validate the ability
of precise temporal modeling, we sample videos from the
SSv2 [23] dataset. Following [50], we depict the attention
map of xTP

g {[CLS]} from the final transformer block of the
temporal path. As shown in Fig. 4, the model with the tem-
poral adaptation (TA) of DUALPATH tends to concentrate
on action-related regions, contrary to the model without TA
that focuses on the irrelevant background. This result sug-
gests that the temporal adaptation of DUALPATH strength-
ens the temporal modeling ability of the image model. More
examples are shown in Fig. A1 of Appendix.

5. Experiment
5.1. Evaluation setup
Datasets. We evaluate the proposed method on four stan-
dard action recognition datasets, including the Kinetics-
400 (K400) [38], HMDB51 [39], Something-something-v2
(SSv2) [23], and Diving-48 [42].
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Method & Arch. Pretrain
Model

# Params
Trainable
# Params

GFLOPs R@1 R@5 Views

Full-tuning
SlowFast+NL [21] - 60M 60M 7020 79.8 93.9 16×3×10
MViT-B [18] - 37M 37M 4095 81.2 95.1 64×3×3
UniFormer-B [40] IN-1K 50M 50M 3108 83.0 95.4 32×4×3
TimeSformer-L [7] IN-21K 121M 121M 7140 80.7 94.7 64×1×3
ViViT-L/16×2 FE [1] IN-1K 311M 311M 3980 80.6 92.7 32×1×1
VideoSwin-L [47] IN-21K 197M 197M 7248 83.1 95.9 32×4×3
MViTv2-L [43] IN-21K 218M 218M 42420 86.1 97.0 32×3×5
MTV-L [76] JFT 876M 876M 18050 84.3 96.3 32×4×3
TokenLearner-L/10 [57] JFT 450M 450M 48912 85.4 96.3 64×4×3
ActionCLIP [68] CLIP 142M 142M 16890 83.8 97.1 32×10×3
X-CLIP-L/14 [48] CLIP 420M 420M 7890 87.1 97.6 8×4×3

Parameter Efficient Tuning
EVL [45] w/ ViT-L/14 CLIP 368M 59M 8088 87.3 - 32×3×1
ST-Adapter [50] w/ ViT-B/16 CLIP 93M 7M 1821 82.7 96.2 32×3×1
DUALPATH w/ ViT-B/16 CLIP 96M 10M 710 85.4 97.1 32×3×1
DUALPATH w/ ViT-L/14 CLIP 330M 27M 1868 87.7 97.8 32×3×1

Table 1. Performance comparisons for action recognition on the Kinetics-400 [38] dataset. Note that Views = #frames × #clips × #spatial.

• Kinetics-400 (K400) contains about 240K training
videos and 20K validation videos for 400 human ac-
tion categories. Each video is trimmed to have a length
of 10 seconds. While the K400 dataset provides a wide
range of categories, they are known to be highly biased
in spatial appearance [59].

• Somthing-something-v2 (SSv2) is a more challeng-
ing dataset since they require strong temporal model-
ing [59]. They contain about 168.9K training videos
and 24.7K validation videos for 174 classes.

• HMDB51 is a small dataset that provides about 7K
videos of 51 action categories. We use all three splits,
each split of which consists of 3570 and 1530 videos
for training and evaluation, respectively. We report the
average accuracy for three splits.

• Diving-48 is a fine-grained diving action dataset. We
use train-test split v2 that contains about 15K train-
ing videos and 2K validation videos of 48 diving ac-
tions. Since the action can not be determined by only
the static representations (e.g. objects or background),
stronger temporal modeling is required for this dataset.

Pretrained image backbone. We employ CLIP pretrained
ViT-B/16 and ViT-L/14 as backbones. The results with
Swin-B [46] are provided in Tab. A2 of the Appendix.

• ViT-B/16 [17] consists of 12 transformer blocks with
86M parameters and takes patches of size 16 × 16 as
inputs.

• ViT-L/14 [17], a larger model than ViT-B/16, contains
24 transformer blocks with 303M parameters. It takes
14× 14 patches as inputs.

Implementation details. For the K400, HMDB51, and
Diving-48 datasets, we uniformly sample 8 frames (i.e.,
Ts = 8) with the sampling interval 8 in the spatial path.
In the temporal path, we uniformly sample 16, 32, and 48
frames with the sampling intervals 4, 2, and 1 to construct
1, 2, and 3 grid-like framesets (i.e., Tg = 1, 2, 3), respec-
tively. For the SSv2 dataset, we sample the same number
of frames as in other datasets, but with a dynamic sampling
interval to cover the whole video. Note that the frames for
the spatial path are the subset of the temporal path frames.
Please refer to more implementation details in Appendix A.

5.2. Comparison with state-of-the-art
In this section, we compare the proposed method with

baselines [11,35,49,50] in Sec. 3 and state-of-the-art video
transformers [1,7,18,40,43,45,47,48,57,68,76] to demon-
strate the effectiveness of the proposed method on four
video action recognition datasets. Note that the number of
frames of the spatial adaptation path of DUALPATH is fixed
to 8 for all experiments, i.e., TS = 8.
Results on Kinetics-400. We report the results evaluated on
K400 [38] in Tab. 1. We first compare the proposed method
with state-of-the-art video models that are pretrained on the
large-scale image dataset and fully finetuned on K400. In
terms of memory and computational efficiency, video mod-
els require a huge number of parameters (∼450M [57]) and
computations (∼48912 GFLOPs [57]). On the other hand,
we require only 10M trainable parameters which are newly
stored, and 710 GFLOPs for inference using 32 frames with
ViT-B/16 [17] backbone. Compared to X-CLIP-L/14 [48]
which leverages the additional text branch, our DUALPATH
achieves state-of-the-art performance with ViT-L/14 back-
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Method & Arch. Pretrain
Model

#Params
Trainable
#Params

GFLOPs R@1 R@5 Views

Full-tuning
Full-tuning ViT-B/16 [17] CLIP 86M 86M 419 44.0 77.0 8×1×3
Full-tuning ViT-L/14 [17] CLIP 303M 303M 1941 48.7 77.5 8×1×3
TimeSformer-L [7] IN-21K 121M 121M 7140 62.4 - 64×1×3
MTV-B [76] IN-21K 310M 310M 4790 67.6 90.4 32×4×3
MViT-B [18] K400 37M 37M 510 67.1 90.8 32×1×3
MViTv2-B [43] K400 51M 51M 675 70.5 92.7 40×1×3
ViViT-L/16×2 [1] IN-21K/K400 311M 311M 11892 65.4 89.8 16×4×3
VideoSwin-B [47] IN-21K/K400 89M 89M 963 69.6 92.7 32×1×1
Omnivore [22] IN-21K/K400 - - - 71.4 93.5 32×1×3
MViTv2-B [43] IN-21K/K400 213M 213M 8484 73.3 94.1 32×1×3
UniFormer-B [40] IN-21K/K600 50M 50M 777 71.2 92.8 32×1×3

Parameter Efficient Tuning
VideoPrompt∗ [37] w/ ViT-B/16 CLIP 92M 6M 537 31.0 60.3 8×1×3
VPT [35] w/ ViT-B/16 CLIP 92M 6M 537 36.2 61.1 8×1×3
AdaptFormer [11] w/ ViT-B/16 CLIP 94M 8M 544 51.3 70.6 8×1×3
Pro-tuning [49] w/ ViT-B/16 CLIP 95M 9M 538 50.8 69.9 8×1×3
EVL [45] w/ ViT-L/14 CLIP 484M 175M 9641 66.7 - 32×1×3
ST-Adapter [50] w/ ViT-B/16 CLIP 97M 11M 1955 69.5 92.6 32×3×1
DUALPATH w/ ViT-B/16 CLIP 99M 13M 642 69.6 92.5 16×1×3
DUALPATH w/ ViT-B/16 CLIP 99M 13M 716 70.3 92.9 32×1×3
DUALPATH w/ ViT-B/16 CLIP 99M 13M 791 71.2 93.2 48×1×3
DUALPATH w/ ViT-L/14 CLIP 336M 33M 1713 70.2 92.7 16×1×3
DUALPATH w/ ViT-L/14 CLIP 336M 33M 1932 71.4 93.4 32×1×3
DUALPATH w/ ViT-L/14 CLIP 336M 33M 2151 72.2 93.7 48×1×3

Table 2. Performance comparisons for action recognition on the SSv2 [23] dataset. Note that we reproduce VideoPrompt [37] without the
additional text branch for fair comparison (denoting with ∗).

bone. The comparisons with parameter-efficient tuning
methods [45,50] show that our DUALPATH achieves higher
performance while requiring much lower burdens in com-
putations under the same conditions.
Results on Something-Something-v2. We present the per-
formance comparisons on SSv2 [23] in Tab. 2. The re-
sults show that our DUALPATH with ViT-B/16 achieves
comparable or better performance than the prior supervised
video models [1, 7, 18, 76], requiring a much smaller num-
ber of trainable parameters and GFLOPs. Our DUAL-
PATH with ViT-L/14 shows more competitive performance,
outperforming most prior works [22, 40, 43]. The base-
lines [11, 35, 37, 49], which have relatively weak tempo-
ral modeling ability, show significantly poor performance,
implying that strong temporal modeling is mandatory for
the SSv2 dataset. The comparisons to the CLIP pretrained
PET approaches [45,50] with ViT-B/16 demonstrate the ef-
fectiveness and efficiency of DUALPATH, achieving higher
performance (70.3 vs 69.5 [50]) with significantly low com-
putations (716 vs 9641 [45] GFLOPs) using 32 frames.
Thanks to the extreme computational efficiency, our DU-
ALPATH comprises more competitive performance using 48
frames (TG = 3) with low computation requirements.
Results on HMDB51. In Tab. 3, we compare the re-

Method & Arch. Classifier Params HMDB51

Full-tuning w/ ViT-B/16 [17] Lin. 86M 59.4
Linear w/ ViT-B/16 Lin. 0.1M 61.2
VPT [35] w/ ViT-B/16 Trans. 7M 62.4
AdaptFormer [11] w/ ViT-B/16 Trans. 8M 63.7
Pro-tuning [49] w/ ViT-B/16 Trans. 9M 63.3
VideoPrompt [37] w/ ViT-B/16 Trans. 6M 66.4
ST-Adapter∗ [50] w/ ViT-B/16 Lin. 7M 65.9
DUALPATH w/ ViT-B/16 MLPs. 10M 75.6

Table 3. Performance comparisons for action recognition on the
HMDB51 [39] dataset with the CLIP pretrained ViT-B/16 [53].
We report the type of classifier and the number of learnable pa-
rameters for baselines and ours. Lin. and Trans. denote the linear
classifier and temporal transformer, respectively. Our DUALPATH

uses two MLP layers as the classifier. Note that we reproduce ST-
Adapter [50] for fair comparison in terms of the pretrained dataset
(denoting with ∗).

sults with baselines [11, 35, 37, 49, 50] on HMDB51 [39]
that dominantly requires strong spatial modeling for action
recognition. Surprisingly, our DUALPATH significantly out-
performs baselines by large margins. This result demon-
strates DUALPATH fully capitalizes on the exceptional spa-
tial modeling ability of the pretrained image model for ac-
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Method & Arch. Pretrain Params Diving48

Supervised
TimeSformer-L [7] IN-21K 121M 81.0
VideoSwin-B [47] IN-21K 88M 81.9
SIFAR-B-14 [19] IN-21K 87M 87.3
ORViT [30] IN-21K 160M 88.0

Parameter Efficient Tuning
DUALPATH w/ ViT-B/16 CLIP 10M 88.7

Table 4. Performance comparisons for action recognition on the
Diving-48 [42] dataset. We report the pretrained dataset, the num-
ber of learnable parameters (M) for each method, and the accuracy.

tion recognition. The comparison with VideoPrompt [37]
that uses the additional text branch demonstrates the effec-
tiveness of DUALPATH, improving 9.2% performance im-
provement.
Results on Diving-48. Tab. 4 shows performance compar-
isons on Diving-48 [42] that requires fine-grained action
recognition. Our DUALPATH consistently outperforms all
video models with only 10M trainable parameters. Par-
ticularly, we obtain a better performance than ORViT [30]
which utilizes the additional tracking model. It indicates the
utility of DUALPATH in fine-grained action recognition and
the superiority of temporal modeling of DUALPATH.

5.3. Components analysis
Impact of dual-path. In the top panel of Tab. 5, we train the
model by ablating each path and evaluate the performance
on SSv2. Without the temporal path (DUALPATH w/o TA),
the performance is significantly degraded despite using a
larger number of frames (TS = 16 vs 8). Without the spa-
tial path (DUALPATH w/o SA), we can obtain slightly bet-
ter performance than the result without the temporal adap-
tation. Since the SSv2 requires strong temporal modeling,
we speculate that two ablation studies show comparison re-
sults. However, it still shows a substantial performance gap
compared to the full model of DUALPATH, demonstrating
the effectiveness of the dual-path design.
Frame rates in spatial path. In the middle panel of Tab. 5,
we analyze the effect according to the number of frames
used in the spatial path. The temporal path identically uses
16 frames to construct a grid-like frameset, and frames used
in the spatial path are sampled from such 16 frames. A large
number of TS slightly improves performance, however, re-
quires more computational costs. Considering the perfor-
mance improvement compared to the computation increase,
we mainly set TS to 8.
Number of frames in grid. We scale down original frames
with scaling factors w and h to construct grid-like frame-
sets. These factors thus determine the number of frames
the model observes within one grid-like frameset. While a
large value of factors increases the temporal resolution, the
information of each frame is inevitably reduced. For exam-

Method Params GFLOPs SSv2 Views

Effectiveness of Each Path
DUALPATH w/o TA 5M 1016 53.7 16×3×1
DUALPATH w/o SA 8M 134 55.1 16×3×1

Effectiveness of TS

TS = 8 13M 642 69.3 16×3×1
TS = 12 13M 896 69.6 16×3×1
TS = 16 13M 1150 69.8 16×3×1

Effectiveness of scaling factors
w=h=2 (TG=16) 13M 1752 66.4 64×3×1
w=h=4 (TG=4) 13M 864 71.8 64×3×1
w=h=8 (TG=1) 13M 642 61.5 64×3×1

DUALPATH 13M 642 69.3 16×3×1

Table 5. Performance with respect to variants of the components.

ple, the original frame is scaled down to the size of 28× 28
with w =h= 8. Meanwhile, a small value of factors retains
richer information from the original frame, however, makes
the temporal resolution small. As shown in the bottom panel
of Tab. 5, we attain the best performance with w =h= 4.

6. Conclusion and Future Work
In this paper, we have introduced the novel image-to-

video transfer learning approach, DUALPATH. By incorpo-
rating a dual-path design into image transformers, DUAL-
PATH adapts image models to the video task (i.e., action
recognition) with a small number of trainable parameters.
The spatial path adaptation strengthens the inherent spatial
context modeling of the pretrained image transformers for
video data. The temporal path adaptation transforms mul-
tiple frames into a unified grid-like frameset, enabling the
image model to capture relationships between frames. We
appropriately employ the bottlenecked adapters in each path
to adapt the pretrained features to target video data. In addi-
tion, we present several baselines transforming recent PETL
approaches [11, 35, 49] for image-to-video adaptation. Ex-
perimental results demonstrated the superiority of the dual-
path design and the grid-like frameset prompting, outper-
forming several baselines and supervised video models.

There are many possible directions for future work, en-
compassing cross-domain transfer learning. While we have
explored image-to-video transfer learning, large foundation
vision-language models are available. It would also be in-
teresting to expand the superior pretrained 2D knowledge
to 3D spatial modeling [71]. We hope our study will foster
research and provide a foundation for cross-domain transfer
learning.
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