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Abstract

Transformers have shown superior performance on var-
ious computer vision tasks with their capabilities to cap-
ture long-range dependencies. Despite the success, it
is challenging to directly apply Transformers on point
clouds due to their quadratic cost in the number of points.
In this paper, we present a Self-Positioning point-based
Transformer (SPoTr), which is designed to capture both
local and global shape contexts with reduced complex-
ity. Specifically, this architecture consists of local self-
attention and self-positioning point-based global cross-
attention. The self-positioning points, adaptively located
based on the input shape, consider both spatial and seman-
tic information with disentangled attention to improve ex-
pressive power. With the self-positioning points, we propose
a novel global cross-attention mechanism for point clouds,
which improves the scalability of global self-attention by
allowing the attention module to compute attention weights
with only a small set of self-positioning points. Experiments
show the effectiveness of SPoTr on three point cloud tasks
such as shape classification, part segmentation, and scene
segmentation. In particular, our proposed model achieves
an accuracy gain of 2.6% over the previous best models on
shape classification with ScanObjectNN. We also provide
qualitative analyses to demonstrate the interpretability of
self-positioning points. The code of SPoTr is available at
https://github.com/mlvlab/SPoTr.

1. Introduction

Point clouds have been widely applied in various areas
such as autonomous driving, robotics, and augmented re-
ality. Since the point cloud is an unordered set of points
with irregular structures, adopting convolutional neural net-
works (CNNs) on point clouds is challenging. Some works
devoted effort to transforming point clouds into regular

*First two authors have equal contribution.
Tis the corresponding author.
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Figure 1. Comparison of attention methods. (a) Local attention,
(b) Global attention, (c) Self-positioning point-based attention (SP
attention).

structures, such as projection to multi-view images [I, 2]
and voxelization [3, 4]. Others have tried to preserve the
structure and design a convolution on the point space [5—

]. However, the ability to capture long-range dependen-
cies is limited in most convolution-based approaches, while
it is crucial to understand global shape context, especially
with real-world data [12].

Transformer [|3] tackled the long-range dependency is-
sue in natural language processing and later it has been
actively extended to 2D image processing [!4—17]. Early
works tried to replace convolutional layers with self-
attention [ 14, 18-22], but they struggled with the quadratic
computational cost of self-attention to the number of pix-
els. To mitigate the scalability issue, self-attention in lo-
cal neighborhoods [15, 1 7] or approximating a self-attention
with a reduced set of queries or keys [106,23,24] have been
studied. For point clouds, Point Transformer [25] applies a
local attention operation (Figure 1a) and PointASNL [26]
employs a global attention module in a non-local man-
ner (Figure 1b). Still, in point clouds, Transformer, which
tackles both long-range dependency and scalability issues,
has been less explored.

In this paper, we propose Self-Positioning point-based
Transformer (SPoTr) to capture both local and global shape
contexts with reduced complexity. SPoTr block consists of
two attention modules: (i) local points attention (LPA) to
learn local structures and (ii) self-positioning point-based
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attention (SPA) to embrace global information via self-
positioning points. SPA performs global attention by com-
puting attention weights with only a small set of Self-
Positioning points (SP points) instead of the whole input
points different from the standard global attention as illus-
trated in Figure lc. Specifically, SP points are adaptively
located based on the input shape to cover the overall shape
with only a small set of points. SP points learn its repre-
sentation considering both spatial and semantic proximity
through disentangled attention. Then, SPA non-locally dis-
tributes information of SP points to each input point. We
also show that our SPoTr block generalizes set abstrac-
tion [27] with improved expressive power.

Further, we propose SPoTr architecture for standard
point cloud tasks (e.g., shape classification and semantic
segmentation). We conduct extensive experiments with
three datasets: ScanObjectNN [12], SN-Part [28], and
S3DIS [29]. Our proposed method shows its effective-
ness on all datasets compared to other attention-based meth-
ods. In particular, our architecture achieves an accu-
racy improvement of 2.6% over the previous best model
in shape classification with a real-world dataset ScanOb-
jectNN. Additionally, we demonstrate the effectiveness
and interpretability of self-positioning point-based attention
with qualitative analyses.

The contribution of our paper can be summarized as the
following:

* We design a novel Transformer architecture (SPoTr) to
tackle the long-range dependency issues and the scala-
bility issue of Transformer for point clouds.

* We propose a global cross-attention mechanism with
flexible self-positioning points (SPA). SPA aggregates
information on a few self-positioning points via disen-
tangled attention and non-locally distributes informa-
tion to semantically related points.

* SPoTr achieves the best performance on three point
cloud benchmark datasets (SONN, SN-Part, and
S3DIS) against strong baselines.

* Our qualitative analyses show the effectiveness and in-
terpretability of SPA.

2. Related works

Deep learning on point clouds. The success of CNNs
has encouraged adapting CNNs to operate on point clouds
rather than using hand-designed features. Early approaches
aim to transform the unstructured point cloud data into a
structured form for directly applying convolution. These
include [1, 30-34], where they project 3D point clouds to
2D multi-view images for applying 2D convolution. Other
approaches [3, 4, 35] convert point clouds to voxel grids,

then apply 3D convolution. However, both approaches have
difficulty in preserving intrinsic geometries of point clouds.
To address this issue, PointNet [36] directly processes point
clouds with multi-layer perceptrons and a max-pooling
function. However, it blindly aggregates all points without
considering local information. Thus, PointNet++ [27] pro-
poses utilizing local information through set abstraction and
local grouping. For further understanding of local contexts,
recent works [6—11,37—-40] have proposed explicit convolu-
tion kernels on the point space. KPConv [6] has applied de-
formable convolution [41,42] to capture local information
of point clouds. PointNeXt [43] has revisited PointNet++
by fully exploring its potential with improved training and
augmentation schemes. Although the representation power
has been improved by capturing local information, the abil-
ity to capture long-range dependencies is limited. SPoTr
is the Transformer for point clouds equipped with global
cross-attention to capture long-range dependencies.

Attention-based methods on 2D images. Following the
success of self-attention and Transformers [13] in natu-
ral language understanding, many efforts have been made
in the computer vision to replace convolution layers with
self-attention layers [14, 18-22]. Despite the success, self-
attention requires the quadratic computational cost with re-
spect to the input image size. To address the scalability is-
sue, several works adopt self-attention within local neigh-
borhoods [15, 17]. Swin Transformer [15] utilizes non-
overlapping windows and performs self-attention within
each local window to get linear computational complexity
in the number of input pixels. Other works explore global
attention mechanisms with a small set of queries or keys to
reduce complexity [16,23,24]. Twins [16] applies atten-
tion with a small set of representatives. Inspired by recent
works, we suggest an efficient global cross-attention with
only a small set of self-positioning points for point clouds.

Attention-based methods on point clouds. Recently,
[25,26,44-50] have adopted attention operations for point
cloud processing. PointASNL [26] leverages the attention
operation to non-locally influence entire points. RPNet [47]
proposes attention-based modules for capturing local se-
mantic and positional relations. PointTransformer [25]
performs self-attention only within local neighborhoods.
CloudTransformer [48] inspired by spatial transformer [51],
uses an attention mechanism to transform the point cloud
into a voxel grid for convolutional operation. Although
these works have proven to be effective, most works have
neglected the capability of Transformers to capture long-
range dependencies due to their quadratic computational
cost to the number of input points. In this paper, we aim
to design Transformer architecture to capture both local and
global information with a modest computational cost.
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3. Method

The goal of our framework SPoTr is to learn point rep-
resentations for various point cloud processing tasks with
a Transformer architecture using self-positioning points.
First, we shortly describe the background regarding the
point-based approaches including PointNet++ and Point
Transformer (Section 3.1). Second, we propose self-
positioning point-based attention to efficiently capture the
global context (Section 3.2). Third, we delineate the SPoTr
block, which compromises both global cross-attention and
local self-attention, and discuss the relation with a popular
point-based network (Section 3.3). Finally, we present the
overall architecture of SPoTr, which is composed of multi-
ple SPoTr blocks, for shape classification and segmentation
tasks (Section 3.4).

3.1. Backgrounds

In this subsection, we briefly revisit the point-based
approaches such as PointNet++ [27] and Point Trans-
former [25].

PointNet++ [27] captures local shape information
through set abstraction and local grouping. Given that a
point set P = {xi}fil, where z; is the position of the
i-th point, and its corresponding feature f;, PointNet++
proposed local set abstraction as follows:

fi = A{M([f}; 0i5]) , Vi € Gi}), ¢))

where M is the mapping function (e.g., MLP), A is the ag-
gregation function such as max-pooling, and G; is the index
set of the local group centered on the i-th point.

Point Transformer [25] leverages self-attention opera-
tions [52] to represent local point groups. Similar to Point-
Net++, Point Transformer leverages local grouping to rep-
resent local point groups with a self-attention mechanism as
follows:

fl = Z A © (Wit + Ay),
J€Gi 2)
A;; = SoftMax (M (Waf; — Wif; + A;j)),

where ® denotes element-wise multiplication, Wy, Wy,
W3 are learnable weight matrices, M is a mapping func-
tion such as multi-layer perceptron, and A is a positional
encoding. Point Transformer [25] has shown the advantage
of the attention mechanism on point clouds only with ‘local
attention’ since computing the global attention on whole in-
put points is almost infeasible on large-scale data.

3.2. Self-positioning point-based attention

We propose an efficient global attention called self-
positioning point-based attention (SPA) to resolve the in-
herent limitation of Transformer for point clouds (e.g., scal-
ability) as illustrated in Figure 2. Herein, SPA computes
attention weights with only a small set of self-positioning
points named SP points. Since the overall shape context is
captured by only a small number of SP points, the position
of the SP points d, needs to be flexible, so that the points be-
come sufficiently representative of local part shapes. With
our method, the SP points are adaptively located according
to the input shape (see Section 4.3 for visualizations). Sim-
ilar to the offsets in deformable convolutional neural net-
works [41] calculated with the feature of each pixel, we
calculate 0, with its latent vector z, and feature f; of all
input points Vz; € P, where P is the set of points. We
adopt adaptive interpolation and compute the positions of
SP points as

5y = Z SoftMax (f; z,) z;. 3)

Hence, SP points are always located nearby input points and
precisely they stay within the convex hull of input points.

Then, SPA, equipped with SP points, performs global
cross-attention in two steps: aggregation and distribution.
At the aggregation step, SPA aggregates the features from
all input points considering both spatial and semantic prox-
imity. It can be written as

Vo= g0 2:) hizefi) £ )

where g, h are spatial and semantic kernel functions, respec-
tively. For the spatial kernel function g, we use the Radial
Basis Function (RBF) as

9 (65, ;) = _exp (—7 165 — inIQ) , (5)

where v € R, is a bandwidth that adjusts the size of re-
ceptive fields. If v has a higher value, the size of receptive
fields gets smaller. For the semantic kernel function h, we
utilize the attention-based kernel as below:

exp (fiT zs)
5 e (6 2)

Only considering the spatial information can cause infor-
mation smoothing, i.e., the information from neighboring
points with different semantics can reduce the descriptive
power. Thus, we consider both spatial proximity and se-
mantic proximity through two separate kernels h and g.
These separate kernels can be interpreted as disentangled
attention. The disentangled attention, which works sim-
ilarly to the bilateral filter, allows the SP points to have

h(zs,£;) = (6)
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Figure 2. Illustration of self-positioning point-based attention (SPA). Given input points x and their corresponding features f, self-
positioning points (SP points) § are adaptively placed through the learnable latent z. SP points aggregate features considering both spatial
and semantic proximity and constructs ¥ via disentangled attention. Then, SPA performs channel-wise point attention (CWPA) between

input points and SP points to generate the output features 3™,

greater descriptive power. Further analyses on how it pro-
cesses, can be seen in Section 4.3. Finally, at the distri-
bution step, SPA performs the cross-attention between SP
points and input points as follows:

(57 = CWPA (w0, £, (035, (.} ) . )

where f3A is the final output of the SPA, CWPA is channel-
wise point attention. CWPA will be described next.

Channel-wise Point Attention. Channel-Wise Point At-
tention (CWPA) computes attention weight between query
and key points for each channel, different from the standard
attention that generates the same attention weight across
channels. CWPA is formulated as follows:

CWPA (4, £, {okbyeay, - (B bicay, )
= > Aok O M(R(E B); bar])

k€ Qhey

®)

where x4, 7), € R? are the positions of the query/key points
and £, f, € R are their corresponding features. €y, de-
notes the set of key points. To take into account the relative
information of contexts and positions, we use ¢, and R ().
®qr is a normalized relative position of the key point based
on the query point, R is the relation function between query
and key feature (e.g., f; — f;;) and M indicates the mapping
function. The channel-wise point attention A, ;.. € R be-

tween the query and key point is defined as follows:

_ exp (M ([R'(fq, i ); dar]/7).)
whe Zk/Eley exp (MI ([R/(fqa fk’); ¢qk’]/7)c) 7
©)
where c is the index of channel, and 7 denotes tempera-
ture. M’ and R’ are the mapping function and the rela-
tion function, respectively. In our implementation, we use
R’ = f,—f};, same as R. By adopting the proposed channel-
wise point attention, CWPA can learn more powerful and
flexible representations compared to standard attention.

A

3.3. Self-positioning point-based Transformer

We now propose the SPoTr block that utilizes self-
positioning point-based attention (SPA) with local point
attention (LPA). By combining LPA and SPA, it captures
not only local and short-distance information but also long-
distance and global information.

Local points attention (LPA). We adopt local points at-
tention (LPA) defined on a local group to learn local shape
context. A local point group consists of neighbors in ball
query centered on an anchor point z;. The attention for each
local point group G; and points {x;|Vj € G;} is defined as

(9% = CWPA (w1, £, {2} g, {B)jeg, ) (10)
where f; is the feature vector of point z;, - is an output
feature vector of LPA. We adopt channel-wise point atten-
tion operation (CWPA) same as SPA.
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Figure 3. Overall Architecture of SPoTr. For classification (bottom), four SPoTr blocks run consecutively, followed by a max-pooling
and a multi-layer perceptron. For segmentation (top), a U-net style architecture is adopted with SPoTr blocks for downsampling and feature

propagation for upsampling, followed by a multi-layer perceptron.

SPoTr block. We construct a SPoTr block by combining
the local points attention (LPA) module and self-positioning
point-based attention (SPA) module to capture local and
global information simultaneously. As shown in Fig-
ure 3 (bottom right), the SPoTr block is defined as follows:
. (11)
where « is a learnable parameter that softly selects the rep-
resentations generated by self-positioning point-based at-
tention and local points attention. Finally, LPA and MLP
with batch normalization and the residual connection are
applied to extract point-wise high-level representations.

fi=a £+ (1-aq)

Connection between SPoTr block and Set abstraction.
We show the superiority of the SPoTr block by discussing
it with set abstraction in PointNet++ [27].

Remark 1 A SPoTr block with proper o, M, M’ , R, R’
can express set abstraction.

When the value of 7 is sufficiently low, the function M’ is
the same as M, o = 0, and R(f,, fx) = R'(f;,fx) = fi,
the channel-wise point attention becomes equivalent to the
set abstraction. In this setting, the attention weight between
the query point and k-th key point on c-th channel becomes
lifk = ailgéxflzax M ([fx; dgr]) ;4 - Otherwise, the atten-
k
tion score is 0. It means that the attention only activates the
maximum channels alike a max-pooling operation. There-
fore, the SPoTr block can play a role as a max-pooling op-

eration following the mapping function, which is the set ab-

straction. This fact supports the improved expressive power
of SPoTr on point cloud analysis.

3.4. SPoTr architectures

We design a Transformer-based architecture called
SPoTr for point cloud tasks as illustrated in Figure 3.

Classification. For the shape classification task, we build
our Transformer encoder by stacking the SPoTr blocks de-
scribed in Section 3.3. To increase the representational
power, we first apply an MLP before operating the atten-
tion blocks following [25]. Then, the SPoTr blocks are se-
quentially applied on sampled points, which are sampled
through the farthest point sampling (FPS). In shape classi-
fication, we set [ = 0 for the SPoTr block since we em-
pirically found that it is enough in shape classification task.
Besides, the sampling rates are 1/4 for every stage. We use
the ball query that selects points within a radius (an upper
limit of the number of neighborhoods is set in implementa-
tion) to generate a local point group G; centered at point x;
following [27]. After the last stage, the features are aggre-
gated by a max-pooling function and processed by an MLP.

Segmentation. The encoder for semantic segmentation
contains the SPoTr blocks and FPS. Following previous
studies [27], we apply a U-net designed architecture, which
contains the feature propagation layers and the SPoTr
blocks for dense prediction. Same to the classification, we
use a ball query to generate a local group. The outputs of
the final block are processed by an MLP. More details on
SPoTr architectures are in the supplement.
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Methods ‘ Year ‘ mAcc OA Methods ‘ Year ‘ cls. mloU ins. mloU
PointNet [36] 2017 634 68.2 PointNet [36] 2017 80.4 83.7
PointNet++ [27] 2017 75.4 77.9 PointNet++ [27] 2017 81.9 85.1
SpiderCNN [9] 2018 69.8 73.7 PointCNN [7] 2018 84.6 86.1
PointCNN [7] 2018 75.1 78.5 DGCNN [53] 2019 82.3 85.1
DGCNN [53] 2019 73.6 78.1 RSCNN [5] 2019 84.0 86.2
DRNet [54] 2021 78.0 80.3 KPConv [6] 2019 85.1 86.4
GBNet [55] 2021 77.8 80.5 PointConv [10] 2019 82.8 85.7
SimpleView [33] 2021 - 80.5 PointASNL [26] 2020 - 86.1
PRA-Net [56] 2021 77.9 81.0 PCT [46] 2021 - 86.4
MVTN [34] 2021 - 82.8 PAConv [11] 2021 84.6 86.1
CT [48] 2021 83.1 85.5 AdaptConv [38] 2021 83.4 86.4
PointMLP [39] 2022 84.4 85.7 PointTransformer [25] | 2021 83.7 86.6
RepSurf-U [40] 2022 83.1 86.0 CurveNet [50] 2021 - 86.8
PointNeXt [43] 2022 | 85.8+0.6 87.7+0.4 PointMLP [39] 2022 84.6 86.1
SPoTr ‘ 2023 ‘ 6.8 8.6 PointNeXt [43] 2022 | 852 +£0.1 87.0+0.1
SPoTr ‘ 2023 ‘ 854 87.2

Table 1. Shape classification results on PB_T50_RS in SONN.
mAcc is the mean of class accuracy and OA is the overall accuracy.

4. Experiments

In this section, we demonstrate the effectiveness of
SPoTr and provide quantitative and qualitative results for
further analyses. First, we conduct shape classification and
semantic segmentation (Section 4.1). We also provide abla-
tion studies and complexity analysis of SPoTr (Section 4.2).
Lastly, we provide visualizations to better understand how
SPA behaves (Section 4.3). Implementation details are
available in the supplement.

4.1. Shape classification and semantic segmentation

Shape Classification. For the shape classification, we
validate SPoTr on a real-world dataset ScanObjectNN
(SONN) [12]. SONN has 2,902 objects categorized into 15
classes from SceneNN [57] and ScanNet [58]. Among di-
verse variants of SONN, we use PB_T50_RS (SONN_PB),
which is the most challenging version with random pertur-
bation and contains 14,510 objects in total. We follow the
official split of [12], where they divide SONN into 80% for
training and 20% for evaluation. Also, we sample 1,024
points for training and evaluating the models.

Table 1 shows that SPoTr outperforms all baselines with
the mean of class accuracy (mAcc) of 86.8% and overall
accuracy (OA) of 88.6% (+1.0% mAcc, +0.9% OA). This
result shows that capturing long-range context is important
for recognizing 3D shapes in real-world datasets.

Part Segmentation. For part segmentation, we use SN-
Part [28, 60], which is a synthetic dataset with 16,881
shapes from 16 categories with 50 part labels. We follow
the split used in [36], where 14,006 samples are for training

Table 2. Part segmentation results on SN-Part. ins. mloU is the
mean of instance IoU. cls. mloU is the mean of the class IoU.

Methods ‘ Year ‘ OA mAcc  mloU
PointNet [36] 2017 - - 41.1
PointCNN [7] 2018 85.9 63.9 57.3
PointWeb [59] 2019 87.0 66.6 60.3
KPConv [6] 2019 - 72.8 67.1
PCT [46] 2021 - 67.7 61.3
CT [48] 2021 - - 67.9
PointTransformer [25] | 2021 90.8 - 70.4
RepSurf-U [40] 2022 90.2 76.0 68.9
PointNeXt [43] 2022190.6 £0.1 - 705+0.3
SPoTr 12023 907 764 1708

Table 3. Semantic segmentation results on S3DIS. OA is the
overall accuracy, mAcc is the mean of class accuracy, and mloU is
the mean of instance IoU.

and 2,874 samples are for validation. On each shape, 2,048
points are randomly sampled.

The results are reported in Table 2, where we evaluate the
performance with the mean of instance IoU (ins. mIoU) and
class IoU (cls. mloU). Following previous works [5, 11,50],
we report the results with a multi-scale inference setting.
Although the performance in SN-Part is quite saturated,
SPoTr achieves the best performance 87.2% with consid-
erable improvements (+0.2% mloU).

Scene Segmentation. For comparison with previous
methods [6,25,36,49] on scene segmentation, we validate
SPoTr on the widely used benchmark dataset S3DIS [29].
S3DIS is the large-scale dataset containing 271 rooms from
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Method g h SP|OA
w/o SPA (baseline) 87.9
w/o self-positioning v v 87.7
w/o disentangled attention | v’ v | 88.2
SPoTr (ours) v v Vv | 88.6

Table 4. Ablations on SONN_PB. g: spatial kernel, h: semantic
kernel, SP: self-positioning points. OA is the overall accuracy.

Attention type | Semantic rel. R | OA

Standard Att. - 86.1
CWPA i 88.1
CWPA f, + £ 86.4
CWPA f, O f; 85.4
CWPA f, — £ 88.6

Table 5. Performance comparisons of different attention types
and semantic relation R on SONN_PB. Attention types : Stan-
dard Attention in Transformer [13] and channel-wise point atten-
tion (CWPA) with Semantic relation : R(fy, f)

6 indoor areas with 13 semantic categories. In our ex-
periments, we largely follow the settings of PointTrans-
former [25] and consider Area-5 as the test set.

As shown in Table 3, SPoTr outperforms all previ-
ous methods in every metric (i.e., overall accuracy (OA),
mean of class accuracy (mAcc), and mean of instance loU
(mloU)). The superior performance over previous Trans-
former architecture [25] (+0.4% mloU) proves the impor-
tance of long-range dependency in the semantic segmenta-
tion as well as the shape classification.

4.2. Quantitative analysis

Ablation studies. We explore how self-positioning po-
sitions (SP) and disentangled attention contribute to SPA.
Table 4 shows the final results on SONN, where the base-
line (w/o SPA) learns only with local point attention. In the
case of w/o self-positioning, we use FPS to randomly select
a small set of points for cross-attention, and for w/o dis-
entangled attention, we only adopt the spatial kernel func-
tion g. Our model with all the components of SPA achieves
the best performance of 88.6% in overall accuracy. This
superior performance verifies that every component is cru-
cial for SPA. In particular, when we use FPS instead of SP,
the performance is even worse than the baseline as over-
all accuracy dropped from 87.9% to 87.7%. This observa-
tion suggests the positions of SP points matter for global
cross-attention. Rather than simple sampling, our learnable
approach successfully locates SP points and makes global
cross-attention effective. Next, with w/o disentangled atten-
tion, the performance gain in OA is minimal (0.3%) over the

Method ‘ Param | FLOPs| Memory| Throughput 1

(M) (G) (GB) (shapes/s)
GSA 1.7 114.0 24.2 17.7
SPA (ours) 1.7 10.8 2.5 281.5

) (-90.5%) (- 89.7%) (x 15.9)

Table 6. Complexity analysis on SN-Part. SPA: self-positioning
point-based attention, GSA: global self-attention.

baseline compared to using disentangled attention (0.7%).
It indicates that disentangled attention improves the descrip-
tive power by filtering semantically irrelevant information.

Attention types and semantic relation R. In Table 5,
we conduct experiments to compare the models with differ-
ent attention types (Standard attention in Transformer [13]
and our CWPA) and semantic relations (R(f,,f;) = fi,
f, + fi, £, © fi,, and £, — ;). The models adopting the
CWPA outperform the model with the standard attention,
which shows that the channel-wise point attention opera-
tion is more powerful to represent point clouds compared to
the standard attention. Furthermore, the results demonstrate
that Sub (f; — f};) is most appropriate to model the semantic
relation between points.

Complexity analysis on SN-Part. We analyze the space
and time complexity to validate the computational effi-
ciency of SPoTr during inference time with a batch size of
8. For a baseline, SPA in SPoTr is replaced by the standard
global self-attention (abbreviated in GSA) with CWPA. For
a comparison with GSA requiring the quadratic complexity,
we inevitably use the variants of SPoTr, where the channel
size of each layer is reduced by x1/4. For space complex-
ity, we measure the number of parameters and total mem-
ory usage, and for time complexity, we measure FLOPs
and throughput performance. Table 6 empirically proves
the efficiency over GSA. For space complexity, GSA shares
a similar number of parameters with SPA but introduces a
large memory usage of 24.2 (GB). Instead, Our SPA only
uses 2.5 (GB) (-89.7%). Also, SPA largely reduces the time
complexity from 114.0 GFLOPS with a throughput of 17.7
(shapes/s) to 10.8 GFLOPS (-90.5%) with a throughput of
281.5 (shapes/s) (x15.9).

4.3. Qualitative analysis

For a deeper understanding of each component in SPA,
such as self-positioning points (SP points) and disentangled
attention, we provide qualitative results in this section. We
use SN-Part for visualizations.

Self-positioning points. As mentioned in Section 3.2, it is
important that SP points are adaptively located considering

21820



s
¢

5 B,

3
£
it
:
53
‘&
¢
i3
(o
38
&

CEL
C@€C€q

Ui
E;K
C ((

8 < A
"3 2 N 1% o 25 ]
< < < < Sl g
[ [ vewv (1
P

%
C@@c

ey
&

Figure 4. Self-positioning points (SP points). SP points are adaptively self-positioned according to each shape. Red points correspond to
specific SP points. Under the same class, the red points are located at semantically similar positions.

Spatial Disentangled Disentangled attention. SPA aggregates feature consid-
Kernel Attention ering spatial proximity as well as semantic proximity via
disentangled attention as introduced in Section 3.2. Figure 5
shows the weights of the spatial kernel ¢ and the effective
receptive field of the disentangled attention g - h. Cyan-
colored points are selected SP points and kernel weights are
illustrated in heatmaps. With only the spatial kernel g, SP
point blindly aggregates the information of neighbor points
inducing irrelevant information from close regions (e.g., a
wing and a body of an airplane are strongly colored in the
second row of the figure). Conversely, with our disentan-
gled attention g - h, the same SP point selectively aggre-
o gates information considering both spatial proximity and
Table *‘&w"gf; THITE g semantic proximity (e.g., the right-wing is only colored in

¥ the figure). The obvious difference suggests disentangled

;‘{&f‘qgw“? attention is crucial for enhancing the descriptive power by
suppressing irrelevant information.

5. Conclusion

In this paper, we propose SPoTr, a Transformer for point
clouds, which captures both local and global shape context

Figure 5. Visual comparison of disentangled attention with a without the quadratic complexity of input points. SPoTr in-
spatial kernel. A spatial kernel (Middle) only considers spatial cludes two attention modules: self-positioning point-based
proximity without considering semantic relevance. Differently, attention (SPA) and local points attention (LPA). SPA is

Disentangled Attention (Right) filters out irrelevant information. a novel global cross-attention, which aggregates informa-

tion via disentangled attention and non-locally distributes
information to entire points. Our experiments show supe-
rior performance across various tasks, including ScanOb-

the input shape. Figure 4 shows that the SP points are adap- JectNN, SN-Part, and S3DIS.

tively located on various samples from different categories.

Interestingly, a specific SP point (colored in red) appears at Acknowledgements. This work was supported by the
a semantically similar place for each category. For exam- MSIT, Korea, under the ICT Creative Consilience program
ple, red dots from airplanes are always near the left-wing. (IITP-2023-2020-0-01819) supervised by the IITP and the
This consistent placement of SP points implies that each SP Virtual Engineering Platform Project (P0022336) of the
point learns to represent semantically similar regions. Ministry of Trade, Industry and Energy (MOTIE), Korea.
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