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Figure 1. We propose simple yet effective feature interpolation methods for training neural radiance fields of dynamic scenes based on tem-
poral interpolation. We provide two different feature vector representations, neural representation (top) and grid representation (bottom),
both of which are the concatenation of static feature vectors and temporally-interpolated dynamic feature vectors. The neural representa-
tion exhibits high-quality rendering performance with small-sized models while the grid representation shows competitive rendering results
with astonishingly fast training speed.

Abstract

Temporal interpolation often plays a crucial role to learn
meaningful representations in dynamic scenes. In this pa-
per, we propose a novel method to train spatiotemporal neu-
ral radiance fields of dynamic scenes based on temporal
interpolation of feature vectors. Two feature interpolation
methods are suggested depending on underlying represen-
tations, neural networks or grids. In the neural representa-
tion, we extract features from space-time inputs via multi-
ple neural network modules and interpolate them based on
time frames. The proposed multi-level feature interpolation
network effectively captures features of both short-term and
long-term time ranges. In the grid representation, space-
time features are learned via four-dimensional hash grids,
which remarkably reduces training time. The grid repre-
sentation shows more than 100× faster training speed than
the previous neural-net-based methods while maintaining

the rendering quality. Concatenating static and dynamic
features and adding a simple smoothness term further im-
prove the performance of our proposed models. Despite the
simplicity of the model architectures, our method achieved
state-of-the-art performance both in rendering quality for
the neural representation and in training speed for the grid
representation.

1. Introduction

3D reconstruction and photo-realistic rendering have
been long-lasting problems in the fields of computer vision
and graphics. Along with the advancements of deep learn-
ing, differentiable rendering [11, 14] or neural rendering,
has emerged to bridge the gap between the two problems.
Recently proposed Neural Radiance Field (NeRF) [18] has
finally unleashed the era of neural rendering. Using NeRF,
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it is able to reconstruct accurate 3D structures from multiple
2D images and to synthesize photo-realistic images from
unseen viewpoints. Tiny neural networks are sufficient to
save and retrieve complex 3D scenes, which can be trained
in a self-supervised manner given 2D images and camera
parameters.

Meanwhile, as our world typically involves dynamic
changes, it is crucial to reconstruct the captured scene
through 4D spatiotemporal space. Since it is often not pos-
sible to capture scenes at different viewpoints simultane-
ously, reconstructing dynamic scenes from images is in-
herently an under-constrained problem. While NeRF was
originally designed to deal with only static scenes, there
have been a few approaches in the literature that extend
NeRF to dynamic scenes [13,22,23,25], which are so called
as dynamic NeRFs. Inspired by the non-rigid structure-
from-motion algorithms [1, 4] that reconstruct 3D struc-
tures of deformable objects, most previous works solved
the under-constrained setting by estimating scene deforma-
tions [21,22,25] or 3D scene flows [5,9,12] for each frame.

However, since the parameters of deformation estima-
tion modules are jointly optimized with NeRF network si-
multaneously, it is questionable that the modules can accu-
rately estimate deformations or scene flows in accordance
with its design principles. In many dynamic scenes, it is
challenging to resolve the ambiguities whether a point was
newly appeared, moved, or changed its color. It is expected
that those ambiguities and deformation estimation can be
separately solved within a single network, but in practice, it
is hard to let the network implicitly learn the separation,
especially for general dynamic scenes without any prior
knowledge of deformation.

On the other hand, grid representations in NeRF train-
ing [7, 19, 24] have grabbed a lot of attentions mainly
due to its fast training speed. Simple trilinear interpola-
tion is enough to fill in the 3D space between grid points.
While the representation can be directly adopted to dynamic
NeRFs together with the warping estimation module [6], it
still requires additional neural networks that affects training
and rendering speed.

Motivated by the aforementioned analyses, we present
a simple yet effective architecture for training dynamic
NeRFs. The key idea in this paper is to apply feature in-
terpolation to the temporal domain instead of using warp-
ing functions or 3D scene flows. While the feature inter-
polation in 2D or 3D space has been thoroughly studied,
to the best of our knowledge, feature interpolation method
in temporal domain for dynamic NeRF has not been pro-
posed yet. We propose two multi-level feature interpolation
methods depending on feature representation which is ei-
ther neural nets or hash grids [19]. Overview of the two
representations, namely the neural representation and the
grid representation, are illustrated in Fig. 1. In addition,

noting that 3D shapes deform smoothly over time in dy-
namic scenes, we additionally introduced a simple smooth-
ness term that encourages feature similarity between the ad-
jacent frames. We let the neural networks or the feature
grids to learn meaningful representations implicitly without
imposing any constraints or restrictions but the smoothness
regularizer, which grants the flexibility to deal with various
types of deformations. Extensive experiments on both syn-
thetic and real-world datasets validate the effectiveness of
the proposed method. We summarized the main contribu-
tions of the proposed method as follows:

• We propose a simple yet effective feature extraction
network that interpolates two feature vectors along the
temporal axis. The proposed interpolation scheme out-
performs existing methods without having a deforma-
tion or flow estimation module.

• We integrate temporal interpolation into hash-grid rep-
resentation [19], which remarkably accelerates train-
ing speed more than 100× faster compared to the neu-
ral network models.

• We propose a smoothness regularizer which effectively
improves the overall performance of dynamic NeRFs.

2. Related Work
Dynamic NeRF. There have been various attempts to ex-
tend NeRF to dynamic scenes. Existing methods can be cat-
egorized into three types: warping-based, flow-based, and
direct inference from space-time inputs.

Warping-based methods learn how 3D structure of the
scene is deformed. 3D radiance field for each frame is
warped to single or multiple canonical frames using the es-
timated deformation. Deformation is parameterized as 3D
translation [23], rotation and translation via angle-axis rep-
resentation [21, 22], or weighted translation [25].

On the other hand, flow-based methods estimate the cor-
respondence of 3d points in consecutive frames. Neural
scene flow fields [13] estimates 3D scene flow between the
radiance fields of two time stamps. Xian et al. [27] sug-
gested irradiance fields which spans over 4D space-time
fields with a few constraints derived from prior knowledge.

Although warping-based and flow-based approaches
showed successful results, they have a few shortcomings.
For instance, warping-based methods cannot deal with
topological variations. Since those methods warp every in-
put frame to a single canonical scene, it is hard to correctly
represent newly appeared or disappeared 3D radiance fields
in the canonical scene. HyperNeRF [22] learns hyperspace
which represents multidimensional canonical shape bases.
Neural scene flow fields [13] solve the problem by introduc-
ing occlusion masks which are used to estimate the regions
where scene flows are not applicable. However, the masks
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and the flow fields should be learned simultaneously during
the training, which makes the training procedure compli-
cated and imposes dependence on extra information such as
monocular depth or optical flow estimation.

Without estimating shape deformations or scene flows,
DyNeRF [12] used a simple neural network to train NeRFs
of dynamic scenes, although the experiments are only con-
ducted on synchronized multi-view videos. It utilizes 3D
position and time frame as inputs, and predicts color and
density through a series of fully connected neural networks.
Our neural representation applies temporal interpolation to
intermediate features which enhances representation power
for dynamic features while keeping the simple structure.

Category-specific NeRFs are one of the popular re-
search directions for training dynamic objects such as hu-
mans [8, 26] or animals [28]. They are based on parametric
models or use additional inputs such as pose information.
Our method focuses on training NeRFs of general dynamic
scenes without any prior knowledge about scenes or objects.
Nevertheless, temporal interpolation proposed in this paper
can be easily applied to the dynamic NeRFs with templates.
Grid representations in NeRF. One of the major draw-
backs of the original NeRF [18] is slow training speed.
A few concurrent works are proposed to speed up NeRF
training. Among them, grid-based representation such as
Plenoxels [7], direct voxel grid optimization [24] show
superior performance in terms of training time, where it
takes only a few minutes to learn plausible radiance fields.
Combining grid representation with a hash function further
improves the efficiency and training speed of the feature
grids [19]. Fang et al. [6] firstly applied a voxel grid repre-
sentation to train dynamic NeRFs and achieved much faster
training speed compared to the neural-network-based meth-
ods. Guo et al. [10] also proposed a deformable voxel grid
method for fast training. Unlike aforementioned works, our
grid representation does not estimate warping or deforma-
tion. Instead, it directly estimates color and density using
the features obtained from 4D hash grids, which decreases
the computational burden and enables faster training.

3. Temporal Interpolation for Dynamic NeRF
3.1. Preliminaries

Given 3D position x ∈ R3 and 2D viewing direction
d ∈ R2, NeRF [18] aims to estimate volume density σ ∈ R
and emitted RGB color c ∈ R3 using neural networks. We
formulate dynamic NeRF as a direct extension from 3D to
4D by adding time frame t ∈ R to inputs, i.e.

(c, σ) = f (v(x, t),d). (1)

f is implemented as fully connected neural networks and a
space-time feature representation v can be MLP-based neu-
ral nets or explicit grid values as explained in Sec. 3.2.

From the camera with origin o and ray direction d, the
color of camera ray r(u) = o+ ud at time frame t is

C(r, t) =

∫ uf

un

U(u, t)σ(v)c(v,d)du, (2)

where un and uf denote the bounds of the scene vol-
ume, v is an abbreviation of v(r(u), t) and U(u, t) =
exp(−

∫ u

un
σ(v(r(s), t))ds) is the accumulated transmit-

tance from un to u. Then, the RGB color loss Lc is defined
to minimize the l2-loss between the estimated colors Ĉ(r, t)
and the ground truth colors C(r, t) over all rays r in camera
views R and time frames t ∈ T as follows:

Lc =
∑

r∈R,t∈T

||Ĉ(r, t)− C(r, t)||22. (3)

3.2. Space-Time Feature Representation

The main contribution of our paper lies on the novel fea-
ture representation method for dynamic NeRFs. We define
the feature vector v, which is fed into the neural network to
determine a color and a volume density, as the concatena-
tion of static and dynamic feature vectors, i.e.,

v(x, t) = [vs(x),vd(x, t)], (4)

where [·, ·] means concatenation operator of two vectors.
The static feature vector vs only depends on the 3D posi-
tion x. As most dynamic scenes also contain static regions
such as background, vs is designed to learn the static fea-
tures that are consistent across time. Meanwhile, vd learns
dynamic features which may vary across time. We propose
two novel feature representation methods in which tempo-
ral interpolation is applied. First, the neural representation,
which is essentially a series of neural networks combined
with linear interpolation, is suggested in Sec. 3.2.1. The
model trained using the neural representation is able to ren-
der high-quality space-time view synthesis with small-sized
neural networks (∼20MB). Second, the grid representation,
which is an temporal extension of recently proposed voxel
grid representations [19], is explained in Sec. 3.2.2. Dy-
namic NeRFs can be trained in less than 5 minutes with the
proposed grid representation.

3.2.1 Neural Representation

In the neural representation, features that fed into the tem-
plate NeRFs are determined by a series of neural nets.
In other words, both static and dynamic feature extractor
are formulated as multi-layer perceptrons (MLPs). First,
the whole time frame is divided into equally spaced time
slots. For each time slot, two MLPs are assigned. Then
the whole feature vector is interpolated from the assigned
MLPs. Overall feature extraction procedure is illustrated
in Fig. 2.
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Figure 2. Illustration of the arrangements of MLPs (left) and the feature extraction (right) in the neural representation. ϕs and ϕij are small
MLPs that extract static and dynamic features respectively. The static features vs and the dynamic feature vd are concatenated and fed
into the template NeRF. Detailed structures of the template NeRF can be found in the supplementary materials.

Concretely, let vd(x, zt) be the feature vector for a 3D
point x at time t, which will be fed to the template NeRF.
Here, we used zt as an embedding vector for an input time
frame t [12, 16, 22]. For equally spaced n time slots, there
are n+1 keyframes ti = i

n (i = 0, 1, 2, . . . , n). An MLP ϕi

is assigned to each keyframe ti which is responsible for two
adjacent time slots [ti−1, ti] and [ti, ti+1]. For inputs with
time t ∈ [ti, ti+1], x and zt are fed into ϕi and ϕi+1. Then,
the outputs from two MLPs are interpolated as follows:

vd(x, zt) = ∆t · ϕi(x, zt) + (1−∆t) · ϕi+1(x, zt) (5)

where ∆t = (ti+1 − t)/(ti+1 − ti).
The purpose of this interpolation is to efficiently learn

the features between keyframes in a scalable manner.
Thanks to the temporal interpolation, we can learn the fea-
tures of the continuous time range [ti, ti+1] by enforcing the
MLPs ϕi and ϕi+1 responsible for that time range. While
the static feature vs represents the features across the whole
timeline, vd represents the features that are focused more on
dynamic regions. In addition, since each MLP for dynamic
feature is responsible only for two adjacent time slots, it is
able to make each ϕi learn features that are specific to a
certain period of time.

To exploit the features of both long-term and short-term,
there can be multiple levels of dynamic features which have
different number of keyframes. For multi-level dynamic
feature extractor with level l, each level contains different
number of keyframes n1, n2, · · · , nl. Let vdi denote the
dynamic feature of i-th level, then the output dynamic fea-
ture is the concatenation of features from all levels, i.e.,

vd(x, zt) = [vd1(x, zt),vd2(x, zt), · · · ,vdl(x, zt)]. (6)

In this paper, we used the settings l = 2, n1 = 5, n2 =
20 otherwise stated. The dimensions of feature vectors are
determined as 128 for vs, and 64 for v0 and v1. MLP with
one hidden layer whose hidden size is the same as its output
dimension is used for feature extraction of both vs and vdi.

The concatenated feature vectors are fed to the template
NeRF which outputs volume density σ and emitted color
c. We used the same structure as used in HyperNeRF [22]
for the template NeRF of the neural representation.

3.2.2 Grid Representation

Recently, InstantNGP [19] suggested a novel multi-level
grid representation with hash tables. We adopt the hash
grid representation from [19] and extend it for fast dy-
namic NeRF training. Similar to the neural representation
in Sec. 3.2.1, the feature vector from the proposed hash grid
contains static and dynamic feature vectors. The static fea-
ture vs is analogous to the one used in [19]. On the other
hand, the dynamic feature vd comes from the 4D hash grids.

Concretely, to extract static and dynamic feature vectors
whose dimensions are ms and md respectively, a hash table
of size H that contains (ms+md) dimension feature vectors
is constructed. The hash function of d-dimensional vector,
hd(x), is defined as

hd(x) =

d⊕
i=1

(xiPi) mod H, (7)

where Pi is a large prime number and
⊕

is an XOR opera-
tor. Then, the feature vector v is retrieved by concatenating
the outputs of 3D and 4D hash functions:

v(x, t) = [h3(x), h4(x, t)]. (8)

The 3D and 4D grids are constructed as the multi-level
hash grids proposed in [19]. We applied different scaling
factors for 3D space and time frame since the number of
frames for training sequences are usually much smaller than
the finest 3D grid resolutions.

3.3. Smoothness Regularization

As our dynamic world smoothly changes, it is reason-
able to impose a smoothness term to adjacent time frames.
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Figure 3. Illustration of grid representation with hash tables at a certain level. a static feature vector of a 3D grid point is extracted via
3D hash function, while dynamic feature vector for 4D grid point is extracted via 4D hash. The static feature vector vs is determined
as trilinear interpolation of 8 vectors of grid points, while the dynamic feature vector vd is calculated as quadrilinear interpolation of 16
vectors. In the figure, we only depicted feature retrieval process of two grid points for illustration purpose.

We note that the smoothness term is only applied to the in-
put feature space, not to the estimated outputs such as RGB
color or density. For the neural representation, we provided
a simple smoothness term which is calculated as,

Ls(x, t) = ∥vd(x, zt)− vd(x, zt+1)∥22. (9)

This regularization term has two advantages. First, it re-
flects the intuition that the observed point x at time t will
be stationary if there is no observation for x at time t + 1.
Second, by propagating additional gradients to the feature
networks or the hash grids, the smoothness term acts as a
regularizer that stabilizes the training.

For the grid representation, we impose a smoothness
term to the grid points that are temporally adjacent:

Ls(x, t) =
1

n2
f

∥h4(x, ta)− h4(x, tb)∥22, (10)

where nf is the number of frames in the training sequence
and ta, tb are two adjacent grid points that satisfies ta ≤ t ≤
tb. In fact, Eq. (10) can be obtained from Eq. (9) in the grid
representation, which indicates that imposing smoothness
term to adjacent time frames is equivalent to add smooth-
ness to two temporally adjacent grids with constant multi-
plier. Detailed derivation of this relationship is provided in
the supplementary materials.

The smoothness term is added to the loss function with a
weight λ, and the total loss is minimized together during the
training. Accordingly, the total loss of our dynamic neural
radiance fields is given by

L = Lc + λLs. (11)

We observe that the smoothness term is especially pow-
erful in the static background regions that appeared only in
a small fraction of frames. In Fig. 4, we show examples
of the rendered images which are trained with and without
the smoothness term. It can be clearly seen that the boxed

(a) w/o smooth term (b) w/ smooth term (c) GT

Figure 4. Effectiveness of the smoothness term. It can be observed
that the model trained with the smoothness term accurately renders
the corner part which appears in only few frames within the whole
sequence (blue box) and removes spurious artifacts (red box).

regions of the rendered image shows much plausible when
the model is trained with the smoothness term.

3.4. Implementation Details

In the neural representation, we adopted the template
NeRF architecture of HyperNeRF [22] for density and color
estimation. The network is an 8-layered MLP with hidden
size of 256. The dimension of the embedding vector zt is
set to 8. The smoothness weight λ is set to 0.01 or 0.001
depending on the characteristics of the datasets used in the
experiments. We set λ to a large value in the sequences that
the viewpoint change is significant in a short period of time
although performance variations depending on the value of
λ is not significant.

In the grid representation, λ is set to 1e−4. We applied
the smoothness loss only for the finest two levels of the tem-
poral dimension since applying it to every level slows train-
ing speed without much improvements in performance. Af-
ter feature vectors are extracted from the hash grids, we fed
them to a 3-layered MLP with hidden size of 128 to estimate
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volume density followed by one additional layer for RGB
color estimation similar to [19]. We set ms = 2,md = 6
and H = 219 for the grid representation experiments other-
wise stated. The 3D and 4D hash grids are composed of 12
levels. For the spatial dimension, we set the base resolution
to 8, and the scaling factor is set to 1.45. The base resolu-
tion of the temporal dimension is 2, which is multiplied by
1.4 in every other level. Detailed hyperparameter settings
and network architectures can be found in the supplemen-
tary materials.

4. Experimental Results
4.1. Datasets

To validate the superiority of our method, we con-
ducted extensive experiments on various datasets. We used
three publicly available datasets that are used for dynamic
NeRFs. For all experiments, we trained our models for each
sequence individually, and then per-scene results are aver-
aged and reported in this section.
D-NeRF Dataset [23]. The dataset consists of synthetically
rendered images of moving and deforming 3D objects. For
each frame, the image is rendered via a synthetic camera of
random rotation. There are eight scenes in total, and each
scene contains 50-200 training images with 20 test views.
HyperNeRF Dataset [22]. The dataset contains video se-
quences taken from mobile phones. There are four se-
quences in vrig-dataset which are taken using the camera
rig with two phones vertically aligned. In addition, there
are six sequences in interp-dataset which are taken from a
single camera in order to estimate the image in the the mid-
dle of two consecutive training images.
DyNeRF Dataset [12]. The dataset consists of videos ob-
tained from a capture system that consists of 21 GoPro
Black Hero cameras. The cameras are located at a fixed
position, and all video frames are synchronized to build the
multi-view video dataset.

4.2. Neural Representation

In this section, we reported the performance of the pro-
posed neural representation models. First, the experimental
results on D-NeRF dataset are shown in Tab. 1. Peak signal-
to-noise ratio (PSNR), structural similarity (SSIM), and per-
ceptual similarity (LPIPS) [29] are used as evaluation met-
rics following the previous works. We also reported the av-
erage metric (AVG) proposed in [3] which aggregates three
metrics to a single value. Our method with the neural repre-
sentation (Ours-NN) achieves state-of-the-art results on all
evaluation metrics. It is worth noting that the smoothness
term dramatically improves overall performance.

Next, we evaluated our method on HyperNeRF
dataset [22] and compared with existing methods, which
is shown in Tab. 2. Here, we reported PSNR and multi-

PSNR ↑ SSIM ↑ LPIPS ↓ AVG ↓
NeRF [18] 19.00 0.87 0.18 0.09
T-NeRF [23] 29.50 0.95 0.08 0.03
D-NeRF [23] 30.43 0.95 0.07 0.02
NDVG-full [10] 27.84 0.862 0.041 0.029
TiNeuVox-B [6] 32.67 0.971 0.041 0.016
Ours-NN (w/o smooth) 30.18 0.963 0.038 0.019
Ours-NN (w/ smooth) 32.73 0.974 0.033 0.014

Table 1. Experimental results on D-NeRF [23] datasets.

scale SSIM (MS-SSIM), and excluded LPIPS metric since
its value cannot reliably reproduced [6]. Our method shows
second-best results on both vrig and interp datasets. While
flow-based method [13] suffers from interpolating motions
between two consecutive frames, our method, which im-
plicitly learns intermediate feature representation of in-
between frames, achieves competitive performance with
warping-based methods [21, 22].

Qualitative results for the neural representation are
shown in Fig. 5. It is clearly observed that our method cap-
tures fine details compared to D-NeRF [23]. We highlighted
the regions that show notable differences with colored boxes
and placed zoomed-in images of the regions next to the
rendered images. In addition, we also qualitatively com-
pared our method with HyperNeRF [22] on their datasets.
When the warping estimation module of [22] does not cor-
rectly estimate warping parameters, HyperNeRF produces
implausible results. It can be observed that the head and
the body of the chicken toy is not properly interlocked and
the position of the hand peeling banana is incorrect. On the
other hand, our method accurately recovers 3D geometry
of those scenes. Thus, without using the physically mean-
ingful warping estimation module in neural networks, the
proposed temporal interpolation and the smoothness regu-
larizer provides simple yet effective way to learn complex
deformations.

Lastly, performance evaluation on DyNeRF dataset [12]
is presented in Tab. 3. We adopt PSNR, LPIPS, and FLIP [2]
for evaluation metrics to compare with previous works. Our
method achieves best PSNR while ranked second in LPIPS
and FLIP. However, those two metrics are also better than
DyNeRF† [12] which does not use importance sampling
strategy in [12]. Since we do not use any sampling strat-
egy during training, it can be concluded that our feature
interpolation method is superior to the network architec-
ture of [12]. Notably, our method outperforms DyNeRF
with smaller network size (20MB) than the DyNeRF mod-
els (28MB).

4.3. Grid Representation

We used D-NeRF datasets to evaluate the performance
of the proposed grid representation. Since this representa-
tion is mainly intended for fast training, we report the re-
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D-NeRF [23] Ours-NN Ground truth HyperNeRF [22] Ours-NN Ground truth

Figure 5. Qualitative results of our method (Ours-NN) on of D-NeRF [23] and HyperNeRF [22] datasets. The regions that show significant
difference with compared methods are scaled up (red and green boxes).

vrig interp
PSNR ↑ MS-SSIM ↑ PSNR ↑ MS-SSIM ↑

NeRF [18] 20.13 0.745 22.27 0.804
NV [15] 16.85 0.571 26.05 0.911
NSFF [13] 26.33 0.916 25.80 0.883
Nerfies [21] 22.23 0.803 28.47 0.939
HyperNeRF [22] 22.38 0.814 29.00 0.945
Ours-NN 24.35 0.867 28.67 0.940

Table 2. Experimental results on HyperNeRF [22] datasets.

PSNR ↑ LPIPS ↓ FLIP ↓
MVS 19.12 0.2599 0.2542
NeuralVolumes [15] 22.80 0.2951 0.2049
LLFF [17] 23.24 0.2346 0.1867
NeRF-T [12] 28.45 0.100 0.1415
DyNeRF† [12] 28.50 0.0985 0.1455
DyNeRF [12] 29.58 0.0832 0.1347
Ours-NN 29.88 0.0960 0.1413

Table 3. Experimental results on DyNeRF [12] datasets.

sults in a short period time (∼8 minutes) and compare the
results with the concurrent works [6, 10], both of which are
based on voxel grid representation and showed the fastest
training speed for dynamic NeRFs so far. We also exam-
ined the performance of the original implementation of In-
stantNGP [19] as a baseline with no temporal extension.
All of the grid representation models in the experiments
are trained on a single RTX 3090 GPU for fair comparison
with [6, 10].

The quantitative results are shown with elapsed training
time in Tab. 4. The grid representation demonstrates much
faster training speed even compared to the recent voxel-
grid based methods [6, 10]. In comparison with neural net-
work models [23], our method exceeds SSIM and LPIPS
of [23] in 5 minutes which have arithmetically 240 times
faster training speed. By taking the benefits of fully fused
neural network [20] as well as the efficient hash grid repre-

Train time PSNR SSIM LPIPS AVG
InstantNGP [19] 5 min 20.28 0.888 0.146 0.077
D-NeRF [23] 20 hours 30.43 0.95 0.07 0.02
NDVG-full [10] 35 min 27.84 0.862 0.041 0.029
TinueVox-B [6] 30 min 32.67 0.971 0.041 0.016
NDVG-half [10] 23 min 27.15 0.857 0.048 0.033
TinueVox-S [6] 8 min 30.75 0.956 0.067 0.023
Ours-grid 1 min 26.77 0.933 0.107 0.039
Ours-grid 5 min 29.73 0.961 0.063 0.024
Ours-grid 8 min 29.84 0.962 0.062 0.023

Table 4. Quantitative comparison of training time and perfor-
mance on D-NeRF datasets using the grid representation.

D-NeRF dataset HyperNeRF vrig
PSNR SSIM LPIPS PSNR MS-SSIM

NN (dynamic only) 30.91 0.963 0.043 24.07 0.861
NN (dynamic+static) 32.73 0.974 0.033 24.35 0.866
Grid (dynamic only) 29.08 0.948 0.076 22.11 0.755
Grid (dynamic+static) 29.84 0.962 0.062 22.98 0.802

Table 5. Ablation study on the effectiveness of static features.

sentation, our method quickly learns meaningful features in
dynamic scenes and generates acceptable novel view syn-
thesis results with just one minute of training. Our method
shows superior SSIM, LPIPS and slightly inferior PSNR to
TinueVox-S [6], which indicates clearer and more detailed
rendering results, when trained for the same period of time.

We depict training progress of the grid representation
qualitatively in Fig. 6. We also compared the results of
TinueVox-S [6] which are trained for 8 minutes. After one
minute of training, the grid representation model produces
blurry images but accurately render dynamic regions com-
pared to InstantNGP [19]. After 5 minutes, the model suc-
cessfully renders sharp images that are similar to the ground
truth images. Notably, our model exhibits more sharp and
clear results than TinueVox-S despite shorter training time,
which results in better SSIM and LPIPS..

Finally, we compared the performance of the grid repre-
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InstantNGP [19]
TiNueVox-S [6]

(8min) Ours-grid (1min) Ours-grid (3min) Ours-grid (5min) Ground truth

Figure 6. Qualitative results of the grid representation. While InstantNGP [19] is not able to reconstruct dynamic regions, our method
produces acceptable rendering results in one minute and performs superior to TiNueVox-S [6] with shorter training time.
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Figure 7. Performance comparison with different feature dimen-
sion settings. Using smaller feature dimensions results in faster
training but quicker saturation of model performance.

sentation by varying the dimension of static and dynamic
feature vectors, ms and md. PSNR and LPIPS on test
images are measured per minute and illustrated in Fig. 7.
We trained the grid representation models in three differ-
ent settings, ms = 2,md = 6, ms = 2,md = 2,
ms = 4,md = 4. When smaller feature dimension is used,
the training speed is faster, so PSNR increases fast in the
early stage of training. However, the performance also sat-
urates faster, and LPIPS is inferior to the other settings. The
model with ms = 2,md = 6 significantly outperformed the
others in terms of LPIPS.

4.4. Effectiveness of the Static Features

To validate the effectiveness of the static features, we
conducted an ablation study on the static features and illus-
trated the results in Tab. 5. For both the neural represen-
tation (NN) and the grid representation (Grid), the models
with static features performs superior to the ones using only
dynamic features in all metrics. Additional ablation studies
and qualitative results can be found in the supplementary
materials.

4.5. Failure Cases

Although the proposed feature interpolation is able to
learn meaningful spatiotemporal features in most cases,

Ours-NN Ground truth Ours-grid Ground truth

Figure 8. Examples of failure cases.

there are a few failure cases as presented in Fig. 8. For
instance, our method has difficulty in recovering 3D struc-
tures when small objects in a sequence rapidly move (Fig. 8
left) or when there exist dynamic regions that are not ob-
served in the training sequence (Fig. 8 right).

5. Conclusion

In this paper, we propose a simple yet effective feature
interpolation method for training dynamic NeRFs. Both the
neural representation and the grid representation showed
impressive performance, and the smoothness term applied
to the intermediate feature vectors further improves the per-
formance. Since these methods are unrelated to the exist-
ing methods of modeling deformations or estimating scene
flows, we believe that the proposed method suggests a new
direction of training dynamic NeRFs.

While the neural representation model shows high-
quality rendering results owing to the representation power
of neural networks, it requires hours of training and sec-
onds of rendering which impose barriers to real-time ap-
plications. On the other hand, the grid representation is
able to render dynamic scenes in less than a second after
a few minutes of training, which makes it more practical
for real-world applications. Both representations are mu-
tually complementary, and investigating hybrid representa-
tions that take advantages of both representations would be
an interesting research direction.
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