Training Debiased Subnetworks with Contrastive Weight Pruning

Geon Yeong Park1 Sangmin Lee2 Sang Wan Lee1* Jong Chul Ye1,2,3*
1Bio and Brain Engineering, 2Mathematical Sciences, 3Kim Jaechul Graduate School of AI
Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
\{pky3436, leeleesang, sangwan, jong.ye\}@kaist.ac.kr

Abstract

Neural networks are often biased to spuriously correlated features that provide misleading statistical evidence that does not generalize. This raises an interesting question: “Does an optimal unbiased functional subnetwork exist in a severely biased network? If so, how to extract such subnetwork?” While empirical evidence has accumulated about the existence of such unbiased subnetworks, these observations are mainly based on the guidance of ground-truth unbiased samples. Thus, it is unexplored how to discover the optimal subnetworks with biased training datasets in practice. To address this, we first present our theoretical insight that alerts potential limitations of existing algorithms in exploring unbiased subnetworks in the presence of strong spurious correlations. We then further elucidate the importance of bias-conflicting samples on structure learning. Motivated by these observations, we propose a Debiased Contrastive Weight Pruning (DCWP) algorithm, which probes unbiased subnetworks without expensive group annotations. Experimental results demonstrate that our approach significantly outperforms state-of-the-art debiasing methods despite its considerable reduction in the number of parameters.

1. Introduction

While deep neural networks have made substantial progress in solving challenging tasks, they often undesirably rely on spuriously correlated features or dataset bias, if present, which is considered one of the major hurdles in deploying models in real-world applications. For example, consider recognizing desert foxes and cats from natural images. If the background scene (e.g., a desert) is spuriously correlated to the type of animal, the neural networks might use the background information as a shortcut to classification, resulting in performance degradation in different backgrounds (e.g., a desert fox in the house).

To investigate the origin of the spurious correlations, this paper considers shortcut learning as a fundamental architectural design issue of neural networks. Specifically, if any available information channels in deep networks’ structure could transmit the information of spuriously correlated features (spurious features from now on), networks would exploit those features as long as they are sufficiently predictive. It naturally follows that pruning weights on spurious features can purify the biased latent representations, thereby improving performances on bias-conflicting samples1. We conjecture that this neural pruning may improve the generalization of the network in a way that reduces the effective dimension of spurious features, considering that the failure of Out-of-Distribution (OOD) generalization may arise due to high-dimensional spurious features \cite{24, 31}.

Recently, Zhang et al. \cite{33} has empirically demonstrated the existence of subnetworks that are less susceptible to spurious features. Based on the modular property of neural networks \cite{5}, they prune out weights that are closely related to the spurious attributes. While \cite{33} affords us valuable insights on the importance of neural architectures, the study has limitation in that such neural pruning requires sufficient number of ground-truth bias-conflicting samples. Thus, how to discover the optimal subnetworks in practice when the dataset is highly biased?

To address this, we first present a simple theoretical observation that reveals the limitations of existing substructure probing methods in searching unbiased subnetworks. Specifically, we reveal that there exists an unavoidable generalization gap in the subnetworks obtained by standard pruning algorithms in the presence of strong spurious correlations. Our analysis also shows that trained models may inevitably rely on the spuriously correlated features in a practical training setting with finite training time and a number of samples.

In addition, we show that sampling more bias-conflicting data makes it possible to identify spurious weights. Specifically, bias-conflicting samples require that the weights as-

1The bias-aligned samples refer to data with a strong correlation between (potentially latent) spurious features and target labels (e.g., cat in the house). The bias-conflicting samples refer to the opposite cases where spurious correlations do not exist (e.g., cat in the desert).
Figure 1. **Concept**: We demonstrate an inevitable generalization gap of subnetworks obtained by standard pruning methods including [33]. Based on these observations, we design a novel subnetwork probing framework by fully exploiting unbiased samples.

...associated with spurious features should be pruned out as the spurious features do not help predict bias-conflicting samples. Our theoretical observations suggest that balancing the ratio between the number of bias-aligned and bias-conflicting samples is crucial in finding the optimal unbiased subnetworks. In practice, the dataset may severely lack diversity for bias-conflicting samples due to the potential pitfalls in data collection protocols or human prejudice. Since it is often highly laborious to supplement enough bias-conflicting samples, we propose a novel debiasing scheme called **Debiased Contrastive Weight Pruning (DCWP)** that uses the oversampled bias-conflicting data to search unbiased subnetworks.

As shown in Fig. 1, DCWP is comprised of two stages: (1) identifying the bias-conflicting samples without expensive annotations on spuriously correlated attributes, and (2) training the pruning parameters to obtain weight pruning masks with the sparsity constraint and debiased loss function. Here, the debiased loss includes a weighted cross-entropy loss for the identified bias-conflicting samples and an alignment loss to further reduce the geometrical alignment gap between bias-aligned and bias-conflicting samples within each class.

We demonstrate that DCWP consistently outperforms state-of-the-art debiasing methods across various biased datasets, including the Color-MNIST [21, 25], Corrupted CIFAR-10 [13], Biased FFHQ [19] and CelebA [23], even without direct supervision on the bias type. Our approach improves the accuracy on the unbiased evaluation dataset by 86.74% → 93.41%, 27.86% → 35.90% on Colored-MNIST and Corrupted CIFAR-10 compared to the second best model, respectively, even when 99.5% of samples are bias-aligned.

2. Related works

Spurious correlations. A series of empirical works have shown that the deep networks often find shortcut solutions relying on spuriously correlated attributes, such as the texture of image [10], language biases [12], or sensitive variables such as ethnicity or gender [7, 26]. Such behavior is of practical concern because it deteriorates the reliability of deep networks in sensitive applications like healthcare, finance, and legal services [4].

Debiasing frameworks. Recent studies to train a debiased network robust to spurious correlations can be roughly categorized into approaches (1) leveraging annotations of spurious attributes, i.e., bias label [27, 32], (2) presuming specific type of bias, e.g., texture [1, 9] or (3) without using explicit kinds of supervisions on dataset bias [20, 25]. The authors in [15, 27] optimize the worst-group error by using training group information. For practical implementation, reweighting or subsampling protocols are often used with increased model regularization [28]. Liu et al.; Sohoni et al. [22, 29] extend these approaches to the settings without expensive group annotations. Goel et al.; Kim et al. [11, 19] provide bias-tailored augmentations to balance the majority and minority groups. In particular, these approaches have mainly focused on better approximation and regularization of worst-group error combined with advanced data sampling, augmentation, or retraining strategies.

Studying impacts of neural architectures. Recently, the effects of deep neural network architecture on generalization performance have been explored. Diffenderfer et al. [6] employ recently advanced lottery-ticket-style pruning algorithms [8] to design the compact and robust network architecture. Bai et al. [2] directly optimize the neural architecture in terms of accuracy on OOD samples. Zhang et al. [33] demonstrate the effectiveness of pruning weights on spurious attributes, but the solution for discriminating such spurious weights lacks robust theoretical justifications, resulting in marginal performance gains. To fully resolve the above issues, we carry out a theoretical case study, and build a novel pruning algorithm that distills the representations to be independent of the spurious attributes.
3. Theoretical insights

3.1. Problem setup

Consider a supervised setting of predicting labels \(Y \in \mathcal{Y} \) from input samples \(X \in \mathcal{X} \) by a classifier \(f_\theta : \mathcal{X} \rightarrow \mathcal{Y} \) parameterized by \(\theta \in \Theta \). Following [33], let \((X^e, Y^e) \sim P^e \), where \(X^e \in \mathcal{X} \) and \(Y^e \in \mathcal{Y} \) refer to the input random variable and the corresponding label, respectively, and \(e \in \mathcal{E} = \{1, 2, \ldots, E\} \) denotes the index of environment, \(P^e \) is the corresponding distribution, and the set \(\mathcal{E} \) corresponds to every possible environments. We further assume that \(\mathcal{E} \) is divided into training environments \(\mathcal{E}_{\text{train}} \) and unseen test environments \(\mathcal{E}_{\text{test}} \), i.e. \(\mathcal{E} = \mathcal{E}_{\text{train}} \cup \mathcal{E}_{\text{test}} \).

For a given a loss function \(l : \mathcal{X} \times \mathcal{Y} \times \Theta \rightarrow \mathbb{R}^+ \), the standard training protocol for the empirical risk minimization (ERM) is to minimize the expected loss with a training environment \(e \in \mathcal{E}_{\text{train}} \):

\[
\hat{\theta}_{\text{ERM}} = \arg\min_{\theta} \mathbb{E}_{(X^e, Y^e) \sim P^e} [l(X^e, Y^e; \theta)],
\]

(1)

where \(\hat{P}^e \) is the empirical distribution over the training data.

Our goal is to learn a model with good performance on OOD samples of \(e \in \mathcal{E}_{\text{test}} \).

3.2. Motivating example

We conjecture that neural networks trained by ERM indiscriminately rely on predictive features, including those spuriously correlated ones [31].

To verify this conjecture, we present a simple binary-classification example \((X^e, Y^e) \sim P^e \), where \(Y^e \in \mathcal{Y} = \{-1, 1\} \) represents the corresponding target label, and a sample \(X^e \in \mathcal{X} = \{-1, 1\}^{D+1} \in \mathbb{R}^{D+1} \) is constituted with both the invariant feature \(Z_{\text{inv}}^e \in \{-1, 1\} \) and spurious features \(Z_{\text{sp}}^e \in \{-1, 1\}^D \), i.e. \(X^e = (Z_{\text{inv}}^e, Z_{\text{sp}}^e) \).

Suppose, furthermore, \(Z_{\text{sp},i} \) denote the \(i \)-th spurious feature component of \(Z_{\text{sp}}^e \). Not that we assume \(D \gg 1 \) to simulate the model heavily relies on spurious features \(Z_{\text{sp}}^e \) [24, 33].

We consider the setting where the training environment \(e \in \mathcal{E}_{\text{train}} \) is highly biased. In other words, we suppose that \(Z_{\text{inv}}^e = Y^e \) and each of the \(i \)-th spurious feature component \(Z_{\text{sp},i} \) is independent and identically distributed (i.i.d) Bernoulli variable: i.e. \(Z_{\text{sp},i} \) independently takes a value equal to \(Y^e \) with a probability \(p^e \) and \(-Y^e\) with a probability \(1 - p^e \), where \(p^e \in (0.5, 1], \forall e \in \mathcal{E}_{\text{train}} \). Note that \(p^e \rightarrow 1 \) as the environment is severely biased. A test environment \(e \in \mathcal{E}_{\text{test}} \) is assumed to have \(p^e = 0.5 \), which implies that the spurious feature is totally independent with \(Y^e \). Then we introduce a linear classifier \(\pi \) parameterized by a weight vector \(w = (w_{\text{inv}}, w_{\text{sp}}) \in \mathbb{R}^{D+1} \), where \(w_{\text{inv}} \in \mathbb{R} \) and \(w_{\text{sp}} \in \mathbb{R}^D \). In this example, we consider a class of pretrained classifiers parameterized by \(\bar{w}(t) = (\bar{w}_{\text{inv}}(t), \bar{w}_{\text{sp},1}(t), \ldots, \bar{w}_{\text{sp},D}(t)) \), where \(t < T \) is a finite pretraining time for some sufficiently large \(T \). Time \(t \) will be often omitted in notations for simplicity.

Our goal is to obtain the optimal sparse classifier with a highly biased training dataset. To achieve this, we introduce a binary weight pruning mask \(m \) as \(m = (m_{\text{inv}}, m_{\text{sp}}) \in \{0,1\}^{D+1} \) for the pretrained weights, which is a significant departure from the theoretical setting in [33]. Specifically, let \(m_{\text{inv}} \sim \text{Bern}(\pi_{\text{inv}}) \), where \(\pi_{\text{inv}} \) and \(1 - \pi_{\text{inv}} \) represents the probability of preserving (i.e. \(m_{\text{inv}} = 1 \)) and pruning out (i.e. \(m_{\text{inv}} = 0 \)), respectively. Similarly, let \(m_{\text{sp},i} \sim \text{Bern}(\pi_{\text{sp},i}), \forall i \). Then, our optimization goal is to estimate the pruning probability parameter \(\pi = (\pi_1, \ldots, \pi_{D+1}) = (\pi_{\text{inv}}, \pi_{\text{sp},1}, \ldots, \pi_{\text{sp},D}) \), where \(m \sim P(\pi) \) is a mask sampled with probability parameters \(\pi \). Accordingly, our main loss function for the pruning parameters given the environment \(e \) can be defined as follows:

\[
e^e(\pi) = \frac{1}{2} \mathbb{E}_{(X^e, Y^e, m)} \left[(1 - Y^e \hat{Y}^e) \right],
\]

(2)

where \(\hat{Y}^e \) is the prediction of binary classifier, \(\hat{w} \) is the pretrained weight vector, \(\text{sgn}(\cdot) \) represents the sign function, and \(\odot \) represents element-wise product.

We first derive the upper-bound of the training loss \(e^e(\pi) \) to illustrate the difficulty of learning optimal pruning parameters in a biased data setting. The proof can be found in Supplementary Material.

Theorem 1. (Training and test bound) Assume that \(p^e > 1/2 \) in the biased training environment \(e \in \mathcal{E}_{\text{train}} \). Define \(\bar{w}(t) \) as weights pretrained for a finite time \(t \leq T \). Then the upper bound of the error of training environment w.r.t. pruning parameters \(\pi \) is given as:

\[
e^e(\pi) \leq 2 \exp \left(-\frac{2(\pi_{\text{inv}} + (2p^e - 1) \sum_{i=1}^{D} \alpha_i(t) \pi_{\text{sp},i})^2}{4 \sum_{i=1}^{D} \alpha_i(t)^2 + 1} \right),
\]

(3)

where the weight ratio \(\alpha_i(t) = \bar{w}_{\text{sp},i}(t)/\bar{w}_{\text{inv}}(t) \) is bounded below some positive constant. Given a test environment \(e \in \mathcal{E}_{\text{test}} \) with \(p^e = 1/2 \), the upper bound of the error of test environment w.r.t. \(\pi \) is given as:

\[
e^e(\pi) \leq 2 \exp \left(-\frac{2\pi_{\text{inv}}^2}{4 \sum_{i=1}^{D} \alpha_i(t)^2 + 1} \right),
\]

(4)

which implies that there is an unavoidable gap between training bound and test bound.

The detailed proof of Theorem 1 is provided in the supplementary material. This mismatch of the bounds is attributed to the contribution of \(\pi_{\text{sp},i} \) on the training bound (3). Intuitively, the networks prefer to preserve both \(\bar{w}_{\text{inv}} \) and \(\bar{w}_{\text{sp},i} \) in the presence of strong spurious correlations due
to the inherent sensitivity of ERM to all kinds of predictive features [16, 31]. This behavior is directly reflected in the training bound, where increasing either \(\pi_{inv} \) or \(\pi_{sp,i} \), i.e., the probability of preserving weights, decreases the training bound. This inertia of spurious weights may prevent themselves from being primarily pruned against the sparsity constraint.

We note that the unintended reliance on spurious features is fundamentally rooted to the positivity of the weight ratio \(\alpha_l(t) \). In the proof of Theorem 1 in Supplementary Material, we show some intriguing properties of \(\alpha_l(t) \): (1) If infinitely many data and sufficient training time is provided, the gradient flow converges to the optimal solution which is invariant to \(Z^{sp} \), i.e., \(\alpha_l(t) \to 0 \). In this ideal situation, the gap between training and test bound is closed, thereby guaranteeing generalizations of obtained subnetworks. (2) However, given a finite time \(t < T \) with a strongly biased dataset in practice, \(\alpha_l(t) \) is bounded below by some positive constant, resulting in an inevitable generalization gap.

Theorem 1 implies that the classifier may preserve spurious weights due to the lack of bias-conflicting samples, which serve as counterexamples that spurious features themselves fail to explain. It motivates us to analyze the training bound in another environment \(\eta \) where we can systematically augment bias-conflicting samples. Specifically, consider \(X^\eta = (Z^\eta_{inv}, Z^\eta_{sp}) \), where \(Z^\eta_{inv} = Y^\eta \) and mixture distribution of \(Z^\eta_{sp} \) given \(Y^\eta = y \) is defined in an element wise as follows:

\[
P_{\text{mix}}^\eta(Z^\eta_{sp,i} \mid Y^\eta = y) = \phi P_{\text{debias}}^\eta(Z^\eta_{sp,i} \mid Y^\eta = y) + (1 - \phi) P_{\text{bias}}^\eta(Z^\eta_{sp,i} \mid Y^\eta = y),
\]

where \(\phi \) is a scalar mixture weight,

\[
P_{\text{debias}}^\eta(Z^\eta_{sp,i} \mid Y^\eta = y) = \begin{cases} 1, & \text{if } Z^\eta_{sp,i} = -y \\ 0, & \text{if } Z^\eta_{sp,i} = y \end{cases}
\]

is a debiasing distribution to weaken the correlation between \(Y^\eta \) and \(Z^\eta_{sp,i} \) by setting the value of \(Z^\eta_{sp,i} \) as \(-Y^\eta\), and

\[
P_{\text{bias}}^\eta(Z^\eta_{sp,i} \mid Y^\eta = y) = \begin{cases} p^\eta, & \text{if } Z^\eta_{sp,i} = y \\ 1 - p^\eta, & \text{if } Z^\eta_{sp,i} = -y \end{cases}
\]

is a biased distribution similarly defined in the previous environment \(\epsilon \in \mathcal{E}_{\text{train}} \). Given this new environment \(\eta \), the degree of spurious correlations can be controlled by \(\phi \). This leads to a training bound as follow:

Theorem 2. *(Training bound with the mixture distribution)* Assume that the defined mixture distribution \(P_{\text{mix}}^\eta \) is biased, i.e., for all \(i \in \{1, \ldots, D\} \),

\[
P_{\text{mix}}^\eta(Z^\eta_{sp,i} = -y \mid Y^\epsilon = y) \leq P_{\text{mix}}^\eta(Z^\eta_{sp,i} = y \mid Y^\eta = y).
\]

Then, \(\phi \) satisfies \(0 \leq \phi \leq 1 - \frac{1}{2\pi^2} \). Then the upper bound of the error of training environment \(\eta \) w.r.t. the pruning parameters is given by

\[
\ell^\eta(\pi) \leq 2 \exp \left(-\frac{2(\pi_{inv} + \rho(1 - \phi) - 1) \sum_{i=1}^{D} \alpha_l(t) \pi_{sp,i}^2)}{4 \sum_{i=1}^{D} \alpha_l(t)^2 + 1} \right).
\]

Furthermore, when \(\phi = 1 - \frac{1}{2\pi^2} \), the mixture distribution is perfectly debiased, and we have

\[
\ell^\eta(\pi) \leq 2 \exp \left(-\frac{2\pi_{inv}^2}{4 \sum_{i=1}^{D} \alpha_l(t)^2 + 1} \right),
\]

which is equivalent to the test bound in (4).

The detailed proof is provided in the supplementary material. Our new training bound (9) suggests that the significance of \(\pi_{sp,i} \) on training bound decreases as \(\phi \) progressively increases, and at the extreme end with \(\phi = 1 - \frac{1}{2\pi^2} \), it can be easily shown that \(P_{\text{mix}}^\eta(Z^\eta_{sp,i} \mid Y^\eta = y) = \frac{1}{2} \) for both \(y = 1 \) and \(y = -1 \) so that \(Z^\eta_{sp,i} \) turns out to be random. In other words, by plugging \(\phi = 1 - \frac{1}{2\pi^2} \) into (9), we can minimize the gap between training and test error bound, which guarantees the improved OOD generalization.

4. Debiased Contrastive Weight Pruning

Our theoretical observations elucidate the importance of balancing between the bias-aligned and bias-conflicting samples in discovering the optimal unbiased subnetworks structure. While the true analytical form of the debiasing distribution is unknown in practice, we aim to approximate such unknown distribution with existing bias-conflicting samples and simulate the mixture distribution \(P_{\text{mix}}^\eta \) with modifying sampling strategy. To this end, we propose a Debiased Contrastive Weight Pruning (DCWP) algorithms that learn the unbiased subnetworks structure from the original full-size network.

Consider a \(L \) layer neural networks as a function \(f_W : \mathcal{X} \to \mathbb{R}^C \) parameterized by weights \(W = \{W_1, \ldots, W_L\} \), where \(C = |\mathcal{Y}| \) is the number of classes. Analogous to the earlier works on pruning, we introduce binary weight pruning masks \(m = \{m_1, \ldots, m_L\} \) to model the subnetworks as \(f_{m \circ W} : \mathcal{X} \to \mathbb{R}^C \). We denote such subnetworks as \(f_{m \circ W} \) for the notational simplicity. We treat each entry of \(m_l \) as an independent Bernoulli variable, and model their logits as our new pruning parameters \(\Theta = \{\Theta_1, \ldots, \Theta_L\} \) where \(\Theta_l \in \mathbb{R}^m \) and \(m_t \) represents the dimensionality of the \(l \)-th layer weights \(W_l \). Then \(p_{l,i} = \sigma(\Theta_{l,i}) \) denotes the probability of preserving the \(i \)-th weight of \(l \)-th layer \(W_{l,i} \) where \(\sigma \) refers to a sigmoid function.
function. To enable the end-to-end training, the Gumbel-
softmax trick [17] for sampling masks together with \(\ell_1 \) reg-
ularization term of \(\Theta \) is adopted as a sparsity constraint.
With a slight abuse of notations, \(\mathbf{m} \sim G(\Theta) \) denotes a
set of masks sampled with logits \(\Theta \) by applying Gumbel-
softmax trick.

Then our main optimization problem is defined as follows:

\[
\min_{\Theta} \ell_{\text{debias}} \left(\{(x_i, y_i)\}_{i=1}^{\vert S \vert}; \tilde{W}, \Theta \right) + \lambda_{\ell_1} \sum_{l,i} \vert \Theta_{l,i} \vert, \tag{11}\]

where \(S \) denotes the index set of whole training sam-
ple and \(\lambda_{\ell_1} > 0 \) is a Lagrangian multiplier, \(\tilde{W} \) represents
the pretrained weights and \(\ell_{\text{debias}} \) is our main objective
which will be illustrated later. Note that we freeze the
pretrained weights \(\tilde{W} \) during training parameters
\(\Theta \). We interchangeably use \(\ell_{\text{debias}} \left(\{(x_i, y_i)\}_{i=1}^{\vert S \vert}; \Theta \right) \) and
\(\ell_{\text{debias}} (S; \Theta) \) in the rest of paper. For comparison with
our formulation, we recast the optimization problem of [33]
with our notations as follows:

\[
\min_{\Theta} \ell \left(\{(x_i, y_i)\}_{i=1}^{\vert S \vert}; \tilde{W}, \Theta \right) + \lambda_{\ell_1} \sum_{l,i} \vert \Theta_{l,i} \vert, \tag{12}\]

where [33] uses the cross entropy (CE) loss function for \(\ell \).

Bias-conflicting sample mining In the first stage, we
identify bias-conflicting training samples which empower
functional modular probing. Specifically, we train a bias-
capturing model and treat an error set \(S_{bc} \) of the index
of misclassified training samples as bias-conflicting sample
proxies. Our framework is broadly compatible with various
bias-capturing models, where we mainly leverage the ERM
model trained with generalized cross entropy (GCE) loss [35]:

\[
\ell_{\text{GCE}}(x_i, y_i; \mathbf{W}_B) = \frac{1 - p_{y_i}(x_i; \mathbf{W}_B)^q}{q}, \tag{13}\]

where \(q \in (0, 1] \) is a hyperparameter controlling the de-
gree of bias amplification, \(\mathbf{W}_B \) is the parameters of the
bias-capturing model, and \(p_{y_i}(x_i; \mathbf{W}_B) \) is a softmax out-
put value of the bias-capturing model assigned to the target
label \(y_i \). Compared to the CE loss, the gradient of the GCE
loss up-weights the samples with a high probability of pre-
dicting the correct target, amplifying the network bias by
putting more emphasis on easy-to-predict samples [25].

To preclude the possibility that the generalization per-
formance of DCWP is highly dependent on the behavior of the
bias-capturing model, we demonstrate in Section 5 that
DCWP is reasonably robust to the degradation of ac-
curacy on capturing bias-conflicting samples. Details about
the bias-capturing model and simulation settings are pre-
sent in the supplementary material.

Upweighting Bias-conflicting samples After mining
the index set of bias-conflicting sample proxies \(S_{bc} \), we treat
\(S_{ba} = S \setminus S_{bc} \) as the index set of majority bias-aligned
samples. Then we calculate the weighted cross entropy (WCE)
loss \(\ell_{\text{WCE}} \left(\{(x_i, y_i)\}_{i=1}^{\vert S \vert}; \tilde{W}, \Theta \right) \) as follows:

\[
\ell_{\text{WCE}} (S; \tilde{W}, \Theta) := E_{m \sim G(\Theta)} \left[\lambda_{up} \ell_{bc}(S_{bc}; \mathbf{m}, \tilde{W}) + \ell_{ba}(S_{ba}; \mathbf{m}, \tilde{W}) \right], \tag{14}\]

where \(\lambda_{up} \geq 1 \) is an upweighting hyperparameter, and

\[
\ell_{bc}(S_{bc}; \mathbf{m}, \tilde{W}) = \frac{1}{\vert S_{bc} \vert} \sum_{i \in S_{bc}} \ell_{\text{CE}}(x_i, y_i; \mathbf{m} \odot \tilde{W}), \tag{15}\]

where \(\ell_{\text{CE}} \) denotes the cross entropy loss. \(\ell_{ba} \) is defined as similar to \(\ell_{bc} \).

The expectation is approximated with Monte Carlo esti-
mates, where the number of mask \(\mathbf{m} \) sampled per iteration
is set to 1 in practice. To implement (14), we oversample
the samples in \(S_{bc} \) for \(\lambda_{up} \) times more than the samples in
\(S_{ba} \). This sampling strategy is aimed at increasing the mi-
ture weight \(\phi \) of the proposed mixture distribution \(P_{\text{mix}}^l \)
in (5), while we empirically approximate the unknown bias-
conflicting group distribution with the sample set \(S_{bc} \).

Note that although simple oversampling of bias-
conflicting samples may not lead to the OOD generalization
due to the inductive bias towards memorizing a few coun-
terexamples in overparameterized neural networks [28],
such failure is unlikely reproduced in learning pruning
parameters under the strong sparsity constraint. We sam-
ples new weight masks \(\mathbf{m} \) for each training iteration in a
stochastic manner, effectively precluding the overparam-
eterized networks from potentially memorizing the minority
samples. As a result, DCWP exhibits reasonable perform-
ance even with few bias-conflicting samples.

Bridging the alignment gap by pruning To fully uti-
lize the bias-conflicting samples, we consider the sample-
wise relation between bias-conflicting samples and major-
ity bias-aligned samples. Zhang et al. [34] demonstrates
that the deteriorated OOD generalization is potentially at-
tributed to the distance gap between same-class representa-
tions; bias-aligned representations are more closely aligned
than bias-conflicting representations, although they are gen-
erated from the same-class samples. We hypothesized
that well-designed pruning masks could alleviate such geomet-
rical misalignment. Specifically, ideal weight sparsifica-
tion may guide each latent dimension to be independent of
spurious attributes, thereby preventing representations from
being misaligned with spuriously correlated latent dimen-
sions. This motivates us to explore pruning masks by con-
trastive learning. (Related illustrative example in appendix)

Following the conventional notations of contrastive
learning, we denote \(f_{enc} : \mathcal{X} \rightarrow \mathbb{R}^{n \times 1} \) as an encoder

7933
parameterized by $W = (W_1, \ldots, W_{L-1})$ which maps samples into the representations at penultimate layer. Let $f_{W_L}^{\text{cls}}: \mathbb{R}^{n_u} \rightarrow \mathbb{R}^C$ be the classification layer parameterized by W_L. Then $f_W(x) = f_{W_L}^{\text{cls}}(f_{W}^{\text{enc}}(x)), \forall x \in \mathcal{X}$. We similarly define f_{menc} and f_{mc}. For the i-th sample x_i, let $z_i(W) = \text{norm}(f_W(x_i))$ be the normalized representations lies on the unit hypersphere, and similarly define $z_i(m \odot W)$. We did not consider projection networks [3, 18] for architectural simplicity. Given index subsets of training samples $\mathcal{V}, \mathcal{V}^+$, the supervised contrastive loss [18] function is defined as follows:

$$
\ell_{\text{con}}(\mathcal{V}, \mathcal{V}^+; W) = \sum_{i \in \mathcal{V}} \frac{-1}{|\mathcal{V}^+(y_i)|} \sum_{j \in \mathcal{V}^+(y_i)} \log \frac{\exp(\langle z_i(W) \cdot z_j(W) \rangle / \tau)}{\sum_{a} \exp(\langle z_i(W) \cdot z_a(W) \rangle / \tau)},
$$

(16)

where $a \in \mathcal{V} \setminus \{i\}$, $\tau > 0$ is a temperature hyperparameter, and $\mathcal{V}^+(y_i) = \{k \in \mathcal{V}^+: y_k = y_i, k \neq i\}$ indicates the index set of samples with target label y_i. Then, we define the debiased alignment loss as follows:

$$
\ell_{\text{align}}\left(\{x_i, y_i\}_{i=1}^{|\mathcal{S}|}; \tilde{W}, \Theta\right) = \mathbb{E}_{m \sim G(\Theta)} \left[\ell_{\text{con}}(S_{bc}, S; m \odot \tilde{W}) + \ell_{\text{con}}(S_{bc}, S_{bc}; m \odot \tilde{W}) \right],
$$

(17)

where the expectation is approximated with Monte Carlo estimates as in (14). Intuitively, (17) reduces the gap between bias-conflicting samples and others (first term), while preventing bias-aligned samples from being aligned too close each other (second term, more discussions in appendix).

Finally, our debiased loss in (11) is defined as follows:

$$
\ell_{\text{debias}}(S; \tilde{W}, \Theta) = \ell_{\text{WCE}}(S; \tilde{W}, \Theta) + \lambda_{\text{align}} \ell_{\text{align}}(S; \tilde{W}, \Theta),
$$

(18)

where $\lambda_{\text{align}} > 0$ is a balancing hyperparameter.

Fine-tuning after pruning After solving (11) by gradient-descent optimization, we can obtain the pruning parameters Θ^*. This allows us to uncover the structure of unbiased subnetworks with binary weight masks $m^* = \{m_1^*, \ldots, m_L^*\}$, where $m_i^* = \{\mathbb{I}(\sigma(\Theta_i^{*}) > 1/2) \mid 1 \leq i \leq n_i\}, \forall i \in \{1, \ldots, L\}$, and n_i is a dimensionality of the i-th weight. After pruning, we finetune the survived weights $\tilde{W} = m^* \odot \tilde{W}$ using ℓ_{WCE} in (14) and $\lambda_{\text{align}} \ell_{\text{align}}$ in (17). Interestingly, we empirically found that the proposed approach works well without the reset [8] (Related experiments in Section 5). Accordingly, we resume the training while fixing the unpruned pretrained weights. The pseudocode of DCWP is provided in Algorithm 1.

Algorithm 1 Debiased Contrastive Weight Pruning (DCWP)

1: Input: Dataset $D = \{(x_i, y_i)\}_{i=1}^{|S|}$, pruning parameters Θ, Training iterations T_1, T_2, T_3.
2: Output: Trained pruning parameters Θ^* and finetuned weights W^*.
3: Stage 1. Mining debiased samples
4: Update the weights of bias-capturing network W_b on D for T_1 iterations.
5: Pretrain the main network on D. Denote the pretrained weights as \tilde{W}.
6: for $t = 1$ to T_2 do
7: Update Θ with $\ell_{\text{debias}}(S; \tilde{W}, \Theta) + \lambda_{\text{align}} \ell_{\text{align}}$ on D for T_3 iterations.
8: end for
9: Prune out weight as $\tilde{W} = \tilde{W} \odot \mathbb{I}(\Theta^* > 0)$.
10: Update \tilde{W} with ℓ_{WCE} and $\lambda_{\text{align}} \ell_{\text{align}}$ on D for T_3 iterations.

Table 1. Unbiased test accuracy evaluated on CMNIST, CIFAR10-C and bias-conflict test accuracy evaluated on BFFHQ. Models requiring supervisions on dataset bias are denoted with \checkmark, while others are denoted with \times. Results are averaged on 4 different random seeds.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Ratio (%)</th>
<th>ERM</th>
<th>EndD</th>
<th>Rebias</th>
<th>MRM</th>
<th>LiF</th>
<th>DisEnt</th>
<th>DCWP</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMNIST</td>
<td>0.5</td>
<td>62.36</td>
<td>84.32</td>
<td>69.12</td>
<td>60.98</td>
<td>83.73</td>
<td>96.74</td>
<td>93.41</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>81.73</td>
<td>94.98</td>
<td>84.65</td>
<td>80.42</td>
<td>88.44</td>
<td>93.15</td>
<td>95.98</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>89.33</td>
<td>97.01</td>
<td>91.96</td>
<td>89.31</td>
<td>92.67</td>
<td>95.15</td>
<td>97.16</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>95.22</td>
<td>98.00</td>
<td>96.74</td>
<td>95.23</td>
<td>94.90</td>
<td>96.76</td>
<td>98.02</td>
</tr>
<tr>
<td>CIFAR10-C</td>
<td>0.5</td>
<td>22.02</td>
<td>23.93</td>
<td>21.73</td>
<td>23.92</td>
<td>27.02</td>
<td>27.86</td>
<td>35.90</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>28.00</td>
<td>27.61</td>
<td>28.09</td>
<td>27.77</td>
<td>31.44</td>
<td>34.62</td>
<td>41.56</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>34.63</td>
<td>36.62</td>
<td>35.57</td>
<td>33.53</td>
<td>38.49</td>
<td>41.95</td>
<td>49.01</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>45.66</td>
<td>43.67</td>
<td>48.22</td>
<td>47.00</td>
<td>46.16</td>
<td>49.15</td>
<td>56.17</td>
</tr>
<tr>
<td>BFFHQ</td>
<td>0.5</td>
<td>52.25</td>
<td>59.80</td>
<td>54.90</td>
<td>54.75</td>
<td>56.50</td>
<td>55.50</td>
<td>60.35</td>
</tr>
</tbody>
</table>

Table 2. Worst-group and average test accuracies on CelebA (Blonde). (\checkmark, \times) here represents $\mathbb{I}(\alpha = (6, 4))$ (w/ and w/o pruning) in Table 3, respectively, which shows the impacts of pruning.

<table>
<thead>
<tr>
<th>Models</th>
<th>ERM</th>
<th>EndD</th>
<th>JTT [22]</th>
<th>DCWP (\checkmark)</th>
<th>DCWP (\times)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worst-group</td>
<td>47.02</td>
<td>65.26</td>
<td>76.80</td>
<td>67.85</td>
<td>79.30</td>
</tr>
<tr>
<td>Average</td>
<td>97.80</td>
<td>67.88</td>
<td>93.98</td>
<td>95.89</td>
<td>94.50</td>
</tr>
</tbody>
</table>
NIST), Corrupted CIFAR-10 (CIFAR10-C), Biased FFHQ (BFFHQ) with varying ratio of bias-conflicting samples, i.e., bias ratio. We report unbiased accuracy [20, 25] on the test set, which includes a balanced number of samples from each data group. We also report bias-conflict accuracy for some experiments, which is the average accuracy on bias-conflicting samples included in an unbiased test set. Specifically, we report the bias-conflict accuracy on BFFHQ in which half of the unbiased test samples are bias-aligned, while the model with the best-unbiased accuracy is selected (Unbiased accuracy in Table 4). For CelebA (blonde) [14, 27], we report worst-group and average accuracy following [27] considering that abundant samples are (blonde) [14, 27], we report worst-group and average accuracy following [27] considering that abundant samples are included in (Blonde Hair=0, Male=0) bias-conflicting group. We use the same data splits from [14].

Baselines We compare DCWP with vanilla network trained by ERM, and the following state-of-the-art debiasing approaches: EnD [30], Rebias [1], MRM [33], LfF [25], JTT [22] and DisEnt [20]. EnD relies on the annotations on the spurious attribute of training samples, i.e., bias labels. Re-bias relies on prior knowledge about the type of dataset bias (e.g., texture). MRM, LfF, JTT and DisEnt do not presume such bias labels or prior knowledge about dataset bias. Notably, MRM is closely related to DCWP where it probes the unbiased functional subnetwork with standard cross entropy. Details about other simulation settings are provided in Supplementary Material.

5.2. Evaluation results

As shown in Table 1, we found that DCWP outperforms other state-of-the-art debiasing methods by a large margin. Moreover, the catastrophic pitfalls of the existing pruning method become evident, where MRM fails to search for unbiased subnetworks. It underlines that the proposed approach for utilizing bias-conflicting samples plays a pivotal role in discovering unbiased subnetworks.

5.3. Quantitative analyses

Ablation studies To quantify the extent of performance improvement achieved by each introduced module, we analyzed the dependency of model performance on: (a) pruning out spurious weights following the trained parameters, (b) using alignment loss or (c) oversampling identified bias-conflicting samples when training Θ and \tilde{W}. To emphasize the contribution of each module, we intentionally use an SGD optimizer which results in lower baseline accuracy (and for other CMNIST experiments in this subsection as well). Table 3 shows that every module plays an important role in OOD generalization, while (a) pruning contributes significantly comparing (1→2, +7.19%), (3→5, +11.59%) or (4→6, +8.68%).

Dependency on bias-capturing models To evaluate the reliability of DCWP, we compare different version of DCWP which does not rely on the dataset-tailored mining algorithms. We posit that early stopping [22] is an easy plug-and-play method to train the bias-capturing model in general. Thus we newly train DCWP$_{ERM}$ which collects bias-conflicting samples by using the early-stopped ERM model. Table 4 shows that DCWP$_{ERM}$ outperforms other baselines even though the precision, the fraction of samples in S_{bc} that are indeed bias-conflicting, or recall, the fraction of the bias-conflicting samples that are included in S_{bc}, were significantly dropped. It implies that DCWP may perform reasonably well with the limited number and quality of bias-conflicting samples.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Model</th>
<th>Accuracy (%)</th>
<th>Bias alignment</th>
<th>Bias-conflict</th>
<th>Unbiased</th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIFAR10-C</td>
<td>DisEnt</td>
<td>94.33</td>
<td>91.68</td>
<td>80.04</td>
<td>89.40</td>
<td>86.96</td>
<td>70.99</td>
</tr>
<tr>
<td>BFFHQ</td>
<td>DCWP$_{ERM}$</td>
<td>99.45</td>
<td>98.85</td>
<td>96.05</td>
<td>89.80</td>
<td>88.39</td>
<td>79.28</td>
</tr>
</tbody>
</table>

Table 3. Ablation study on CMNIST (Bias ratio=1%). Unbiased accuracy is reported. Index 2 uses ℓ_{CE} for retraining. Index 3, 4 does not conduct pruning and fine-tune the pretrained weights \tilde{W} by oversampling minorities or using alignment loss.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Model</th>
<th>Accuracy (%)</th>
<th>Bias alignment</th>
<th>Bias-conflict</th>
<th>Unbiased</th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIFAR10-C</td>
<td>DisEnt</td>
<td>94.33</td>
<td>91.68</td>
<td>80.04</td>
<td>89.40</td>
<td>86.96</td>
<td>70.99</td>
</tr>
<tr>
<td>BFFHQ</td>
<td>DCWP$_{ERM}$</td>
<td>99.45</td>
<td>98.85</td>
<td>96.05</td>
<td>89.80</td>
<td>88.39</td>
<td>79.28</td>
</tr>
</tbody>
</table>

Table 4. Robustness dependency of DCWP on the performance of bias-capturing models. We set the bias ratio as 1% for CIFAR10-C. Results are averaged on 4 different random seeds.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Model</th>
<th>Accuracy (%)</th>
<th>Bias alignment</th>
<th>Bias-conflict</th>
<th>Unbiased</th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIFAR10-C</td>
<td>DisEnt</td>
<td>94.33</td>
<td>91.68</td>
<td>80.04</td>
<td>89.40</td>
<td>86.96</td>
<td>70.99</td>
</tr>
<tr>
<td>BFFHQ</td>
<td>DCWP$_{ERM}$</td>
<td>99.45</td>
<td>98.85</td>
<td>96.05</td>
<td>89.80</td>
<td>88.39</td>
<td>79.28</td>
</tr>
</tbody>
</table>

Do we need to reset weights? While it becomes widespread wisdom that remaining weights should be reset to their initial ones from the original network after pruning [8], we analyze whether such reset is also required for the proposed pruning framework. We compared the training dynamics of different models such as: (1) ERM model, (2) MRM$_{debias}$ which solves (11) instead of (12) to obtain the weight pruning masks, and (3) DCWP. Note that MRM$_{debias}$ reset the unpruned weights to its initialization after pruning. Figure 2a shows that although MRM$_{debias}$ makes a considerable advance, weight reset inevitably limits the performance gain. Moreover, finetuning the biased model significantly improves the generalization performance within only a few iterations, which implies that the proposed neural pruning can further boost the accuracy.
Figure 2. (a) Comparison study on finetuning and weight resetting (CMNIST, bias ratio=1%). For DCWP, after pretraining weights for 2000 iterations, we pause and start training pruning parameters (vertical dotted line in the figure). After convergence, we mask out and finetune weights for another 1000 iterations. For MRM debias, we reset the unpruned weight to its initialization and retrain for 3000 iterations. (b) Sensitivity analysis on the training iterations for pruning parameter Θ. Bias ratio=1% for both CMNIST and CIFAR10-C. Bias-conflict accuracy is reported for BFFHQ.

Sensitivity analysis on training iterations We also analyzed the hyperparameter sensitivity on the training iterations of the pruning parameter Θ. The unbiased test accuracy is evaluated with weight pruning masks generated by Θ trained for $\{500, 1000, 1500, 2000\}$ iterations on each dataset. Figure 2b shows that the accuracy increases as more (potentially biased) weights are pruned out. It implies that the proposed method can compress the networks to a substantial extent while significantly improving the OOD generalization performance.

Visualization of learned latent representations. We visualized latent representations of unbiased test samples in CMNIST after (a) pretraining, (b) pruning, and (c) finetuning. Note that we did not reset or finetune the weights in (b). As reported in Figure 3, biased representations in (a) are misaligned along with bias labels as discussed in section 4. However, after pruning, the representations were well-aligned with respect to the class of digits even without modifying the values of pretrained weights. It implies that the geometrical misalignment of representations can be addressed by pruning spurious weights while finetuning with ℓ_{debias} can further improve the generalizations.

6. Conclusion

This paper presented a novel functional subnetwork probing method for OOD generalization. Our goal was to find a winning functional lottery ticket [33], which can achieve better OOD performance compared to its counterpart full network, given a highly biased dataset in practice. We provided theoretical insights and empirical evidence to show that the minority samples provide an important clue for probing the optimal unbiased subnetworks. Simulations on various benchmark datasets demonstrated that our model significantly outperforms state-of-the-art debiasing methods. The proposed method is memory efficient and potentially compatible with many other debiasing methods.

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2019M3E5D2A01066267, NRF-2020R1A2B503001980), Institute for Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (No. 2017-0-00451), KAIST Key Research Institute (Interdisciplinary Research Group) Project and Field-oriented Technology Development Project for Customs Administration through National Research Foundation of Korea (NRF) funded by the Ministry of Science & ICT and Korea Customs Service(**NRF-2021M3I1A1097938**).
References

[16] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander Madry. Adversarial examples are not bugs, they are features. Advances in neural information processing systems, 32, 2019. 4

