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Abstract

Neural networks are often biased to spuriously corre-
lated features that provide misleading statistical evidence
that does not generalize. This raises an interesting ques-
tion: “Does an optimal unbiased functional subnetwork ex-
ist in a severely biased network? If so, how to extract such
subnetwork?” While empirical evidence has been accumu-
lated about the existence of such unbiased subnetworks,
these observations are mainly based on the guidance of
ground-truth unbiased samples. Thus, it is unexplored how
to discover the optimal subnetworks with biased training
datasets in practice. To address this, here we first present
our theoretical insight that alerts potential limitations of
existing algorithms in exploring unbiased subnetworks in
the presence of strong spurious correlations. We then fur-
ther elucidate the importance of bias-conflicting samples
on structure learning. Motivated by these observations, we
propose a Debiased Contrastive Weight Pruning (DCWP)
algorithm, which probes unbiased subnetworks without ex-
pensive group annotations. Experimental results demon-
strate that our approach significantly outperforms state-of-
the-art debiasing methods despite its considerable reduc-
tion in the number of parameters.

1. Introduction
While deep neural networks have made substantial

progress in solving challenging tasks, they often undesir-
ably rely on spuriously correlated features or dataset bias,
if present, which is considered one of the major hurdles in
deploying models in real-world applications. For example,
consider recognizing desert foxes and cats from natural im-
ages. If the background scene (e.g., a desert) is spuriously
correlated to the type of animal, the neural networks might
use the background information as a shortcut to classifica-
tion, resulting in performance degradation in different back-
grounds (e.g., a desert fox in the house).

To investigate the origin of the spurious correlations, this
paper considers shortcut learning as a fundamental architec-

tural design issue of neural networks. Specifically, if any
available information channels in deep networks’ structure
could transmit the information of spuriously correlated fea-
tures (spurious features from now on), networks would ex-
ploit those features as long as they are sufficiently predic-
tive. It naturally follows that pruning weights on spurious
features can purify the biased latent representations, thereby
improving performances on bias-conflicting samples1. We
conjecture that this neural pruning may improve the gener-
alization of the network in a way that reduces the effective
dimension of spurious features, considering that the failure
of Out-of-Distribution (OOD) generalization may arise due
to high-dimensional spurious features [24, 31].

Recently, Zhang et al. [33] has empirically demonstrated
the existence of subnetworks that are less susceptible to
spurious features. Based on the modular property of neu-
ral networks [5], they prune out weights that are closely
related to the spurious attributes. While [33] affords us
valuable insights on the importance of neural architectures,
the study has limitation in that such neural pruning requires
sufficient number of ground-truth bias-conflicting samples.
Thus, how to discover the optimal subnetworks in practice
when the dataset is highly biased?

To address this, we first present a simple theoretical ob-
servation that reveals the limitations of existing substruc-
ture probing methods in searching unbiased subnetworks.
Specifically, we reveal that there exists an unavoidable gen-
eralization gap in the subnetworks obtained by standard
pruning algorithms in the presence of strong spurious corre-
lations. Our analysis also shows that trained models may in-
evitably rely on the spuriously correlated features in a prac-
tical training setting with finite training time and a number
of samples.

In addition, we show that sampling more bias-conflicting
data makes it possible to identify spurious weights. Specifi-
cally, bias-conflicting samples require that the weights as-

1The bias-aligned samples refer to data with a strong correlation be-
tween (potentially latent) spurious features and target labels (e.g., cat in
the house). The bias-conflicting samples refer to the opposite cases where
spurious correlations do not exist (e.g., cat in the desert).

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

7929



Figure 1. Concept: We demonstrate an inevitable generalization gap of subnetworks obtained by standard pruning methods including [33].
Based on these observations, we design a novel subnetwork probing framework by fully exploiting unbiased samples.

sociated with spurious features should be pruned out as
the spurious features do not help predict bias-conflicting
samples. Our theoretical observations suggest that balanc-
ing the ratio between the number of bias-aligned and bias-
conflicting samples is crucial in finding the optimal unbi-
ased subnetworks.

In practice, the dataset may severely lack diversity for
bias-conflicting samples due to the potential pitfalls in data
collection protocols or human prejudice. Since it is of-
ten highly laborious to supplement enough bias-conflicting
samples, we propose a novel debiasing scheme called De-
biased Contrastive Weight Pruning (DCWP) that uses the
oversampled bias-conflicting data to search unbiased sub-
networks.

As shown in Fig. 1, DCWP is comprised of two stages:
(1) identifying the bias-conflicting samples without expen-
sive annotations on spuriously correlated attributes, and (2)
training the pruning parameters to obtain weight pruning
masks with the sparsity constraint and debiased loss func-
tion. Here, the debiased loss includes a weighted cross-
entropy loss for the identified bias-conflicting samples and
an alignment loss to further reduce the geometrical align-
ment gap between bias-aligned and bias-conflicting samples
within each class.

We demonstrate that DCWP consistently outperforms
state-of-the-art debiasing methods across various biased
datasets, including the Color-MNIST [21, 25], Corrupted
CIFAR-10 [13], Biased FFHQ [19] and CelebA [23], even
without direct supervision on the bias type. Our approach
improves the accuracy on the unbiased evaluation dataset
by 86.74% → 93.41%, 27.86% → 35.90% on Colored-
MNIST and Corrupted CIFAR-10 compared to the second
best model, respectively, even when 99.5% of samples are
bias-aligned.

2. Related works
Spurious correlations. A series of empirical works have

shown that the deep networks often find shortcut solutions
relying on spuriously correlated attributes, such as the tex-

ture of image [10], language biases [12], or sensitive vari-
ables such as ethnicity or gender [7, 26]. Such behavior is
of practical concern because it deteriorates the reliability of
deep networks in sensitive applications like healthcare, fi-
nance, and legal services [4].

Debiasing frameworks. Recent studies to train a debi-
ased network robust to spurious correlations can be roughly
categorized into approaches (1) leveraging annotations of
spurious attributes, i.e., bias label [27, 32], (2) presuming
specific type of bias, e.g., texture [1, 9] or (3) without using
explicit kinds of supervisions on dataset bias [20, 25]. The
authors in [15, 27] optimize the worst-group error by using
training group information. For practical implementation,
reweighting or subsampling protocols are often used with
increased model regularization [28]. Liu et al.; Sohoni et
al. [22, 29] extend these approaches to the settings without
expensive group annotations. Goel et al.; Kim et al. [11,19]
provide bias-tailored augmentations to balance the major-
ity and minority groups. In particular, these approaches
have mainly focused on better approximation and regular-
ization of worst-group error combined with advanced data
sampling, augmentation, or retraining strategies.

Studying impacts of neural architectures. Recently,
the effects of deep neural network architecture on gener-
alization performance have been explored. Diffenderfer et
al. [6] employ recently advanced lottery-ticket-style prun-
ing algorithms [8] to design the compact and robust network
architecture. Bai et al. [2] directly optimize the neural ar-
chitecture in terms of accuracy on OOD samples. Zhang et
al. [33] demonstrate the effectiveness of pruning weights on
spurious attributes, but the solution for discriminating such
spurious weights lacks robust theoretical justifications, re-
sulting in marginal performance gains. To fully resolve the
above issues, we carry out a theoretical case study, and build
a novel pruning algorithm that distills the representations to
be independent of the spurious attributes.
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3. Theoretical insights
3.1. Problem setup

Consider a supervised setting of predicting labels Y ∈ Y
from input samples X ∈ X by a classifier fθ : X → Y
parameterized by θ ∈ Θ. Following [33], let (Xe, Y e) ∼
P e, where Xe ∈ X and Y e ∈ Y refer to the input random
variable and the corresponding label, respectively, and e ∈
E = {1, 2, . . . E} denotes the index of environment, P e is
the corresponding distribution, and the set E corresponds to
every possible environments. We further assume that E is
divided into training environmments Etrain and unseen test
environments Etest, i.e. E = Etrain ∪ Etest.

For a given a loss function ℓ : X × Y × Θ → R+, the
standard training protocol for the empirical risk minimiza-
tion (ERM) is to minimize the expected loss with a training
environment e ∈ Etrain:

θ̂ERM = argmin
θ

E(Xe,Y e)∼P̂ e

[
ℓ(Xe, Y e; θ)

]
, (1)

where P̂ e is the empirical distribution over the training data.
Our goal is to learn a model with good performance on
OOD samples of e ∈ Etest.

3.2. Motivating example

We conjecture that neural networks trained by ERM in-
discriminately rely on predictive features, including those
spuriously correlated ones [31].

To verify this conjecture, we present a simple binary-
classification example (Xe, Y e) ∼ P e, where Y e ∈ Y =
{−1, 1} represents the corresponding target label, and a
sample Xe ∈ X = {−1, 1}D+1 ∈ RD+1 is constituted
with both the invariant feature Ze

inv ∈ {−1, 1} and spu-
rious features Ze

sp ∈ {−1, 1}D, i.e. Xe = (Ze
inv,Z

e
sp).

Suppose, furthermore, Ze
sp,i denote the i-th spurious feature

component of Ze
sp. Note that we assume D ≫ 1 to simulate

the model heavily relies on spurious features Ze
sp [24, 33].

We consider the setting where the training environment
e ∈ Etrain is highly biased. In other words, we suppose that
Ze
inv = Y e, and each of the i-th spurious feature compo-

nent Ze
sp,i is independent and identically distributed (i.i.d)

Bernoulli variable: i.e. Ze
sp,i independently takes a value

equal to Y e with a probability pe and −Y e with a prob-
ability 1 − pe, where pe ∈ (0.5, 1],∀e ∈ Etrain. Note
that pe → 1 as the environment is severely biased. A
test environment e ∈ Etest is assumed to have pe = 0.5,
which implies that the spurious feature is totally indepen-
dent with Y e. Then we introduce a linear classifier f pa-
rameterized by a weight vector w = (winv,wsp) ∈ RD+1,
where winv ∈ R and wsp ∈ RD. In this example, we
consider a class of pretrained classifiers parameterized by
w̃(t) =

(
w̃inv(t), w̃sp,1(t), . . . , w̃sp,D(t)

)
, where t < T is

a finite pretraining time for some sufficiently large T . Time
t will be often omitted in notations for simplicity.

Our goal is to obtain the optimal sparse classifier with a
highly biased training dataset. To achieve this, we introduce
a binary weight pruning mask m as m = (minv,msp) ∈
{0, 1}D+1 for the pretrained weights, which is a signifi-
cant departure from the theoretical setting in [33]. Specif-
ically, let minv ∼ Bern(πinv), where πinv and 1 − πinv

represents the probability of preserving (i.e. minv = 1)
and pruning out (i.e. minv = 0), respectively. Simi-
larly, let msp,i ∼ Bern(πsp,i),∀i. Then, our optimiza-
tion goal is to estimate the pruning probability parameter
π = (π1, . . . , πD+1) = (πinv, πsp,1, . . . , πsp,D), where
m ∼ P (π) is a mask sampled with probability parameters
π. Accordingly, our main loss function for the pruning pa-
rameters given the environment e can be defined as follows:

ℓe(π) =
1

2
EXe,Y e,m[1− Y eŶ e]

=
1

2
EXe,Y e,m

[
1− Y e · sgn

(
w̃T (Xe ⊙m)

)]
,

(2)

where Ŷ e is the prediction of binary classifier, w̃ is the pre-
trained weight vector, sgn(·) represents the sign function,
and ⊙ represents element-wise product.

We first derive the upper-bound of the training loss ℓe(π)
to illustrate the difficulty of learning optimal pruning pa-
rameters in a biased data setting. The proof can be found in
Supplementary Material.

Theorem 1. (Training and test bound) Assume that pe >
1/2 in the biased training environment e ∈ Etrain. Define
w̃(t) as weights pretrained for a finite time t < T . Then
the upper bound of the error of training environment w.r.t.
pruning parameters π is given as:

ℓe(π) ≤ 2 exp

(
−
2
(
πinv + (2pe − 1)

∑D
i=1 αi(t)πsp,i

)2
4
∑D

i=1 αi(t)2 + 1

)
,

(3)
where the weight ratio αi(t) = w̃sp,i(t)/w̃inv(t) is
bounded below some positive constant. Given a test envi-
ronment e ∈ Etest with pe = 1

2 , the upper bound of the
error of test environment w.r.t. π is given as:

ℓe(π) ≤ 2 exp
(
− 2π2

inv

4
∑D

i=1 αi(t)2 + 1

)
, (4)

which implies that there is an unavoidable gap between
training bound and test bound.

The detailed proof of Theorem 1 is provided in the sup-
plementary material. This mismatch of the bounds is at-
tributed to the contribution of πsp,i on the training bound
(3). Intuitively, the networks prefer to preserve both w̃inv

and w̃sp,i in the presence of strong spurious correlations due
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to the inherent sensitivity of ERM to all kinds of predictive
features [16, 31]. This behavior is directly reflected in the
training bound, where increasing either πinv or πsp,i, i.e.,
the probability of preserving weights, decreases the train-
ing bound. This inertia of spurious weights may prevent
themselves from being primarily pruned against the spar-
sity constraint.

We note that the unintended reliance on spurious features
is fundamentally rooted to the positivity of the weight ratio
αi(t). In the proof of Theorem 1 in Supplementary Ma-
terial, we show some intriguing properties of αi(t): (1) If
infinitely many data and sufficient training time is provided,
the gradient flow converges to the optimal solution which is
invariant to Ze

sp, i.e., αi(t) → 0. In this ideal situation,
the gap between training and test bound is closed, thereby
guaranteeing generalizations of obtained subnetworks. (2)
However, given a finite time t < T with a strongly biased
dataset in practice, αi(t) is bounded below by some positive
constant, resulting in an inevitable generalization gap.

Theorem 1 implies that the classifier may preserve spu-
rious weights due to the lack of bias-conflicting sam-
ples, which serve as counterexamples that spurious features
themselves fail to explain. It motivates us to analyze the
training bound in another environment η where we can sys-
tematically augment bias-conflicting samples. Specifically,
consider Xη = (Zη

inv,Z
η
sp), where Zη

inv = Y η and mix-
ture distribution of Zη

sp given Y η = y is defined in an ele-
ment wise as follows:

P η
mix(Z

η
sp,i | Y

η = y) =ϕP η
debias(Z

η
sp,i | Y

η = y)+

(1− ϕ)P η
bias(Z

η
sp,i | Y

η = y),

(5)

where ϕ is a scalar mixture weight,

P η
debias(Z

η
sp,i | Y

η = y) =

{
1, if Zη

sp,i = −y

0, if Zη
sp,i = y

(6)

is a debiasing distribution to weaken the correlation be-
tween Y η and Zη

sp,i by setting the value of Zη
sp,i as −Y η ,

and

P η
bias(Z

η
sp,i | Y

η = y) =

{
pη, if Zη

sp,i = y

1− pη, if Zη
sp,i = −y

(7)

is a biased distribution similarly defined in the previous en-
vironment e ∈ Etrain. Given this new environment η, the
degree of spurious correlations can be controlled by ϕ. This
leads to a training bound as follow:

Theorem 2. (Training bound with the mixture distribution)
Assume that the defined mixture distribution P η

mix is biased,
i.e., for all i ∈ {1, . . . , D},

P η
mix(Z

η
sp,i = −y | Y e = y) ≤ P η

mix(Z
η
sp,i = y | Y η = y).

(8)

Then, ϕ satisfies 0 ≤ ϕ ≤ 1 − 1
2pη . Then the upper bound

of the error of training environment η w.r.t. the pruning
parameters is given by

ℓη(π) ≤

2 exp

(
−
2(πinv + (2pη(1− ϕ)− 1)

∑D
i=1 αi(t)πsp,i)

2

4
∑D

i=1 αi(t)2 + 1

)
.

(9)

Furthermore, when ϕ = 1− 1
2pη , the mixture distribution is

perfectly debiased, and we have

ℓη(π) ≤ 2 exp
(
− 2π2

inv

4
∑D

i=1 αi(t)2 + 1

)
, (10)

which is equivalent to the test bound in (4).

The detailed proof is provided in the supplementary ma-
terial. Our new training bound (9) suggests that the signif-
icance of πsp,i on training bound decreases as ϕ progres-
sively increases, and at the extreme end with ϕ = 1 − 1

2pη ,
it can be easily shown that P η

mix(Z
η
sp,i | Y η = y) = 1

2 for
both y = 1 and y = −1 so that Zη

sp,i turns out to be ran-
dom. In other words, by plugging ϕ = 1− 1

2pη into (9), we
can minimize the gap between training and test error bound,
which guarantees the improved OOD generalization.

4. Debiased Contrastive Weight Pruning
Our theoretical observations elucidate the importance

of balancing between the bias-aligned and bias-conflicting
samples in discovering the optimal unbiased subnetworks
structure. While the true analytical form of the debiasing
distribution is unknown in practice, we aim to approximate
such unknown distribution with existing bias-conflicting
samples and simulate the mixture distribution P η

mix with
modifying sampling strategy. To this end, we propose a De-
biased Contrastive Weight Pruning (DCWP) algorithms that
learn the unbiased subnetworks structure from the original
full-size network.

Consider a L layer neural networks as a function
fW : X → RC parameterized by weights W =
{W 1, . . . ,WL}, where C = |Y| is the number of classes.
Analogous to the earlier works on pruning, we introduce bi-
nary weight pruning masks m = {m1, . . . ,mL} to model
the subnetworks as f(·;m1⊙W 1, . . . ,mL⊙WL). We de-
note such subnetworks as fm⊙W for the notational simplic-
ity. We treat each entry of ml as an independent Bernoulli
variable, and model their logits as our new pruning param-
eters Θ = {Θ1, . . . ,ΘL} where Θl ∈ Rnl and nl repre-
sents the dimensionality of the l-th layer weights W l. Then
πl,i = σ(Θl,i) denotes the probability of preserving the i-
th weight of l-th layer W l,i where σ refers to a sigmoid
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function. To enable the end-to-end training, the Gumbel-
softmax trick [17] for sampling masks together with ℓ1 reg-
ularization term of Θ is adopted as a sparsity constraint.
With a slight abuse of notations, m ∼ G(Θ) denotes a
set of masks sampled with logits Θ by applying Gumbel-
softmax trick.

Then our main optimization problem is defined as fol-
lows:

min
Θ

ℓdebias

(
{(xi, yi)}|S|

i=1; W̃ ,Θ
)
+ λℓ1

∑
l,i

|Θl,i|, (11)

where S denotes the index set of whole training sam-
ples, λℓ1 > 0 is a Lagrangian multiplier, W̃ represents
the pretrained weights and ℓdebias is our main objective
which will be illustrated later. Note that we freeze the
pretrained weights W̃ during training pruning parameters
Θ. We interchangeably use ℓdebias

(
{(xi, yi)}|S|

i=1; Θ
)

and

ℓdebias
(
S; Θ

)
in the rest of the paper. For comparison with

our formulation, we recast the optimization problem of [33]
with our notations as follows:

min
Θ

ℓ
(
{(xi, yi)}|S|

i=1; W̃ ,Θ
)
+ λℓ1

∑
l,i

|Θl,i|, (12)

where [33] uses the cross entropy (CE) loss function for ℓ.
Bias-conflicting sample mining In the first stage, we

identify bias-conflicting training samples which empower
functional modular probing. Specifically, we train a bias-
capturing model and treat an error set Sbc of the index
of misclassified training samples as bias-conflicting sample
proxies. Our framework is broadly compatible with vari-
ous bias-capturing models, where we mainly leverage the
ERM model trained with generalized cross entropy (GCE)
loss [35]:

ℓGCE(xi, yi;WB) =
1− pyi

(xi;WB)
q

q
, (13)

where q ∈ (0, 1] is a hyperparameter controlling the de-
gree of bias amplification, WB is the parameters of the
bias-capturing model, and pyi

(xi;WB) is a softmax out-
put value of the bias-capturing model assigned to the target
label yi. Compared to the CE loss, the gradient of the GCE
loss up-weights the samples with a high probability of pre-
dicting the correct target, amplifying the network bias by
putting more emphasis on easy-to-predict samples [25].

To preclude the possibility that the generalization per-
formance of DCWP is highly dependent on the behavior
of the bias-capturing model, we demonstrate in Section 5
that DCWP is reasonably robust to the degradation of ac-
curacy on capturing bias-conflicting samples. Details about
the bias-capturing model and simulation settings are pre-
sented in the supplementary material.

Upweighting Bias-conflicting samples After mining
the index set of bias-conflicting sample proxies Sbc, we treat
Sba = S \Sbc as the index set of majority bias-aligned sam-
ples. Then we calculate the weighted cross entropy (WCE)
loss ℓWCE

(
{xi, yi}|S|

i=1; W̃ ,Θ
)

as follows:

ℓWCE

(
S; W̃ ,Θ

)
:= Em∼G(Θ)

[
λupℓbc(Sbc;m, W̃ )+

ℓba(Sba;m, W̃ )
]
,

(14)

where λup ≥ 1 is an upweighting hyperparameter, and

ℓbc(Sbc;m, W̃ ) =
1

|Sbc|
∑
i∈Sbc

ℓCE(xi, yi;m⊙W̃ ), (15)

where ℓCE denotes the cross entropy loss. ℓba is defined as
similar to ℓbc.

The expectation is approximated with Monte Carlo esti-
mates, where the number of mask m sampled per iteration
is set to 1 in practice. To implement (14), we oversample
the samples in Sbc for λup times more than the samples in
Sba. This sampling strategy is aimed at increasing the mix-
ture weight ϕ of the proposed mixture distribution P η

mix in
(5), while we empirically approximate the unknown bias-
conflicting group distribution with the sample set Sbc.

Note that although simple oversampling of bias-
conflicting samples may not lead to the OOD generalization
due to the inductive bias towards memorizing a few coun-
terexamples in overparameterized neural networks [28],
such failure is unlikely reproduced in learning pruning pa-
rameters under the strong sparsity constraint. We sam-
ple new weight masks m for each training iteration in a
stochastic manner, effectively precluding the overparame-
terized networks from potentially memorizing the minority
samples. As a result, DCWP exhibits reasonable perfor-
mance even with few bias-conflicting samples.

Bridging the alignment gap by pruning To fully uti-
lize the bias-conflicting samples, we consider the sample-
wise relation between bias-conflicting samples and major-
ity bias-aligned samples. Zhang et al. [34] demonstrates
that the deteriorated OOD generalization is potentially at-
tributed to the distance gap between same-class representa-
tions; bias-aligned representations are more closely aligned
than bias-conflicting representations, although they are gen-
erated from the same-class samples. We hypothesized that
well-designed pruning masks could alleviate such geomet-
rical misalignment. Specifically, ideal weight sparsifica-
tion may guide each latent dimension to be independent of
spurious attributes, thereby preventing representations from
being misaligned with spuriously correlated latent dimen-
sions. This motivates us to explore pruning masks by con-
trastive learning. (Related illustrative example in appendix)

Following the conventional notations of contrastive
learning, we denote fenc

W : X → RnL−1 as an encoder
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parameterized by W = (W 1, . . . ,WL−1) which maps
samples into the representations at penultimate layer. Let
f cls
WL

: RnL → RC be the classification layer parameterized
by WL. Then fW (x) = f cls

WL
(fenc

W (x)),∀x ∈ X . We
similarly define fenc

m⊙W and f cls
mL⊙WL

. For the i-th sam-
ple xi, let zi(W ) = norm(fenc

W (xi)) be the normalized
representations lies on the unit hypersphere, and similarly
define zi(m ⊙ W ). We did not consider projection net-
works [3, 18] for architectural simplicity. Given index sub-
sets of training samples V,V+, the supervised contrastive
loss [18] function is defined as follows:

ℓcon(V,V+;W) =∑
i∈V

−1

|V+(yi)|
∑

j∈V+(yi)

log
exp

(
zi(W) · zj(W)/τ

)∑
a exp

(
zi(W) · za(W)/τ

) ,
(16)

where a ∈ V \ {i}, τ > 0 is a temperature hyperparameter,
and V+(yi) = {k ∈ V+ : yk = yi, k ̸= i} indicates the
index set of samples with target label yi. Then, we define
the debiased alignment loss as follows:

ℓalign

(
{xi, yi}|S|

i=1; W̃ ,Θ
)
= Em∼G(Θ)

[
ℓcon(Sbc, S;m⊙ W̃ ) + ℓcon(Sba, Sbc;m⊙ W̃ )

]
,

(17)

where the expectation is approximated with Monte Carlo
estimates as in (14). Intuitively, (17) reduces the gap
between bias-conflicting samples and others (first term),
while preventing bias-aligned samples from being aligned
too close each other (second term, more discussions in ap-
pendix).

Finally, our debiased loss in (11) is defined as follows:

ℓdebias

(
S; W̃ ,Θ

)
=ℓWCE

(
S; W̃ ,Θ

)
+

λalignℓalign

(
S; W̃ ,Θ

)
,

(18)

where λalign > 0 is a balancing hyperparameter.
Fine-tuning after pruning After solving (11) by

gradient-descent optimization, we can obtain the pruning
parameters Θ∗. This allows us to uncover the structure
of unbiased subnetworks with binary weight masks m∗ =
{m∗

1, . . . ,m
∗
L}, where m∗

l = {1(σ(Θ∗
l,i) > 1/2) |1 ≤ i ≤

nl},∀l ∈ {1, . . . , L}, and nl is a dimensionality of the l-th
weight. After pruning, we finetune the survived weights
Ŵ = m∗ ⊙ W̃ using ℓWCE in (14) and λalignℓalign in
(17). Interestingly, we empirically found that the proposed
approach works well without the reset [8] (Related experi-
ments in Section 5). Accordingly, we resume the training
while fixing the unpruned pretrained weights. The pseudo-
code of DCWP is provided in Algorithm 1.

Algorithm 1 Debiased Contrastive Weight Pruning
(DCWP)

1: Input: Dataset D = {(xi, yi)
|S|
i=1}, pruning parameters

Θ, Training iterations T1, T2, T3.
2: Output: Trained pruning parameters Θ∗ and finetuned

weights W ∗

3:
4: Stage 1. Mining debiased samples
5: Update the weights of bias-capturing network W b on

D for T1 iterations.
6: Identify Sbc and Sba.
7:
8: Stage 2. Debiased Contrastive Weight Pruning
9: Pretrain the main network on D. Denote the pretrained

weights as W̃ .
10: for t = 1 to T2 do
11: Update Θ with ℓdebias

(
S; W̃ ,Θ

)
+ λℓ1

∑
l,i |Θl,i|

as in (11).
12: end for
13: Prune out weight as Ŵ = W̃ ⊙ 1(Θ∗ > 0).
14: Update Ŵ with ℓWCE and λalignℓalign on D for T3

iterations.

Table 1. Unbiased test accuracy evaluated on CMNIST, CIFAR10-
C and bias-conflict test accuracy evaluated on BFFHQ. Models
requiring supervisions on dataset bias are denoted with ✓, while
others are denoted with ✗. Results are averaged on 4 different
random seeds.

Dataset Ratio (%) ERM EnD Rebias MRM LfF DisEnt DCWP

✗ ✓ ✓ ✗ ✗ ✗ ✗

CMNIST

0.5 62.36 84.32 69.12 60.98 83.73 86.74 93.41
1.0 81.73 94.98 84.65 80.42 88.44 93.15 95.98
2.0 89.33 97.01 91.96 89.31 92.67 95.15 97.16
5.0 95.22 98.00 96.74 95.23 94.90 96.76 98.02

CIFAR10-C

0.5 22.02 23.93 21.73 23.92 27.02 27.86 35.90
1.0 28.00 27.61 28.09 27.77 31.44 34.62 41.56
2.0 34.63 36.62 35.57 33.53 38.49 41.95 49.01
5.0 45.66 43.67 48.22 47.00 46.16 49.15 56.17

BFFHQ 0.5 52.25 59.80 54.90 54.75 56.50 55.50 60.35

Table 2. Worst-group and average test accuracies on CelebA
(Blonde). (✓, ✗) here represents Idx = (6, 4) (w/ and w/o prun-
ing) in Table 3, respectively, which shows the impacts of pruning.

Models ERM DisEnt JTT [22] DCWP (✗) DCWP (✓)

Worst-group 47.02 65.26 76.80 67.85 79.30

Average 97.80 67.88 93.98 95.89 94.50

5. Experimental results
5.1. Methods

Datasets To show the effectiveness of the proposed prun-
ing algorithms, we evaluate the generalization performance
of several debiasing approaches on Colored MNIST (CM-
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NIST), Corrupted CIFAR-10 (CIFAR10-C), Biased FFHQ
(BFFHQ) with varying ratio of bias-conflicting samples,
i.e., bias ratio. We report unbiased accuracy [20, 25] on
the test set, which includes a balanced number of sam-
ples from each data group. We also report bias-conflict
accuracy for some experiments, which is the average ac-
curacy on bias-conflicting samples included in an unbiased
test set. Specifically, we report the bias-conflict accuracy
on BFFHQ in which half of the unbiased test samples are
bias-aligned, while the model with the best-unbiased accu-
racy is selected (Unbiased accuracy in Table 4). For CelebA
(blonde) [14, 27], we report worst-group and average accu-
racy following [27] considering that abundant samples are
included in (Blonde Hair=0, Male=0) bias-conflicting
group. We use the same data splits from [14].
Baselines We compare DCWP with vanilla network trained
by ERM, and the following state-of-the-art debiasing ap-
proaches: EnD [30], Rebias [1], MRM [33], LfF [25], JTT
[22] and DisEnt [20]. EnD relies on the annotations on the
spurious attribute of training samples, i.e., bias labels. Re-
bias relies on prior knowledge about the type of dataset bias
(e.g., texture). MRM, LfF, JTT and DisEnt do not presume
such bias labels or prior knowledge about dataset bias. No-
tably, MRM is closely related to DCWP where it probes
the unbiased functional subnetwork with standard cross en-
tropy. Details about other simulation settings are provided
in Supplementary Material.

5.2. Evaluation results

As shown in Table 1, we found that DCWP outperforms
other state-of-the-art debiasing methods by a large margin.
Moreover, the catastrophic pitfalls of the existing pruning
method become evident, where MRM fails to search for
unbiased subnetworks. It underlines that the proposed ap-
proach for utilizing bias-conflicting samples plays a pivotal
role in discovering unbiased subnetworks.

5.3. Quantitative analyses

Ablation studies To quantify the extent of performance im-
provement achieved by each introduced module, we ana-
lyzed the dependency of model performance on: (a) prun-
ing out spurious weights following the trained parameters,
(b) using alignment loss or (c) oversampling identified bias-
conflicting samples when training Θ and Ŵ . To empha-
size the contribution of each module, we intentionally use
an SGD optimizer which results in lower baseline accuracy
(and for other CMNIST experiments in this subsection as
well). Table 3 shows that every module plays an important
role in OOD generalization, while (a) pruning contributes
significantly comparing (1→2, +7.19%), (3→5, +11.59%)
or (4→6, +8.68%).
Dependency on bias-capturing models To evaluate the re-
liability of DCWP, we compare different version of DCWP

Table 3. Ablation study on CMNIST (Bias ratio=1%). Unbiased
accuracy is reported. Idx = 2 uses ℓWCE only for training prun-
ing parameters Θ while using ℓCE for retraining. Idx = 3, 4
does not conduct pruning and finetune the pretrained weights W̃
by oversampling minorities or using alignment loss.

Idx (a) Pruning (b) ℓalign (c) ℓWCE Accuracy (%)

1 - - - 43.10
2 ✓ - - 50.29
3 - - ✓ 73.20
4 - ✓ ✓ 79.28
5 ✓ - ✓ 84.79
6 ✓ ✓ ✓ 87.96

which does not rely on the dataset-tailored mining algo-
rithms. We posit that early stopping [22] is an easy plug-
and-play method to train the bias-capturing model in gen-
eral. Thus we newly train DCWPERM which collects bias-
conflicting samples by using the early-stopped ERM model.
Table 4 shows that DCWPERM outperforms other baselines
even though the precision, the fraction of samples in Sbc

that are indeed bias-conflicting, or recall, the fraction of the
bias-conflicting samples that are included in Sbc, were sig-
nificantly dropped. It implies that DCWP may perform rea-
sonably well with the limited number and quality of bias-
conflicting samples.

Table 4. Robustness dependency of DCWP on the performance of
bias-capturing models. We set the bias ratio as 1% for CIFAR10-
C. Results are averaged on 4 different random seeds.

Dataset Model Accuracy Mining metrics

bias-align bias-conflict unbiased precision recall

CIFAR10-C
DisEnt 80.04 26.51 34.62 - -

DCWPERM 94.33 29.75 36.21 19.71 79.53
DCWP 91.68 35.99 41.56 85.97 74.89

BFFHQ

DisEnt 89.80 55.55 72.68 - -
LfF 96.05 56.50 76.30 - -

DCWPERM 99.45 56.90 78.20 20.18 28.39
DCWP 98.85 60.35 79.60 30.61 31.25

Do we need to reset weights? While it becomes
widespread wisdom that remaining weights should be reset
to their initial ones from the original network after prun-
ing [8], we analyze whether such reset is also required for
the proposed pruning framework. We compared the train-
ing dynamics of different models such as: (1) ERM model,
(2) MRMdebias which solves (11) instead of (12) to ob-
tain the weight pruning masks, and (3) DCWP. Note that
MRMdebias reset the unpruned weights to its initialization
after pruning. Figure 2a shows that although MRMdebias

makes a considerable advance, weight reset inevitably lim-
its the performance gain. Moreover, finetuning the bi-
ased model significantly improves the generalization per-
formance within only a few iterations, which implies that
the proposed neural pruning can further boost the accuracy
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(a) Weight reset

(b) Training iterations for Θ

Figure 2. (a) Comparison study on finetuning and weight resetting
(CMNIST, bias ratio=1%). For DCWP, after pretraining weights
for 2000 iterations, we pause and start training pruning parameters
(vertical dotted line in the figure). After convergence, we mask out
and finetune weights for another 1000 iterations. For MRMdebias,
we reset the unpruned weight to its initialization and retrain for
3000 iterations. (b) Sensitivity analysis on the training iterations
for pruning parameter Θ. Bias ratio=1% for both CMNIST and
CIFAR10-C. Bias-conflict accuracy is reported for BFFHQ.

without weight reset. This finding allows us to debias large-
scale pretrained models without retraining by simple prun-
ing and finetuning.

Sensitivity analysis on training iterations We also an-
alyzed the hyperparameter sensitivity on the training iter-
ations of the pruning parameter Θ. The unbiased test ac-
curacy is evaluated with weight pruning masks generated
by Θ trained for {500, 1000, 1500, 2000} iterations on each
dataset. Figure 2b shows that the accuracy increases as
more (potentially biased) weights are pruned out. It implies
that the proposed method can compress the networks to a
substantial extent while significantly improving the OOD
generalization performance.

Visualization of learned latent representations. We
visualized latent representations of unbiased test samples in
CMNIST after (a) pretraining, (b) pruning, and (c) finetun-
ing. Note that we did not reset or finetune the weights in
(b). As reported in Figure 3, biased representations in (a)
are misaligned along with bias labels as discussed in sec-
tion 4. However, after pruning, the representations were
well-aligned with respect to the class of digits even without

Figure 3. t-SNE visualization of representations encoded from un-
biased test samples after (a) pretraining, (b) pruning and (c) fine-
tuning (CMNIST, bias ratio=0.5%). Each point is painted follow-
ing its label (i.e., bias label in first row, and target label in second
row).

modifying the values of pretrained weights. It implies that
the geometrical misalignment of representations can be ad-
dressed by pruning spurious weights while finetuning with
ℓdebias can further improve the generalizations.

6. Conclusion
This paper presented a novel functional subnetwork

probing method for OOD generalization. Our goal was
to find a winning functional lottery ticket [33], which can
achieve better OOD performance compared to its counter-
part full network, given a highly biased dataset in practice.
We provided theoretical insights and empirical evidence to
show that the minority samples provide an important clue
for probing the optimal unbiased subnetworks. Simulations
on various benchmark datasets demonstrated that our model
significantly outperforms state-of-the-art debiasing meth-
ods. The proposed method is memory efficient and poten-
tially compatible with many other debiasing methods.
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