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Abstract

Albeit achieving high predictive accuracy across many
challenging computer vision problems, recent studies sug-
gest that deep neural networks (DNNs) tend to make over-
confident predictions, rendering them poorly calibrated.
Most of the existing attempts for improving DNN calibra-
tion are limited to classification tasks and restricted to cal-
ibrating in-domain predictions. Surprisingly, very little
to no attempts have been made in studying the calibra-
tion of object detection methods, which occupy a pivotal
space in vision-based security-sensitive, and safety-critical
applications. In this paper, we propose a new train-time
technique for calibrating modern object detection meth-
ods. It is capable of jointly calibrating multiclass confi-
dence and box localization by leveraging their predictive
uncertainties. We perform extensive experiments on several
in-domain and out-of-domain detection benchmarks. Re-
sults demonstrate that our proposed train-time calibration
method consistently outperforms several baselines in reduc-
ing calibration error for both in-domain and out-of-domain
predictions. Our code and models are available at https:
//github.com/bimsarapathiraja/MCCL

1. Introduction
Deep neural networks (DNNs) are the backbone of many

top-performing systems due to their high predictive perfor-
mance across several challenging domains, including com-
puter vision [16,17,41,45,52] and natural language process-
ing [5,7]. However, some recent works [14,15,38,47] report
that DNNs are susceptible to making overconfident predic-
tions, which leaves them miscalibrated. This not only spurs
a mistrust in their predictions, but more importantly, could
lead to disastrous consequences in several safety-critical ap-
plications, such as healthcare diagnosis [8, 43], self-driving
cars [13], and legal research tools [50]. For instance, in self-
driving cars, if the perception component wrongly detects a
stop sign as a speed limit sign with high confidence, it can
potentially lead to disastrous outcomes.

Several strategies have been proposed in the recent past
for improving model calibration. A simple calibration tech-
nique is a post-processing step that re-scales the outputs
of a trained model using parameters which are learnt on
a hold-out portion of the training set [14]. Despite being
easy to implement, these post-processing approaches are
restrictive. They assume the availability of a hold-out set,
which is not always possible in many real-world settings.
Another route to reducing calibration error is train-time cal-
ibration techniques, which intervene at the training time by
involving all model parameters. Typically train-time cali-
bration methods feature an auxiliary loss term that is added
to the application-specific loss function to regularize predic-
tions [18, 27, 33, 35].

We note that almost all prior efforts towards improving
model calibration target the task of visual image classifica-
tion. Surprisingly, little to no noticeable attempts have been
made in studying the calibration of visual object detection
models. Visual object detection methods account for a ma-
jor and critical part of many vision-based decision-making
systems. Moreover, most of the current calibration tech-
niques only aim at reducing calibration error for in-domain
predictions. However, in many realistic settings, it is likely
that, after model deployment, the incoming data distribution
could continuously change from the training data distribu-
tion. In essence, the model should be well-calibrated for
both in-domain and out-of-domain predictions.

To this end, in this paper, we aim to study the cali-
bration of (modern) deep learning-based object detection
methods. In this pursuit, we observe that, (a) object detec-
tion methods are intrinsically miscalibrated, (b) besides dis-
playing noticeable calibration errors for in-domain predic-
tions, they are also poorly calibrated for out-of-domain pre-
dictions and, (c) finally, the current calibration techniques
for classification are sub-optimal for object detection (Fig-
ure 1). Towards improving the calibration performance of
object detection methods, inspired by the train-time cali-
bration route, we propose a new train-time calibration ap-
proach aims at jointly calibrating the predictive multiclass
confidence and bounding box localization.
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Figure 1. DNN-based object detectors are inherently miscalibrated for both in-domain and out-of-domain predictions. Also, calibration
methods for image classification are sub-optimal for object detection. Our proposed train-time calibration method for object detection is
capable of reducing the calibration error (D-ECE%) of DNN-based detectors in both in-domain and out-domain scenarios.

Contributions: (1) We study the relatively unexplored di-
rection of calibrating modern object detectors and observe
that they are intrinsically miscalibrated in both in-domain
and out-of-domain predictions. Also, the existing calibra-
tion techniques for classification are sub-optimal for cali-
brating object detectors. (2) We propose a new train-time
calibration method for detection, at the core of which is
an auxiliary loss term, which attempts to jointly calibrate
multiclass confidences and bounding box localization. We
leverage predictive uncertainty in multiclass confidences
and bounding box localization. (3) Our auxiliary loss term
is differentiable, operates on minibatches, and can be uti-
lized with other task-specific loss functions. (4) We perform
extensive experiments on challenging datasets, featuring
several in-domain and out-of-domain scenarios. Our train-
time calibration method consistently reduces the calibra-
tion error across DNN-based object detection paradigms,
including FCOS [45] and Deformable DETR [52], both in
in-domain and out-of-domain predictions.

2. Related works

Post-processing calibration methods: A simple approach
to calibration is a post-processing step, which re-scales the
outputs of a trained model using some parameters that are
learned on the hold-out portion of the training set. Tem-
perature scaling (TS), which is an adaptation of Platt scal-
ing [40], is a prominent example. It divides the logits (pre-
softmax activations) from a trained network with a fixed
temperature parameter (T > 0) that is learned using a hold-
out validation set. An obvious limitation of TS is that it
decreases the confidence of the whole (confidence) vector,
including the confidence of the correct class. Beyond us-
ing a single temperature parameter (T), some works uses
a matrix (M) to to transform the logits. The matrix (M) is
also learnt using a hold-out validation set. Dirichlet cali-
bration (DC) employed Dirichlet distributions to generalize
the Beta-calibration [26] method, originally proposed for

binary classification, to a multi-class setting. DC is real-
ized as an extra layer in a neural network whom input is
log-transformed class probabilities. The work of [3] pro-
posed a differentiable approximation of expected calibra-
tion error (ECE) and utilizes it in a meta-learning frame-
work to obtain well-calibrated models. Islam et al. [23]
achieved class-distribution-aware calibration using temper-
ature scaling (TS) and label smoothing (LS) [44] for long-
tailed visual recognition. Majority of the aforementioned
work address in-domain calibration. Recently, [46] pro-
posed to gradually perturb the hold-out validation set for
simulating out-of-domain prior to learning the temperature
parameter (T). Despite being easy-to-implement and effec-
tive, TS methods require a hold-out validation set, which is
not readily available in many realistic scenarios.

Train-time calibration techniques: Another approach to
improving model calibration are train-time calibration tech-
niques. Brier score is considered one of the earliest attempts
for calibrating binary probabilistic forecast [4]. Some re-
cent works report that models trained with negative log-
likelihood (NLL) are prone to making overconfident pre-
dictions. A dominant class in train-time methods typically
propose an auxiliary loss term that is used in conjunction
with NLL. For instance, [39] utilized the Shanon entropy
to penalize overconfident predictions. Similarly, Muller et
al. [36] showed that label smoothing [44] also improves cal-
ibration. Recently, [33] introduced a margin into the la-
bel smoothing technique to obtain well-calibrated models.
While re-visiting focal loss (FL) [32], [35] demonstrated
that it is capable of implicitly calibrating DNNs. Liang et
al. [30] incorporated the difference between confidence and
accuracy (DCA) as an auxiliary loss term with the Cross-
Entropy loss to achieve model calibration. Likewise, [27]
developed MMCE loss for calibrating DNNs, which is for-
mulated using a reproducible kernel in Hilbert space [12].
Most of these methods only calibrate the confidence of the
predicted label ignoring the confidences of non-predicted
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classes. Recently, [18] proposed an auxiliary loss term for
calibrating the whole confidence vector.
Probabilistic and non-probabilistic methods: Many
probabilistic approaches stem from Bayesian formalism [1],
which assumes a prior distribution over the neural network
(NN) parameters, and training data is leveraged to obtain the
posterior distribution over the NN parameters. This poste-
rior is then used to estimate the predictive uncertainty. The
exact Bayesian inference is computationally intractable,
consequently, we can see approximate inference methods,
including variational inference [2,34], and stochastic expec-
tation propagation [20]. A non-probabilistic approach is en-
semble learning that can be used to quantify uncertainty; it
uses the empirical variance of the network predictions. En-
sembles can be created with the differences in model hyper-
parameters [47], random initialization of weights and ran-
dom shuffling of training data [29], dataset shift [38], and
Monte Carlo (MC) dropout [10, 51]. In this work, we pro-
pose to use MC dropout [10] to quantify predictive uncer-
tainty both in class confidences and the bounding localiza-
tion. It allows creating a distribution over both outputs from
a typical DNN-based object detector. The naive implemen-
tation of MC dropout can incur high computational cost for
large datasets and network architectures during model train-
ing. So, we resort to an efficient implementation of MC
dropout that greatly reduces this computational overhead.

We note that, almost all prior work for addressing cali-
bration is targeted at classification task [14, 18, 26, 27, 33],
and no noticeable study has been published that strives to
improve the calibration of object detection methods, espe-
cially for out-of-domain predictions. In this paper, we ex-
plore the problem of calibrating object detectors and ob-
serve that they are inherently miscalibrated for both in-
domain and out-domain predictions. To this end, we pro-
pose a train-time calibration method aimed at jointly cal-
ibrating multiclass confidence and bounding box localiza-
tion.

3. Method

3.1. Defining and Measuring Calibration

Calibration for classification: A perfectly calibrated
model for (image) classification outputs class confidences
that match with the predictive accuracy. If the accuracy is
less than the confidence, then the model is overconfident
and if the accuracy is higher than the confidence, then the
model is underconfident. Let D = ⟨(xi, y

∗
i )⟩

N
i=1 denote a

dataset consisting of N examples drawn from a joint distri-
bution D(X ,Y), where X is an input space and Y is the
label space. For each sample xi ∈ X , y∗i ∈ Y = {1, 2, ...K}
is the corresponding ground truth class label. Let s ∈ RK

be the vector containing the predicted confidences of all K
classes, and si[y] be the confidence predicted for a class y

on a given input example xi. The model is said to be per-
fectly calibrated when, for each sample (x, y) ∈ D:

P(y = y∗|s[y] = s) = s (1)

where P(y = y∗|s[y] = s) is the accuracy for each con-
fidence scores in s.
Calibration for object detection: Contrary to classifica-
tion, in object detection, the dataset contains the ground-
truth annotations for each object in an image, specifically
the object localization information and the associated object
categories. Let b∗ ∈ B = [0, 1]4 be the bounding box anno-
tation of the object and y∗ be the corresponding class label.
The prediction from an object detection model consists of
a class label ŷ, with a confidence score ŝ and a bounding
box b̂. Unlike classification, for object detection, precision
is used instead of accuracy for calibration. Therefore, an
object detector is perfectly calibrated when [28]:

P(m = 1|ŝ = s, ŷ = y, b̂ = b) = s (2)

∀s ∈ [0, 1], y ∈ Y,b ∈ [0, 1]4

where m = 1 denotes a correctly classified prediction
i.e. whose ŷ matches with the y∗ and the Intersection-over-
Union (IoU) between b̂ and b∗ is greater than a certain
threshold γ. Thus, P(m = 1) amounts to approximating
P(ŷ = y∗, b̂ = b∗) with a certain IoU threshold γ.
Measuring miscalibration for classification and object
detection: For classification, the expected calibration er-
ror (ECE) is used to measure the miscalibration of a model.
The ECE measures the expected deviation of the predictive
accuracy from the estimated confidence [14, 28, 37]:

Eŝ [|P(ŷ = y|ŝ = s)− s|] (3)

As ŝ is a continuous random variable, the ECE is approx-
imated by binning the confidence space of ŝ into N equally
spaced bins. Therefore, ECE is approximated by [37]:

ECE =

N∑
n=1

|I(n)|
|D|

. |acc(n)− conf(n)| (4)

where |I(n)| is the number of examples in the nth bin,
and |D| is the total number of examples. acc(n) and
conf(n) denote the average accuracy and average confi-
dence in the nth bin, respectively. Although the ECE mea-
sure can be used for measuring miscalibration of object de-
tectors, it fails to reflect the calibration improvement when
additional box coordinates are used for calibration since the
ECE considers confidence of each example independent of
the box properties to apply binning and to calculate an av-
erage precision. In this work, we use location-dependent
calibration, termed as detection ECE (D-ECE). It is defined
as the expected deviation of the observed precision with re-
spect to the given box properties.

Eŝb̂

[∣∣∣P(m = 1|ŝ = s, ŷ = y, b̂ = b)− s
∣∣∣] (5)
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Similar to ECE, the multidimensional D-ECE is calcu-
lated by partitioning both the confidence and box property
spaces in each dimension k into Nk equally spaced bins.
Thus, D-ECE is given by [28]:

D-ECEk =

Ntotal∑
n=1

|I(n)|
|D|

. |prec(n)− conf(n)| (6)

where Ntotal is the total number of bins. prec(n) and
conf(n) denote the average precision and confidence in
each bin, respectively.

3.2. Proposed train-time calibration: MCCL

This section describes our new train-time calibration
method at the core of which is an auxiliary loss func-
tion. This auxiliary loss formulation aims at jointly cali-
brating the multiclass confidence and bounding box local-
ization. It is based on the fact that, the modern object de-
tectors (based on DNNs) predict a confidence vector along
with the bounding box parameters. The two key quan-
tities to our loss function are (1) the predictive certainty
in class logits and the bounding box localization and, (2)
the class-wise confidence after computing class-wise log-
its mean (termed mean logits based class-wise confidence
hereafter) and mean bounding box localization. The pre-
dictive certainty in class-wise logits is used in-tandem with
the mean logits based class-wise confidence to calibrate the
multi-class confidence scores. While, the predictive cer-
tainty in the bounding box prediction is used to calibrate the
bounding box localization. Instead of inputting the class-
wise logits and predicted bounding box parameters to the
classification loss and regression loss in task-specific detec-
tion losses, we input the class-wise mean logits and mean
bounding box parameters, respectively. We first describe
how to compute the mean logits based class-wise confi-
dence, mean bounding box parameters, and the certainty in
both class logits and bounding box localization.
Quantifying means and certainties: For the nth positive
location, we aim to quantify the mean logits based class-
wise confidence s̄n ∈ RK and class-wise certainty in log-
its cn ∈ RK as well as the mean bounding box param-
eters {µn}Jj=1 and certainty in bounding box localization
gn, where J is the number of bounding box parameters.
Given an input sample (image), we perform N stochastic
forward passes by applying the Monte-Carlo (MC) dropout
[10]. It generates a distribution over class logits and bound-
ing box localization. Assuming one-stage object detector
(e.g., [45]), we insert a dropout layer before the classifica-
tion layer and the regression layer. Let zn ∈ RN×K and
rn ∈ RN×J encode the distributions over class-wise logit
scores and bounding box parameters, respectively, corre-
sponding to nth positive location obtained after performing
N, MC forward passes.

We obtain the mean logits based class-wise confidence
s̄n ∈ RK by first taking the mean along the first dimension
of zn to get class-wise mean logits and then applying the
softmax. To obtain class-wise certainty cn, we first estimate
the uncertainty dn ∈ RK by computing the variance along
the first dimension of zn. Then, we apply tanh over dn and
subtract it from 1 as: cn = 1 − tanh(dn), where tanh is
used to scale the uncertainty dn ∈ [0, inf) between 0 and 1.

Similarly, we estimate the certainty gn in the (predicted)
bounding box parameters for the nth positive location. Let
{σ2

n}Jj=1 and {µn}Jj=1 be the vectors (J is the number of
bbox parameters) comprised of variances and means of pre-
dicted bounding box parameters distribution rn. These vari-
ances and the means are computed along the first dimension
of rn. Also, let µn,com denote the combined mean, com-
puted as µn,com = 1

J

∑J
j=1 µn,j . Then, we estimate the

(joint) uncertainty un as:

un =
1

J

J∑
j=1

[σ2
n,j + (µn,j − µn,com)2]. (7)

The certainty gn in the nth positive bounding box local-
ization is then computed as: gn = 1− tanh(un).

We leverage these estimated mean logits based class-
wise confidence, class-wise certainty and the certainty in
bounding box localization to formulate the two components
of our auxiliary loss: multi-class confidence calibration
(MCC), and localization calibration (LC). For MCC, we
compute the difference between the fused mean confidence
and certainty with the accuracy. For LC, we calculate the
deviation between the predicted bounding box overlap and
the predictive certainty of the bounding box. Both quanti-
ties are computed over the mini-batch during training.
Multi-class confidence calibration (MCC): To achieve
multi-class confidence calibration, we leverage the mean
logits based class-wise confidence and class-wise certainty
and fuse them by computing class-wise mean. The resulting
vector is termed as the multiclass fusion of mean confidence
and certainty. Then, we calculate the absolute difference be-
tween the fused vector and the accuracy as:

LMCC =
1

K

K∑
k=1

∣∣∣∣∣ 1M
Nb∑
l=1

Npos∑
n=1

vl,n[k]−
1

M

Nb∑
l=1

Npos∑
n=1

ql,n[k]

∣∣∣∣∣
(8)

where M = Nb × Npos. Nb is the number of samples
in the minibatch and Npos represents the number of posi-
tive locations. ql,n[k] = 1 if k is the ground truth class of
the bounding box predicted for the nth location in the lth

sample. vl,n[k] = (s̄l,n[k] + cl,n[k])/2, where s̄l,n[k] and
cl,n[k] are the mean confidence and the certainty, respec-
tively, for the class k of the nth positive location in the lth

sample. The LMCC is capable of calibrating the confidence
of both the predicted label and non-predicted labels. It pe-
nalizes the model if, for a given class k, the fusion (of mean
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logits based class-wise confidence and certainty in class-
wise logits) across minibatch deviates from the average oc-
currence of this class across minibatch.
Localization calibration (LC): We calibrate the localiza-
tion component by leveraging the certainty in bounding box
prediction. Next, we compute the absolute difference be-
tween the bounding box overlap (with the ground truth) and
the certainty in the bounding box prediction.

LLC =
1

Nb

Nb∑
l=1

1

N l
pos

N l
pos∑

n=1

∣∣∣[IoU(b̂n,l,b
∗
n,l)− gn,l

]∣∣∣ (9)

where N l
pos denotes the number of positive bounding

box regions in the lth sample, and gn,l is the certainty in
the nth positive bounding box prediction from lth sample.
Both LMCC and LLC operate over the mini-batches, and
we combine them to get our new auxiliary loss term
LMCCL−aux:

LMCCL−aux = LMCC + βLLC (10)

where β is a hyperparameter to control the relative con-
tribution of LLC to the overall loss LMCCL−aux.

4. Experiments
Datasets: To evaluate the in-domain calibration perfor-
mance, we use the following five datasets: Sim10K [24],
KITTI [11], Cityscapes (CS) [6], COCO [31], and PAS-
CAL VOC(2012) [9]. Sim10K [24] contains synthetic im-
ages of the car category, and offers 10K images which are
split into 8K for training, 1K for validation and 1K for test-
ing. Cityscapes [6] is an urban driving scene dataset and
consists of 8 object categories. It has 2975 training im-
ages and 500 validation images, which are used for eval-
uation. KITTI [11] is similar to Cityscapes as it contains
images of road scenes with a wide view of the area, except
that KITTI images were captured with a different camera
setup. Following prior works, we consider car class for ex-
periments. We use train2017 version of MS-COCO [31]
and it offers 118K training images, 5K validation images,
and 41K test images. PASCAL VOC 2012 [9] consists
of 5,717 training and 5,823 validation images, and pro-
vides bounding box annotations for 20 classes. For evaluat-
ing out-of-domain calibration performance, we use Sim10K
to CS, KITTI to CS, CS to Foggy-CS, COCO to Cor-
COCO, CS to BDD100K [49], VOC to Clipart1k [22],
VOC to Watercolor2k [22], and VOC to Comic2k [22].
Foggy Cityscapes (CS-F) [42] dataset is developed using
Cityscapes dataset [6] by simulating foggy weather leverag-
ing the depth maps in Cityscapes with three levels of foggy
weather. Cor-COCO is a corrupted version of MS-COCO
val2017 dataset for out-of-domain evaluation, and is con-
structed by introducing random corruptions with severity
levels defined in [19]. Clipart1k [22] contains 1K images,

which are split into 800 for training and 200 for validation,
and shares 20 object categories with PASCAL VOC. Both
Comic2k [22] and Watercolor2k [22] are comprised of 1K
training images and 1K test images, and share 6 categories
with Pascal VOC. BDD100k [48] offers 70K training im-
ages, 20K test images and 10K validation images. We use
validation set for out-of-domain evaluation.
Implementation Details: For all experiments, we use Tesla
V100 GPUs. For COCO experiments, we use 8 GPUs and
follow training configurations reported in [45]. For exper-
iments on all other datasets, we utilize 4 GPUs and follow
training configurations listed in [21]. We chose β in Equa-
tion (10) from {0.01, 1}. For further training details, we
refer to the supplementary material.
Evaluation metrics: We use D-ECE metric defined in
Equation (6) at IoU of 0.5 to measure calibration per-
formance. Note that, in addition to classification scores,
it takes into account the calibration of center-x, center-y,
width, and height of the predicted box. For reporting detec-
tion performance, we use mAP and AP@0.5 metrics.
Baselines: We evaluate our train-time calibration method
against models trained with task-specific losses of a CNN-
based object detector, namely FCOS [45], and ViT-based
object detector, namely Deformable DETR [52]. We then
compare with the temperature scaling post-hoc method and
further with the recently proposed auxiliary loss functions
for classification, including MDCA [18] and AvUC [25].

4.1. Results

In-domain experiments: We compare the in-domain per-
formance on five challenging datasets with the models
trained with task-specific loss of FCOS in Table 1. The re-
sults reveal that our train-time calibration method (MCCL)
consistently improves the calibration performance of the
task-specific losses. Notably, when added to the task-
specific loss of FCOS, our MCCL reduces the D-ECE by
5.86% and 1.76% in VOC and CS datasets, respectively.
Out-of-domain experiments: Table 2 and Table 3 report
out-of-domain performance on eight challenging shifts. We
see that our MCCL is capable of consistently improving the
calibration performance in all shift scenarios. We notice a
major decrease in D-ECE of 2.91% in Sim10K to CS shift.
Similarly, we observe a reduction in D-ECE by a visible
margin of 2.47% for CS to CS-foggy (CS-F).
Comparison with post-hoc method: We choose temper-
ature scaling (TS) as post-hoc calibration for comparison.
The temperature parameter T is optimized using a hold-
out validation set to re-scale the logits of the trained model
(FCOS). Table 5 compares the performance of TS with our
method (MCCL) on COCO, Sim10K, CS and COCO cor-
rupted datasets. We note that TS performs inferior to our
method and to baseline. This could be because when there
are multiple dense prediction maps, as in FCOS, it is likely
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In-domain performance

Methods Sim10K KITTI CS COCO VOC
D-ECE AP@0.5 D-ECE AP@0.5 D-ECE AP@0.5 D-ECE AP@0.5 D-ECE mAP

Baseline
(FCOS) 12.90 87.45 9.54 94.54 9.40 70.48 15.42 54.91 11.88 59.68

Ours (MCCL) 11.18 86.47 7.79 93.76 7.64 70.22 14.94 54.85 6.02 59.17

Table 1. In-domain calibration performance (in D-ECE%) on five challenging datasets, including Sim10K, KITTI, Cityscapes (CS), COCO
and VOC. Best results are in bold.

Out-of-domain performance

Methods Sim10K→CS KITTI→CS CS→CS-F COCO→Cor-COCO CS→BDD100K
D-ECE AP@0.5 D-ECE AP@0.5 D-ECE AP@0.5 D-ECE AP@0.5 D-ECE AP@0.5

Baseline
(FCOS) 9.51 45.18 7.53 38.11 11.18 19.81 15.90 30.01 18.82 14.18

Ours (MCCL) 6.60 44.30 6.43 38.73 8.97 19.54 14.45 29.96 16.12 14.20

Table 2. Out-of-domain calibration performance (in D-ECE%) on five challenging domain shifts.

Out-of-domain performance

Methods VOC→ clipart VOC→ watercolor VOC→ comic
D-ECE mAP D-ECE mAP D-ECE mAP

Baseline (FCOS) 1.54 14.57 3.23 24.23 3.75 9.89
Ours (MCCL) 1.06 13.71 2.33 28.70 2.84 11.50

Table 3. Out-of-domain calibration performance on three challenging domain drifts.
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(c) CS to CS-F - baseline (FCOS)
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Figure 2. Confidence histograms for baseline and our method.0.0 0.2 0.4 0.6 0.8 1.0
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(c) Sim10K to CS- baseline (FCOS)
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Figure 3. Reliability diagrams for baseline and our method.

that a single temperature parameter T will not be optimal
for the corresponding logit vectors.
Test accuracy/precision: We note that in addition to con-
sistently reducing D-ECE, our MCCL also preserves the
mAP or AP@0.5 in almost all cases. In the in-domain ex-
periments (Table 1), the maximum reduction in AP@0.5 is
only 0.98% in the Sim10K dataset. In the out-of-domain
experiments (Table 2 & Table 3), it mostly remains same
in KITTI to CS, CS to BDD100K, VOC to watercolor, and
VOC to comic shifts.
Overcoming under/overconfidence: We plot confidence
histogram (Figure 2) and reliability diagrams (Figure 3) to
illustrate the effectiveness of our method in mitigating over-

confidence or underconfidence. In confidence histograms
(Figure 2) from Sim10K in-domain and CS to CS-F out-of-
domain datasets, the average confidence is greater than the
average precision which indicates the overconfident model.
Our method reduces this gap in both scenarios compared
to the baseline (FCOS) method and alleviates the overcon-
fidence of the baseline. Similarly, the reliability diagrams
(Figure 3) for VOC in-domain and Sim10K to CS domain
shifts reveal that our method can mitigate both underconfi-
dent and overconfident predictions by a visible margin.
Confidence values of incorrect detections: We analyse the
confidence of our method in case of incorrect predictions
(Figure 4). Compared to baseline, our method is capable
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Comparison with Deformable DeTR (Baseline)

Dataset Baseline Ours
D-ECE AP@0.5 D-ECE AP@0.5

Sim10K 7.51 89.85 6.36 89.63
KITTI 6.31 96.76 3.87 96.55
CS 9.74 71.03 9.69 70.63
COCO 7.92 62.93 7.89 62.95
VOC 6.13 66.83 5.65 65.67

Sim10K → CS 7.28 49.65 6.79 51.55
KITTI → CS 12.93 29.93 12.57 29.62
CS → CS-F 9.54 25.73 9.39 25.39
COCO → Cor-COCO 6.77 35.51 6.71 35.02
VOC → Clipart 4.32 16.40 3.55 18.11
VOC → Watercolor 6.60 27.23 6.56 26.51
VOC → Comic 6.49 9.41 6.31 9.54

Table 4. Comparison of calibration performance of models trained
with ViT-based object detector (Deformable DeTR) method and
after integrating our method (MCCL).

of reducing the confidence of incorrect predictions over the
whole spectrum of confidence range.
With another baseline: Table 4 reports results with ViT-
based object detector, namely Deformable DETR [52].
Compared to FCOS, the Deformable DETR, is already a rel-
atively strong baseline in calibration error. We observe that
our MCCL reduces the calibration error (D-ECE) for both
in-domain and out-of-domain predictions. The major im-
provement (2.44% reduction in D-ECE) in calibration per-
formance is observable for KITTI in-domain predictions.

Figure 4. Histogram of confidence values for incorrect predictions
by baseline (FCOS) and our method in COCO dataset.

4.2. Ablation study

Impact of each component in MCCL: We report the result
of ablation experiments for validating the performance con-
tribution of different components in our method (MCCL)
(Table 5). Moreover, we report the calibration performance
of two train-time calibration losses for image classification:
MDCA [18] and AvUC [25]. We can observe the follow-
ing trends from Table 5. The calibration performance of
our MCCL is not due to providing only the class-wise mean
logits and mean bounding box parameters to classification

Figure 5. D-ECE convergence for baseline, the classification and
localization components of our MCCL, and MCCL.

loss and regression loss of detection-specific loss, respec-
tively, (ours w/o LLC & LMCC). Both LMCC and LLC are
integral components of our method (MCCL). They are com-
plementary to each other and their proposed combination is
vital to delivering the best calibration performance. For in-
stance, in Sim10K to CS shift, the proposed combination of
LMCC and LLC achieves a significant reduction in D-ECE
compared to MCC and LC alone. Further, the classification-
based calibration losses are sub-optimal for calibrating ob-
ject detection methods.

D-ECE convergence: Figure 5 compares the convergence
of D-ECE for baseline, the two components (classification
and localization) of our method (MCCL), and MCCL. Al-
though our MCCL and its two constituents does not directly
optimize the D-ECE metric, they provide improved D-ECE
convergence compared to the baseline.

Impact on location-dependent calibration: Figure 6 and
Figure 7 depict that miscalibration error (D-ECE) relies
highly on the relative object location (cx, cy) and/or its rel-
ative width and height (w, h). Moreover, it tends to in-
crease as we approach image boundaries. Figure 6 plots the
precision, confidence and D-ECE over individual parame-
ters i.e. cx. Figure 7 plots 2D calibration heatmaps over
object location and width/height, where each location in a
heatmap represents D-ECE. Both figures show that, com-
pared to baseline, besides other locations, our MCCL can
decrease D-ECE at image boundaries. Figure 6 also shows
that, compared to baseline, our MCCL allows the adapta-
tion of confidence score at all image locations differently
by adjusting the shape of confidence curve accordingly.

MCDO overhead & its Tradeoff analysis: Table 6 reveals
that, in our implementation, upon increasing Monte-Carlo
dropout (MCDO) passes N={3, 5, 10, 15}, there is a little
overhead in time cost over N=1. Table 7 shows the impact
of varying the number of MC dropout passes (N) on calibra-
tion performance. Upon increasing the N, we see improved
calibration, especially in OOD scenario.
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Ablation study

Methods COCO→COCO Sim10K→ Sim10K Sim10K→ CS COCO→ Cor-COCO
D-ECE AP@0.5 D-ECE AP@0.5 D-ECE AP@0.5 D-ECE AP@0.5

Baseline (FCOS) 15.42 54.91 12.90 88.01 9.51 45.18 15.90 30.01
Post-hoc (TS) 17.34 54.77 17.99 29.97 14.66 87.29 24.03 45.91
AvUC [25] 15.17 54.73 13.24 87.91 10.64 39.39 15.78 29.75
MDCA [18] 15.25 54.44 13.99 87.95 11.14 39.51 15.33 30.07
Ours (w/o LLC & LMCC) 15.26 54.25 13.12 86.34 8.87 42.89 15.28 29.67
Ours (w/o LLC) 15.00 54.11 13.00 87.86 8.63 45.31 14.52 29.73
Ours (w/o LMCC) 15.12 54.40 12.86 87.24 9.12 41.14 15.54 29.61
Ours (MCCL) 14.94 54.85 11.18 86.47 6.60 44.29 14.45 29.96

Table 5. Ablations in MCCL and comparison of MCCL with TS, and classification-based train-time losses: MDCA [18] and AvUC [25].

0.0 0.2 0.4 0.6 0.8 1.0
cx

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n 
/ c

on
fid

en
ce

Precision, Confidence and D-ECE
precision
confidence
D-ECE

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
-E

C
E

(a) Baseline cx

0.0 0.2 0.4 0.6 0.8 1.0
cx

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n 
/ c

on
fid

en
ce

Precision, Confidence and D-ECE
precision
confidence
D-ECE

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
-E

C
E

(b) Ours cx

0.0 0.2 0.4 0.6 0.8 1.0
cy

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n 
/ c

on
fid

en
ce

Precision, Confidence and D-ECE
precision
confidence
D-ECE

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
-E

C
E

(c) Baseline cy

0.0 0.2 0.4 0.6 0.8 1.0
cy

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n 
/ c

on
fid

en
ce

Precision, Confidence and D-ECE
precision
confidence
D-ECE

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
-E

C
E

(d) Ours cy

Figure 6. Calibration precision, confidence, and ECE with IOU @0.5 of (a) baseline (FCOS) relative to center-x (cx), (b) our method
relative to center-x (cx) (c) baseline (FCOS) relative to center-y (cy), and (d) our method relative to center-y (cy).
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Figure 7. Calibration heatmap of (a,b) baseline (FCOS) and our method over center-x (cx) and center-y (cy) with IOU @0.5, (c,d) baseline
(FCOS) and our method over width (w) and height (h) with IOU @0.5.

Time cost with MC dropout

N N=1 N=3 N=5 N=10 N=15

Time per iteration(s) 0.143 0.197 0.243 0.350 0.463
Increment - 0.372 0.694 1.442 2.230

Table 6. Increment in time per iteration (in secs) over N=1 upon
increasing MC forward passes.

5. Conclusion

Very little to no attempts have been made towards study-
ing the calibration of object detectors. In this paper, we
explored this direction and presented a new train-time tech-
nique for calibrating DNN-based object detection methods.
At the core of our method is an auxiliary loss which aims

Calibration performance with MC dropout

Method Metric baseline N=3 N=5 N=10 N=15

COCO D-ECE 16.57 16.27 16.25 16.19 16.12
AP@0.5 52.34 51.00 51.49 51.23 51.89

COCO-
Corr.

D-ECE 17.27 16.18 16.21 15.87 16.17
AP@0.5 29.25 28.24 28.59 28.31 28.80

Table 7. Impact on D-ECE after increasing N in MC dropout.

at jointly calibrating multiclass confidence and box local-
ization after leveraging their predictive uncertainties. Ex-
tensive experiments reveal that our method can consistently
reduce the calibration error of object detectors from two dif-
ferent DNN-based object detection paradigms for both in-
domain and out-of-domain detections.
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