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Abstract

We present a novel image inversion framework and a
training pipeline to achieve high-fidelity image inversion
with high-quality attribute editing. Inverting real images
into StyleGAN’s latent space is an extensively studied prob-
lem, yet the trade-off between the image reconstruction fi-
delity and image editing quality remains an open challenge.
The low-rate latent spaces are limited in their expressive-
ness power for high-fidelity reconstruction. On the other
hand, high-rate latent spaces result in degradation in edit-
ing quality. In this work, to achieve high-fidelity inversion,
we learn residual features in higher latent codes that lower
latent codes were not able to encode. This enables preserv-
ing image details in reconstruction. To achieve high-quality
editing, we learn how to transform the residual features
for adapting to manipulations in latent codes. We train
the framework to extract residual features and transform
them via a novel architecture pipeline and cycle consistency
losses. We run extensive experiments and compare our
method with state-of-the-art inversion methods. Qualitative
metrics and visual comparisons show significant improve-
ments. Code: https://github.com/hamzapehlivan/StyleRes

1. Introduction
Generative Adversarial Networks (GANs) achieve high

quality synthesis of various objects that are hard to distin-
guish from real images [14, 21, 22, 41, 43]. These networks
also have an important property that they organize their la-
tent space in a semantically meaningful way; as such, via
latent editing, one can manipulate an attribute of a gener-
ated image. This property makes GANs a promising tech-
nology for image attribute editing and not only for gener-
ated images but also for real images. However, for real im-
ages, one also needs to find the corresponding latent code
that will generate the particular real image. For this pur-
pose, different GAN inversion methods are proposed, aim-
ing to project real images to pretrained GAN latent space
[15, 30, 31, 33, 37]. Even though this is an extensively stud-

Pose Bobcut Smile Color

In
pu

t
e4

e
[3

2]
H

FG
I[

34
]

H
yp

er
St

yl
e

[5
]

St
yl

eR
es

(O
ur

s)

Figure 1. Comparison of our method with e4e, HFGI, and Hy-
perStyle for the pose, bob cut hairstyle, smile removal, and color
change edits. Our method achieves high fidelity to the input and
high quality edits.

ied problem with significant progress, the trade-off between
image reconstruction fidelity and image editing quality re-
mains an open challenge.

The trade-off between image reconstruction fidelity and
image editing quality is referred to as the distortion-
editability trade-off [32]. Both are essential for real im-
age editing. However, it is shown that the low-rate latent
spaces are limited in their expressiveness power, and not
every image can be inverted with high fidelity reconstruc-
tion [1, 27, 32, 34]. For that reason, higher bit encodings
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and more expressive style spaces are explored for image in-
version [1, 2]. Although with these techniques, images can
be reconstructed with better fidelity, the editing quality de-
creases since there is no guarantee that projected codes will
naturally lie in the generator’s latent manifold.

In this work, we propose a framework that achieves high
fidelity input reconstruction and significantly improved ed-
itability compared to the state-of-the-art. We learn residual
features in higher-rate latent codes that are missing in the
reconstruction of encoded features. This enables us to re-
construct image details and background information which
are difficult to reconstruct via low rate latent encodings. Our
architecture is single stage and learns the residuals based on
the encoded features from the encoder and generated fea-
tures from the pretrained GANs. We also learn a module
to transform the higher-latent codes if needed based on the
generated features (e.g. when the low-rate latent codes are
manipulated). This way, when low-rate latent codes are
edited for attribute manipulation, the decoded features can
adapt to the edits to reconstruct details. While the attributes
are not edited, the encoder can be trained with image recon-
struction and adversarial losses. On the other hand, when
the image is edited, we cannot use image reconstruction loss
to regularize the network to preserve the details. To guide
the network to learn correct transformations based on the
generated features, we train the model with adversarial loss
and cycle consistency constraint; that is, after we edit the
latent code and generate an image, we reverse the edit and
aim at reconstructing the original image. Since we do not
want our method to be limited to predefined edits, during
training, we simulate edits by randomly interpolating them
with sampled latent codes.

The closest to our approach is HFGI [34], which also
learns higher-rate encodings. Our framework is different as
we learn a single-stage architecture designed to learn fea-
tures that are missing from low-rate encodings and we learn
how to transform them based on edits. As shown in Fig.
1, our framework achieves significantly better results than
HFGI and other methods in editing quality. In summary,
our main contributions are:

• We propose a single-stage framework that achieves high-
fidelity input embedding and editing. Our framework
achieves that with a novel encoder architecture.

• We propose to guide the image projection with cycle con-
sistency and adversarial losses. We edit encoded images
by taking a step toward a randomly sampled latent code.
We expect to reconstruct the original image when the edit
is reversed. This way, edited images preserve the details
of the input image, and edits become high quality.

• We conduct extensive experiments to show the effective-
ness of our framework and achieve significant improve-

ments over state-of-the-art for both reconstruction and
real image attribute manipulations.

2. Related Work
GAN Inversion. GAN inversion methods aim at pro-

jecting a real image into GANs embedding so that from
the embedding, GAN can generate the given image. Cur-
rently, the biggest motivation of the inversion is the ability
to edit the image via semantically rich disentangled features
of GANs; therefore models aim for high reconstruction and
editing quality. Inversion methods can be categorized into
two; 1) methods that directly optimize the latent vector to
minimize the reconstruction error between the output and
target image [1, 2, 9, 22, 28], 2) methods that learn encoders
to reconstruct images over training images [32,34,45]. Op-
timization based methods require per-image optimization
and iterative passes on GANs, which take several minutes
per image. Additionally, overfitting on a single image re-
sults in latent codes that do not lie in GAN’s natural latent
distribution, leading to poor editing quality. Among these
methods, PTI [28] takes a different approach, and instead
of searching for a latent code that will reconstruct the im-
age most accurately, PTI fine-tunes the generator in order
to insert encoded latent code into well-behaved regions of
the latent space. It shows better editability; however, the
method still suffers from long run-time optimizations and
tunings. Encoder based methods leverage the knowledge of
training sets while projecting images. They output results
with less fidelity to the input, but edits on the projected la-
tents are better quality. They also operate mostly in real-
time. They either project the latent code with a single feed-
forward pass [27, 32, 45], or two stage feed-forward passes
where the first encoder learns to embed an image, the sec-
ond learns to reconstruct the missing details [34], or itera-
tive forward passes where the network tries to minimize the
reconstruction loss at each pass by taking the original image
and reconstructed output as inputs [4, 5]. In this work, we
propose a novel encoder architecture that achieves signifi-
cantly better results than state-of-the-art via a single feed-
forward pass on the input image.

Image Translation. There is quite an interest in im-
age translation algorithms that can change an attribute of
an image while preserving a given content [12, 25, 35], es-
pecially for faces editing [3, 8, 10, 13, 17, 24, 29, 36, 38, 42].
These algorithms set an encoder-decoder architecture and
train the models with reconstruction and GAN losses [8,
19, 24, 39, 46]. Even though they are successful at image
manipulation, they are trained for a given task and rely
on predefined translation datasets. On the other hand, it
is shown that GANs that are trained to synthesize objects
in an unconditional way can be used for attribute manip-
ulation [6, 21, 22] via their semantically rich disentangled
features. This makes pretrained GANs promising technol-
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(a1) Input (b1) Low-rate Inversion
(e4e)

(d1) Low-rate Inversion
High-rate Inversion

(c1) Low-rate Edit
(e4e)

(e1) Low-rate Edit
High-rate Inversion

(f1) Low-rate Edit
High-rate Transformation

(a2) Input (b3) Low-rate Inversion
(e4e)

(d2) Low-rate Inversion
High-rate Inversion

(c2) Low-rate Edit
(e4e)

(e2) Low-rate Edit
High-rate Inversion

(f2) Low-rate Edit
High-rate Transformation

Figure 2. When images are encoded to W+ space, as shown in (b), the reconstructions miss many image details. However, the edits are in
good quality (c). Additional features can be learned in higher-rate latent codes. For example, skip connections from encoder to generator
in higher resolution features can enable high-fidelity reconstruction to input images as shown in (d). However, if the high-rate features do
not transform with the edits, they result in ghosting effects as shown in (e). In this work, we propose high-rate encoding and transformation
for successful inversions and edits (f).

ogy for image editing, given that via their ability of image
generation, they can achieve many downstream tasks simul-
taneously. Many methods have been proposed for finding
latent directions to edit images [15, 30, 31, 33, 37]. These
directions are explored both in supervised [3, 30] and un-
supervised ways [15, 31, 33, 37] resulting in exploration of
attribute manipulations beyond the predefined attributes of
labeled datasets. However, finding these directions is only
one part of the problem; to achieve real image editing, there
is a need for a successful image inversion method which is
the topic of this paper.

3. Method

In Section 3.1, we describe the motivation for our ap-
proach. The model architecture and the training procedure
are presented in Sections 3.2 and 3.3, respectively.

3.1. Motivation

Current inversion methods aim at learning an encoder to
project an input image into StyleGAN’s natural latent space
so that the inverted image is editable. However, it is ob-
served by previous works that when images are encoded
into GAN’s natural space (low-rate W or W+ space), their
reconstructions suffer from low fidelity to input images, as
shown in Fig. 2(b). On the other hand, if the image is en-
coded to higher feature maps of pretrained GANs, they will
not be editable since they are not inverted to the semantic
space of GANs. On the other hand, low-rate inversion is
editable, as shown in Fig. 2(c).

StyleGAN, during training and inference, relies on di-
rect noise inputs to generate stochastic details. These ad-
ditional noise inputs provide stochastic image details such
as for face images, the exact placement of hairs, stubble,
freckles, or skin pores which are not modeled by W+ space.

During inversion to W+ space alone, that mechanism is dis-
carded. One can tune the noise maps as well via the recon-
struction loss; however, then there will be no mechanism
to adapt those stochastic details to attribute manipulation.
For example, the freckles should move as the pose is ma-
nipulated, but with noise optimization alone, it will not be
possible.

We propose to embed images to both low-rate and high-
rate embeddings. Consistent with the design of StyleGAN,
we aim at encoding the overall composition and high-level
aspects of the image to W+ space (low-rate encoding). Our
goal is to embed the stochastic image details and the di-
verse background details, which are difficult to reconstruct
from W+ space to higher latent codes. However, this set-
ting also requires a mechanism for encoded image details to
adopt manipulations in the image. Otherwise, it will cause
a ghosting effect, as shown in Fig 2(e). For example, in
Fig 2(e1), the smile is removed by W+ code edit; however,
the higher-rate encodings stay the same and cause artifacts
around the mouth area. In Fig. 2(e2), the pose is edited but
higher detail encodings did not move and caused blur.

In this work, we design an encoder architecture and train-
ing pipeline to achieve both learning residual features (the
ones W+ space could not reconstruct) and how to transform
them to be consistent with the manipulations.

3.2. StyleRes Architecture

Our method utilizes an encoder E0 that can embed im-
ages into W+ latent space and a StyleGAN generator G.
In our setup, we utilize a pretrained encoder for E0 [32]
and StyleGAN2 generator [22] and fix them in our train-
ing. Because it is difficult to preserve image details only
from low-rate latent codes, we also extract high level fea-
tures from the encoder. First, the high and low rate features
are extracted as F0,W

+ = E0(x) using the encoder E0
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Figure 3. StyleRes encodes missing features for high-fidelity reconstruction of given input via the first encoder, E1. Those encoded features
are the ones which could not be encoded to low-rate W+ space via E0 due to the information bottleneck. Through the second encoder, E2,
StyleRes learns to transform features based on the manipulated features. During training, latent codes are edited by interpolating encoded
W+’s with randomly generated ones by StyleGAN’s mapping network. During inference, they are edited with semantically meaningful
directions discovered by methods such as InterfaceGAN and GANSpace. Note that StyleGAN generator is shown as two parts just for the
ease of visualizing the diagram. First part includes the layers that generate features to 64 × 64 and the second part generates the higher
resolution features and final image.

from the input image x as shown in Fig. 3. F0 has the spa-
tial dimension of 64× 64 and provides us with more image
details. Next, from F0, our aim is to encode residuals that
are missing from the image reconstruction. For this goal,
we set an encoder, E1, which takes F0 as input. Since the
goal of E1 is to encode residual features, we also feed the
generated features with W+ from the StyleGAN generator,
GW = G0→n(W ), where the arrow operator indicates the
indices of convolutional layers used from G.

Fa = E1(F0, GW+) (1)

With the inputs of F0 and GW+, E1 can learn what
the missing features are by comparing the encoded fea-
tures F0 and generated ones, GW+, so far. While E1 can
learn the residual features, it is not guided on how to trans-
form them if images are edited. For that purpose, we train
E2, which takes Fa and edited features from the genera-
tor. Since we do not target predefined edits (e.g., smile,
pose, age), we simulate the edits by taking random direc-
tions. Specifically, we sample a z vector from the normal
distribution and obtain W+

r by StyleGAN’s mapping net-
work, M ; W+

r = M(z). Next, we take a step towards W+
r

to obtain a mixed style code W+
α .

W+
α = W+ + α

W+
r −W+

10
(2)

where α controls the degree of the edit. During the train-
ing, we assign α to 0 (no edit) or a value in the range of

(4, 5) with 50% chance. We adjust Fa to the altered gener-
ator features Gα = G0→n(Wα) using a second encoder E2

and obtain the final feature map F:

F = E2(Fa, Gα) (3)

Finally, F and Gα are summed, and given as an input
to next convolutional layers in the generator. Architectural
details of E1 and E2 are given in Supplementary.

3.3. Training Phases

To train our model with the capabilities of high-fidelity
inversion and high-quality editing, we use two training
phases, as shown in Fig. 4.

No Editing Path. In this path, we reconstruct images
with no editing on encoded W+. This refers to the case
where α = 0 in Eq. 2. This is also the training path other
inversion methods solely rely on. While this path can teach
the network to reconstruct images faithfully, it does not in-
clude any edits and cannot guide the network to high-quality
editability.

Cycle Translation Path. In this path, we edit images by
setting α a value in the range of (4, 5), which we found to
work best in our ablation studies. Via the edit, the generator
outputs image x′

i. Next, we feed this intermediate output
image to the encoder and reverse the edit by inverting the
addition presented in Eq. 2. The generator reconstructs x′′,
which is supposed to match the input image x. The cy-
cle translation path is important because there is no ground-
truth output for the edited image, x′

i. Adversarial loss can
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𝑤 + α𝑤 ෝ𝑤 − α

(a) No Editing: Reconstruction LossC (b) Cycle-consistency: Reconstruction LossC

E0 G
E1 +E2 E0 G

E1 +E2 E0 G
E1 +E2

𝑥 𝑥
′ 𝑥 𝑥
𝑖′

𝑥
′′

Figure 4. We train StyleRes with (a) no editing based reconstruction and (b) cycle consistency based reconstruction losses. Many details
from the inference pipeline are omitted for brevity. With reconstruction losses, the model learns to preserve the image details. We
additionally apply adversarial losses on x′

i; this way, when the image is edited, the transformation network learn to output realistic images.
With cycle consistency based reconstruction, the network is regularized to keep the input details also during edits. We use additional losses
as explained in Section 3.4.

guide x′
i to look realistic but will not guide the network to

keep the input image details if edited.

3.4. Training Objectives

Reconstruction Losses. For both no editing and cycle
consistency path outputs, our goal is to reconstruct the in-
put image. To supervise this behavior, we use L2 loss, per-
ceptual loss, and identity loss between the input and output
images. The first reconstruction loss is as follows, where x
is the input image, x′ and x′′ are output images, as given in
Fig. 4:

Lrec−l2 = ||x′ − x||2 + ||x′′ − x||2 (4)

We use perceptual losses from VGG (Φ) at different fea-
ture layers (j) between these images from the loss objective
as given in Eq. 5.

Lrec−p = ||Φj(x
′)− Φj(x)||2 + ||Φj(x

′′)− Φj(x)||2 (5)

Identity loss is calculated with a pre-trained network A.
A is an ArcFace model [11] when training on the face do-
main and a domain specific ResNet-50 model [32] for our
training on car class.

Lrec−id = (1−⟨A(x), A(x′)⟩)+(1−⟨A(x), A(x′′)⟩) (6)

Adversarial Losses. We also use adversarial losses to
guide the network to output images that match the real im-
age distribution. This objective improves realistic image
inversions and edits. We load the pretrained discriminator
from StyleGAN training, D, and train the discriminator to-
gether with the encoders.

Ladv = 2 logD(x) + log (1−D(x′))

+ log (1−D(x′
i))

(7)

Feature Regularizer. To prevent our encoder from de-
viating much from the original StyleGAN space, we regu-
larize the residual features to be small:

LF =
∑
F∈ϕ

∥F∥2 (8)

Full Objective. We use the overall objectives given be-
low. The hyper parameters are provided in Supplementary.

min
E1,E2

max
D

λaLadv + λr1Lrec−l2 + λr2Lrec−p

+λr3Lrec−id + λfLF

(9)

4. Experiments
Set-up. For datasets and attribute editing, we follow

the previous work [34]. For the human face domain, we
train the model on the FFHQ [21] dataset and evaluate it
on the CelebA-HQ [20] dataset. For the car domain, we
use Stanford Cars [23] for training and evaluation. We run
extensive experiments with directions explored with Inter-
faceGAN [30], GANSpace [15], StyleClip [26], and Grad-
Ctrl [7] methods.

Evaluation. We report metrics for reconstruction and
editing qualities. For reconstruction, we report Frechet In-
ception Distance (FID) metric [16], which looks at the re-
alism by comparing the target image distribution and re-
constructed images, Learned Perceptual Image Patch Sim-
ilarity (LPIPS) [44] and Structural Similarity Index Mea-
sure (SSIM), which compares the target and output pairs
at the feature level of a pretrained deep network and pixel
level, respectively. Additionally, FIDs are calculated for
adding and removing the smile attributes on the CelebA-
HQ dataset. By using the ground-truth attributes, we add
smile to images that do not have smile attribute and calcu-
late FIDs between smile addition edited images and smiling
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Figure 5. Qualitative results of inversion and editing. For each method, the first column shows inversion, and the second shows Interface-
GAN [30] and GANSpace [15] edits.

ground-truth images. The same set-up is used for smile re-
moval. On the Stanford cars dataset, we change grass and
color attribute of images, and since there is no ground-truth
attribute, we calculate the FIDs between the edited and orig-
inal images.

Baselines. We compare our method with state-of-the-
art image inversion methods pSp [27], e4e [32], ReStyle
[4], HyperStyle [5], HFGI [34], StyleTransformer [18],
and FeatureStyle [40]. We use the author’s released mod-
els. Hence, for the Stanford car dataset, some methods are
omitted from comparisons if the models are not released.
Among those, we only train HFGI for car model with au-

thor’s released code since we base our main comparisons
with it.

Quantitative Results. In Table 1, we provide recon-
struction and editing scores on the CelebA-HQ dataset. Our
method achieves better results than all competing meth-
ods on all metrics. Most significantly, we achieve bet-
ter FID scores on both reconstruction and editing qualities.
While FeatureStyle achieves comparable SSIM and LPIPS
scores on reconstruction, the editing FIDs are worse than
our model. As shown in Table 2, we achieve significantly
better results than previous methods on the Stanford Car
dataset as well. We also compare the runtime of our method
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Table 1. Quantitative results of reconstruction and editing on
CelebA-HQ dataset. For reconstruction, we report FID, SSIM,
and LPIPS scores. For editing, we report FID metrics for smile
addition (+) and removal (-).

Reconstruction Editing - FIDs
Method FID SSIM LPIPS Smile(+) Smile(-)
pSp [27] 23.86 0.75 0.17 32.47 34.0
e4e [32] 30.22 0.71 0.21 38.58 39.68
ReStyle [4] 24.82 0.73 0.20 30.35 33.69
HyperStyle [5] 16.08 0.83 0.11 26.43 25.26
HFGI [34] 12.17 0.85 0.13 25.22 27.10
StyleTransformer [18] 21.82 0.75 0.17 34.32 34.61
FeatureStyle [40] 11.33 0.90 0.10 27.20 26.15
StyleRes (Ours) 7.04 0.90 0.09 23.52 21.80

Table 2. Quantitative results of reconstruction and editing on the
Stanford Cars Dataset. For reconstruction, we report FID, SSIM,
and LPIPS scores. For editing, we report FID metrics for grass
addition and color change.

Reconstruction Editing - FIDs
Method FID SSIM LPIPS Grass Color
e4e [32] 14.04 0.50 0.32 18.02 29.79
ReStyle [4] 13.38 0.57 0.30 16.01 21.34
HyperStyle [5] 11.64 0.63 0.28 17.13 26.30
HFGI [34] 9.41 0.83 0.16 14.84 26.65
StyleTransformer [18] 14.01 0.57 0.28 19.47 19.94
StyleRes (Ours) 7.60 0.83 0.14 10.64 18.86

and previous methods. Our method is significantly faster
than HyperStyle (0.125 sec vs. 0.439 sec). That is because
HyperStyle refines its predicted weight offsets gradually via
multiple iterations. Our method is also faster than HFGI
(0.125 sec vs. 0.130 sec), in addition to achieving better
scores. We run a single stage network inference, whereas
HFGI first generates an image via e4e and StyleGAN and
provides the error map to a second architecture. The table
for runtimes is provided in Supplementary.

Qualitative Results. We show visuals of inversion and
editing results of our method, e4e, HFGI, and HyperStyle
in Fig. 5. We provide further comparisons in Supplemen-
tary with other attribute editings and with other methods.
Compared to previous methods, our method achieves sig-
nificantly better fidelity to the input images and preserves
the identity and details when edited. It is the only method
in these comparisons that preserves the background, earings
(second row), hands (second-fourth rows), and hats (fourth
row). Our method also achieves facial detail reconstruction;
for example, in the fifth row, the person has a mole at the
corner of her mouth. Among the inversions, our method
is the only one preserving that. Furthermore, during the
pose edit, it is transformed correctly. On the sixth row, our
method is the only one that achieves the correct inversion
and edit. In car examples, we again achieve high fidelity
to the input images both in inversion and editing. e4e and
HyperStyle do not reconstruct the image faithfully. On the
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Figure 6. Comparison of our method with e4e, HFGI, and Hyper-
Style with StyleClip edits [26]. The first column shows eyeglasses
addition, the second and third columns show bangs addition, and
the last column shows bob cut hairstyle results.

other hand, HFGI outputs artefacts during edits. We addi-
tionally show results with edits explored by StyleClip [26]
and GradCtrl [7] methods in Figs. 6 and 7, respectively.

Ablation Study. We run extensive experiments to vali-
date the role of each proposed design choices. We first ex-
periment with an architecture that does not have E1 and E2

modules. This experiment refers to the case where we learn
a network that does not take input from StyleGAN Part 1
features, neither the original (GW+) nor the edited features
(Gα). The network directly takes higher layer features (F0)
from the encoder and outputs them to the generator. As
shown in Fig. 8, the network still tries to learn residual fea-
tures to achieve reconstructions; however, it achieves poor
edits. Without E2 refers to the experiment with E1 directly
outputting features to Generator Part 2 (as shown in Fig. 3).
Without E1 refers to the experiment where E2 directly takes
input from the encoder (F0) and (Gα) as defined in Sec. 3.2.
None of the networks are able to learn the residual features
and how to transform them as well as our final architecture
since they are not designed to take the original and edited
features separately. We also experiment without cycle con-
sistency losses. Fig. 9 shows visual results of methods
trained with and without cycle consistency constrain. We
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Figure 7. Additional results of our method and e4e with GradCtrl
edits [7]. The first three rows show blue sky edit, and the others
show tree background edits.

observe that with cycle consistency constrain, our network
achieves preserving fine image details even when images
are edited.

5. Conclusion
We present a novel image inversion framework and a

training pipeline to achieve high-fidelity image inversion
with high-quality attribute editing. In this work, to achieve
high-fidelity inversion, we learn residual features in higher
latent codes that lower latent codes were not able to en-
code. This enables preserving image details in reconstruc-
tion. To achieve high-quality editing, we learn how to trans-
form the residual features for adapting to manipulations in
latent codes. We show state-of-the-art results on a wide
range of edits explored with different methods both quan-
titatively and qualitatively while achieving faster run-time
than competing methods.
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Figure 8. Ablation Study. Pose edit outputs of our final architec-
ture and architecture with missing modules. w/o E1 or E2, net-
works struggle to transform features correctly.

(a) Inputs (b) w/o Cycle Consistency (c) w/ Cycle Consistency

Figure 9. Ablation Study. Pose edit outputs of models trained with
and without cycle consistency loss. The model trained with cycle
consistency is better at preserving the details as shown in enlarged
boxes.

Acknowledgement

This work has been funded by The Scientific and Tech-
nological Research Council of Turkey (TUBITAK), 3501
Research Project under Grant No 121E097. A. Dundar was
supported by Marie Skłodowska-Curie Individual Fellow-
ship.

1835



References
[1] Rameen Abdal, Yipeng Qin, and Peter Wonka. Im-

age2stylegan: How to embed images into the stylegan latent
space? In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 4432–4441, 2019. 1, 2

[2] Rameen Abdal, Yipeng Qin, and Peter Wonka. Im-
age2stylegan++: How to edit the embedded images? In
Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 8296–8305, 2020. 2

[3] Rameen Abdal, Peihao Zhu, Niloy J Mitra, and Peter Wonka.
Styleflow: Attribute-conditioned exploration of stylegan-
generated images using conditional continuous normalizing
flows. ACM Transactions on Graphics (ToG), 40(3):1–21,
2021. 2, 3

[4] Yuval Alaluf, Or Patashnik, and Daniel Cohen-Or. Restyle:
A residual-based stylegan encoder via iterative refinement.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 6711–6720, 2021. 2, 6, 7

[5] Yuval Alaluf, Omer Tov, Ron Mokady, Rinon Gal, and
Amit Bermano. Hyperstyle: Stylegan inversion with hy-
pernetworks for real image editing. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 18511–18521, 2022. 1, 2, 6, 7

[6] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale gan training for high fidelity natural image synthesis.
arXiv preprint arXiv:1809.11096, 2018. 2

[7] Zikun Chen, Ruowei Jiang, Brendan Duke, Han Zhao, and
Parham Aarabi. Exploring gradient-based multi-directional
controls in gans. In European Conference on Computer Vi-
sion, pages 104–119. Springer, 2022. 5, 7, 8

[8] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha.
Stargan v2: Diverse image synthesis for multiple domains.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2020. 2

[9] Antonia Creswell and Anil Anthony Bharath. Inverting the
generator of a generative adversarial network. IEEE transac-
tions on neural networks and learning systems, 30(7):1967–
1974, 2018. 2

[10] Yusuf Dalva, Said Fahri Altındiş, and Aysegul Dundar. Vec-
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