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Abstract

Outlier-robust estimation involves estimating some pa-
rameters (e.g., 3D rotations) from data samples in the pres-
ence of outliers, and is typically formulated as a non-convex
and non-smooth problem. For this problem, the classical
method called iteratively reweighted least-squares (IRLS)
and its variants have shown impressive performance. This
paper makes several contributions towards understanding
why these algorithms work so well. First, we incorporate
majorization and graduated non-convexity (GNC) into the
IRLS framework and prove that the resulting IRLS vari-
ant is a convergent method for outlier-robust estimation.
Moreover, in the robust regression context with a constant
fraction of outliers, we prove this IRLS variant converges
to the ground truth at a global linear and local quadratic
rate for a random Gaussian feature matrix with high prob-
ability. Experiments corroborate our theory and show that
the proposed IRLS variant converges within 5-10 iterations
for typical problem instances of outlier-robust estimation,
while state-of-the-art methods need at least 30 iterations. A
basic implementation of our method is provided: https:
//github.com/liangzu/IRLS-CVPR2023

... attempts to analyze this difficulty [caused by infinite
weights of IRLS for the ℓp-loss] have a long history of
proofs and counterexamples to incorrect claims.

Khurrum Aftab & Richard Hartley [1]

1. Introduction

1.1. The Outlier-Robust Estimation Problem

Many parameter estimation problems can be stated in
the following general form. We are given some function
r : C × D → [0,∞), called the residual function. Here
D is the domain of data samples d1, . . . , dm, and C ⊂ Rn

is the constraint set where our (ground truth) variable v∗

lies; C can be convex such as an affine subspace, or non-
convex such as a special orthogonal group SO(3). We aim
to recover v∗ from data di’s. A simple example is linear
regression, where a sample di = (ai, yi) consists of a fea-

ture vector ai ∈ Rn and a scalar response yi ∈ R, and the
residual function is r (v , di) := |a⊤

i v − yi|.
The sample di is called an inlier, if r (v∗, di) ≈ 0. It is

called an outlier, if the residual r (v∗, di) is large (vaguely
speaking). If all samples are inliers, one usually prefers
solving the following problem as a means to estimate v∗:

min
v∈C

∑m

i=1
r (v , di)2 (1)

Problem (1) is called least-squares, and is known since Leg-
endre [41] and Gauss [29] in the linear regression context.
Even before that, Boscovich [13] suggested to minimize (1)
without the square. This unsquared version is called least
absolute deviation, and is more robust to outliers than (1).

Consider the following formulation for outlier-robust es-
timation (i.e., a specific type of M-estimators [35, 55]):

min
v∈C

∑m

i=1
ρ
(

r (v , di)
)

(2)

Here ρ : R → R is some outlier-robust loss (the unsquared
version of (1) corresponds to ρ(r) = |r| in (2)). Among
many possible losses ρ [19, 23], we discuss two particular
choices. The first is the ℓp-loss ρ(r) = |r|p/p, p ∈ (0, 1];
it has been used in several research fields, e.g., geometric
vision [1, 19], compressed sensing [17, 22, 36], matrix re-
covery [37,44,45], and subspace clustering [26]. The other
loss is due to Huber [35]: ρ(r) = min{r2, c2}, with c > 0 a
hyper-parameter; it has later been named as Talwar [21,48],
Huber-type skipped mean [30], truncated quadratic [6, 11],
and truncated least-squares (TLS) [4, 68, 74]. Both losses
are highly robust to outliers but make solving (2) diffi-
cult, e.g., the objective of (2) becomes non-smooth or non-
convex. This motivates the need to develop efficient and
provably correct solvers for (2) with either of the two losses.

1.2. IRLS and Its Variants in Vision & Optimization

The General Principle of IRLS. As its name suggests, it-
eratively reweighted least-squares (IRLS) is a general algo-
rithmic paradigm that alternates between defining a weight
for each sample and solving a weighted least squares prob-
lem. Specifically, IRLS initializes a variable v(0) ∈ C, and,
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for t = 0, 1, . . . , alternates between the following two steps:

Update weights w(t+1)
i based on v(t), ∀i = 1, . . . ,m (3)

Solve: v(t+1) ← argmin
v∈C

∑m

i=1
w

(t+1)
i r (v , di)2 (4)

This basic idea dates back to the seminal work of Weiszfeld
[66]; see [9,32] for some historical accounts. A well-known
and general rule for the weight update is (cf . [1, 21, 47])

w
(t+1)
i ← ρ′

(
r
(t)
i

)
/r

(t)
i , r

(t)
i := r (v(t), di). (5)

In a nutshell, the rationale behind rule (5) is to “connect”
weighted least-squares (4) to outlier-robust estimation (2),
allowing IRLS to optimize the latter (2). Indeed, [1] shows
that IRLS with the weight update in (5) results in a non-
increasing objective (2). Moreover, [1] gives conditions un-
der which IRLS with (5) converges to a stationary point of
(2). This confirms that one can apply IRLS to problem (2),
as long as one can solve weighted least-squares1 (4).

However, the conditions of the theorem of [1] are hard
to verify, e.g., one condition requires the minimizer of (4)
to be a continuous function of weights w

(t+1)
i . Moreover,

as [1] commented, directly applying (5) to non-smooth or
non-convex losses (e.g., ℓp or TLS) might create significant
theoretical and practical difficulties, e.g., (5) is undefined at
non-differentiable points. This suggests that rule (5) needs
to be improved if the ℓp or TLS loss is to be minimized.
IRLS in A Tale of Two Losses. For the non-smooth ℓp-
loss, (5) results in2 w

(t+1)
i ← (r

(t)
i )p−2, which tends to in-

finity as r(t)i → 0. A workaround is to truncate the residual
by some positive number ϵ, i.e., w(t+1)

i ← max{r(t)i , ϵ}p−2

[19, 24–26, 42, 43, 64]. While [1, 59] considered this to be
“an ad-hoc procedure”, in the optimization literature, there
do exist theoretical guarantees for IRLS with this revised
weight update to converge, at least for some specific resid-
ual functions r , see, e.g., [8, 16, 42, 43].

For the non-smooth and non-convex TLS loss ρ(r) =
min{r2, c2}, (5) results in2 a hard thresholding scheme: set
w

(t+1)
i to 1 if r(t)i ≤ c, or set it to 0 otherwise. IRLS fails

with such a weight update if the outlier rate exceeds 10% for
category-level perception as reported in [57]. This could be
remedied in two ways, discussed next.

The first is to adopt a different hard thresholding method
[10] from the optimization literature, which sets w(t+1)

i to 1

if r(t)i is among the s-smallest of all residuals (s is a hyper-
parameter), or set w

(t+1)
i to 0 otherwise; this method is

robust up to 50% outliers for robust regression, and con-
verges globally linearly under some conditions. Note that
this IRLS variant is not meant to minimize the TLS loss.

1While solving weighted least-squares (4) can be hard, many solvers
for geometric vision exist, see, e.g., [2, 5, 15, 33, 34, 49, 56, 57, 68, 73].

2Pretending that the ℓp or TLS losses are differentiable everywhere.

The second remedy manifests itself if one applies rule
(5) to some smoothing approximation ρµ(r) of the TLS loss
ρ(r) = min{r2, c2}. The approximation of [12] is

ρµ(r) =


r2, if r2 ≤ µc2

µ+1 ,

c2, if r2 ≥ µ+1
µ c2,

2c|r|
√
µ(µ+ 1)− µ(c2 + r2), o/w.

(6)

Since ρµ → ρ as µ → ∞, a natural strategy, called gradu-
ated non-convexity (GNC) [12], is to alternate between opti-
mizing ρµ and increasing µ at each iteration t. The method
used for increasing µ is called a GNC schedule and the de-
fault schedule has been a linear one, i.e., µ(t+1) ← γµ(t)

with some hyper-parameter γ > 1 [39, 46, 57, 60, 68, 74].
For example, the GNC-TLS method [12, 68] incorporates
this linear schedule within the IRLS framework (3)-(5) to
approximate the TLS loss via ρµ.

However, the great engineering intuition of [12] and its
follow-up works [4, 39, 62, 68, 75] on GNC comes with the
lack of theoretical guarantees, thus [69,71] refer to GNC as
a “fast heuristic” strategy. On the other hand, in the opti-
mization literature, similar GNC twists for the ℓp-loss have
been empirically investigated [18, 65, 67] for compressed
sensing and related problems, and empowered with global
linear or local superlinear convergence rates [22,36,46,52].

For outlier-robust estimation (2), either with general
[4,39,68] or specific residual functions [26,52], either with
the ℓp [26, 46, 52], TLS [4, 39, 57, 68], or even other losses
[59, 73], combining IRLS and GNC has pushed the empir-
ical performance to a certain limit, which other types of
methods (e.g., RANSAC [28]) can hardly attain given the
same time budget. On the other hand, theoretical guarantees
for IRLS offered in the optimization literature are limited
to specific problems (e.g., compressed sensing [22]), and,
though related, cannot be applied directly to outlier-robust
estimation (2). An intriguing but under-explored theoretical
question is why IRLS, GNC, and the like work so well for
outlier-robust estimation (2)—can we extend, not just apply,
the insights from optimization to answer this question?

1.3. Our Contribution

We present an IRLS variant called GNC-IRLSp (Algo-
rithm 1) for the outlier-robust estimation problem (2) and
establish general convergence properties for general con-
straint sets C, providing a well-founded framework for em-
pirically successful GNC methods. We further elucidate
how appropriately chosen update rules for the smoothing
parameter ϵ(t) (Line 7) of GNC-IRLSp lead to a global and
fast local convergence for outlier-robust estimation prob-
lems. More specifically, our contributions are as follows:

• In Section 2, we consider outlier-robust estimation (2)
for a general class of residual functions and constraints, and
we prove that GNC-IRLSp converges to stationary points
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Algorithm 1: GNC-IRLSp

1 Input: data d1, . . . , dm, p ∈ (0, 1];
2 Let v(0) ∈ C with ∥v(0)∥2 <∞ and ϵ(0) ∈ (0,∞);
3 For t← 0, 1, 2, . . . :
4 Compute the residual r(t)i ← r (v(t), di), ∀i;
5 w

(t+1)
i ← max{r(t)i , ϵ(t)}p−2 ; // Sec. 2

6 Solve problem (4) and get v(t+1) ; // Sec. 2

7 Calculate ϵ(t+1) based on a GNC schedule ; // Sec. 3

of (some majorizer of) the ℓp-loss under suitable assump-
tions (Theorem 1). Moreover, the assumptions are easy to
verify and satisfied by many geometric vision problems (see
the appendix). This challenges the viewpoint of [1, 59] that
truncating the residual (Line 4, Algorithm 1) is “ad-hoc”.
Our proof is enabled by a majorization interpretation of
GNC-IRLSp, and is motivated by [22, 45, 54]. As we will
discuss, our result is more general than those of [22,45,54].

• In Section 3, we propose a superlinear GNC schedule
for GNC-IRLSp, as opposed to a linear one. We prove that
GNC-IRLSp with such a schedule converges to the ground
truth at a global linear and local superlinear rate, with high
probability (Theorem 2). Moreover, GNC-IRLSp provably
enjoys quadratic rates starting from the first iteration. A
theoretical drawback of this powerful result is that it has
a “burn-in” period and is limited to the robust regression
setting; this is harmless though when it comes to practical
use. Our proof is motivated by [46]. Their result holds only
for p = 1, and our contribution lies not only in overcoming
the non-convexity for the case of p < 1, but in leveraging
the non-convexity to obtain a faster convergence rate.

• In Section 4 we compare the performance of
GNC-TLS and GNC-IRLSp for point cloud registration.
GNC-IRLSp terminates in 10 iterations while GNC-TLS
takes 30. This is because GNC-IRLSp uses a superlinear
GNC schedule, while GNC-TLS uses a linear schedule.

• In Section 5, we endow the TLS loss with a majoriza-
tion strategy and a superlinear GNC schedule, leading to an
IRLS method that we call MS-GNC-TLS. With majoriza-
tion we prove MS-GNC-TLS converges, which challenges
the viewpoint of [69, 71] that GNC is “heuristic”. With the
superlinear schedule, MS-GNC-TLS converges, say, at iter-
ation 6, whereas GNC-TLS does so only at iteration 30.

2. GNC-IRLSp: Interpretation & Convergence
In this section we show that GNC-IRLSp is a conver-

gent method, each iteration making steady progress towards
minimizing (some majorizer of) the ℓp-loss. We first show
GNC-IRLSp involves two-level majorization (Section 2.1).
Then we state our convergence result (Section 2.2).

ρ0.1(r)

ρ0.3(r)

ρ0.6(r)

ρ(r) = 2|r|0.5

ρϵ(r)

ϵ→ 0

−0.6 −0.3 0 0.3 0.6

r

(a) Smooth Majorizer ρϵ(r)

ρ0.3(r)

q0.3(r, 0.5)

q0.3(r, 0.1)

ρ(r) = 2|r|0.5

−0.3 0 0.3

r

(b) Quadratic Majorizer qϵ(r, u)

Figure 1. Two majorizers of ρ(r) = 2|r|0.5, ρϵ (7) and qϵ (8).

2.1. Interpretation of GNC-IRLSp

For two functions f and g defined on R, if f(r) ≥ g(r)
(∀r ∈ R), we say f majorizes g or f is a majorizer of g.
Behind the apparent alternating nature of GNC-IRLSp, it
involves two-level majorization, as signified by the smooth
majorizer and quadratic majorizer, introduced next.
Smooth Majorizer. As the main player in the first level
of majorization, we define the smooth majorizer ρϵ : R →
R≥0 for each ϵ > 0 [52, 61] such that

ρϵ(r) =

{
1
p |r|

p, |r| > ϵ,
1
2

r2

ϵ2−p + ( 1p −
1
2 )ϵ

p, |r| ≤ ϵ.
(7)

The smooth majorizer ρϵ is a Huber-like loss [35] which co-
incides with the ℓp-loss if |r| ≥ ϵ and is otherwise quadratic
in r. Figure 1a shows that ρϵ majorizes the ℓp-loss for
p = 0.5 and different values of ϵ. More formally, we have:

Lemma 1 (ρϵ(·) is Smooth ℓp-Majorizer). For ρ(r) =
1
p |r|

p and ρϵ(r) defined in (7), the following holds: (i) ρϵ(·)
is continuously differentiable, (ii) ρ(r) ≤ ρϵ(r),∀r ∈ R,
(iii) ϵ′ ≤ ϵ⇒ ρϵ′(r) ≤ ρϵ(r), (iv) ρ(r) = limϵ→0 ρϵ(r).

Remark 1 (Rethink Weight Update). The weight update of
Algorithm 1 coincides with rule (5) with ρ = ρϵ(t) .

Remark 2 (GNC for the ℓp-Loss). Lemma 1 prompts a GNC
strategy of minimizing ρϵ (7) or even the ℓp-loss: decrease
ϵ(t) at each iteration t (Line 7, Algorithm 1).

Quadratic Majorizer. The smooth majorizer (7) is non-
convex, and directly minimizing it can be hard. This is
why the second level of majorization comes into play; the
quadratic majorizer is the following quadratic function qϵ:

qϵ(r, u) = ρϵ(u) +
1

2
· r2 − u2

max{|u|, ϵ}2−p
. (8)

Note that qϵ(r, u) is a shifted version of ρϵ(u) by a care-
fully chosen amount, which makes qϵ(·, u) into a majorizer
of ρϵ(·). Indeed, Figure 1b shows that q0.3(·, u) majorizes
ρ0.3(·) for u = 0.1 and 0.5. More formally, we have:
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Lemma 2 (qϵ(·, u) is Quadratic ℓp-Majorizer). With ρ(r) =
1
p |r|

p, ρϵ(r) and qϵ(r, u) defined respectively in (7) and (8),
we have ρϵ(u) = qϵ(u, u) and ρϵ(r) ≤ qϵ(r, u), ∀r, u ∈ R.

Remark 3 (Rethink Weighted Least-Squares). Recall r(t)i :=
r (v(t), di). The WLS step (4) of Algorithm 1 minimizes the

quadratic majorizer
m∑
i=1

qϵ(t)
(
r(·, di), r

(t)
i

)
:

v(t+1) ∈ argmin
v∈C

m∑
i=1

r (v , di)2

max{|r(t)i |, ϵ(t)}2−p

=argmin
v∈C

∑m

i=1
qϵ(t)(r (v , di), r

(t)
i )

GNC-IRLSp differs from the majorization-minimization
paradigm [27, 54, 63] in that, at different iterations,
GNC-IRLSp minimizes different quadratic majorizers, as
controlled by the smoothing parameter ϵ(t); in so doing, it
blends (quadratic) majorization-minimization with GNC.

2.2. Convergence of GNC-IRLSp

To obtain convergence results, we need appropriate as-
sumptions on the constraint set C and residual function r .
The first assumption is standard (cf . [3, Section 4.2]):

Assumption 1. C is non-empty and closed. The residual
function r (v , d ) : C × D → R≥0 is weakly coercive in v :

Either C is bounded or lim
v∈C,∥v∥2→∞

r (v , d )→∞. (9)

Moreover, if ∥v∥2 ̸=∞ then r (v , d ) ̸=∞.

The next assumption is about differentiability:

Assumption 2. The residual function r (v , d ) is continu-
ous in v everywhere, and differentiable in v if r (v , d ) ̸= 0.
Moreover, r (v , d )2 is continuously differentiable in v .

Assumptions 1 and 2 are mild and easy to verify. With
these assumptions, we prove the following:

Theorem 1 (Convergence of GNC-IRLSp). Let {v(t)}t be
the iterates of Algorithm 1 with ϵ(t) non-increasing and
ϵ := limt→∞ ϵ(t) > 0. Under Assumptions 1 and 2, ev-
ery accumulation point of {v(t)}t is a stationary point3 of

min
v∈C

∑m

i=1
ρϵ
(

r (v , di)
)
. (10)

With a GNC schedule that creates a non-increasing se-
quence {ϵ(t)}t convergent to ϵ, GNC-IRLSp finds a sta-
tionary point of ρϵ (Theorem 1), and ρϵ approximates the
ℓp-loss very well if ϵ is small (Lemma 1, Figure 1a). The
convergence statement of “accumulation points are station-
ary points” in Theorem 1 is standard, and similar results can

3Stationary points are in the sense of [3, Section 5.3]; they satisfy a
certain geometric condition that every local minimizer of (10) fulfills.

be found in optimization papers on IRLS or majorization-
minimization, e.g., [22, Thm 5.3 (ii)], [45, Thm 3.2], [54,
Thm 1], [61, Thm 11], [47, Proposition 5], [42, Thm 1].
However, to our knowledge, Theorem 1 is the only result
that holds for a general constraint set C and for minimizing
a sequence of majorizers within the GNC framework.

Theorem 1 is proved by combing ideas of [22, 45] and
[54], while generalizing their results. Unlike in Theorem 1,
C is assumed to be convex and ϵ(t) = ϵ for all t in [54].
In [22, 45], C is defined by linear equality constraints and
the residual function r is very specific, unlike in Theorem 1.
Finally, as reviewed in Section 1.2, the result of [1] requires
a condition that is hard to verify and their result does not
apply to IRLS with the GNC strategy.

While stationary points are not necessarily local mini-
mizers3, convergence to them is perhaps the best one could
guarantee in the setting where the objective (7) and con-
straint set C can both be non-convex. That said, a stronger
convergence theory is possible given more assumptions on
the problem and data. We will explore this in Section 3.

3. Convergence Rates for Robust Regression
While Theorem 1 is general, it does not reveal any con-

vergence speed. Here, we compromise on generality and
prove that GNC-IRLSp converges rapidly for robust regres-
sion [48]. Consider the following problem setup:

Problem 1 (Robust Regression). For a feature matrix A =
[a1, . . . ,am]⊤ ∈ Rm×n and a response vector y =
[y1, . . . , ym]⊤ ∈ Rm, assume there is a ground truth vec-
tor v∗ = x∗ ∈ Rn such that the residual vector Ax∗ − y
has k non-zero entries; i.e., there are k outliers and m − k
inliers among data {di}mi=1 = {(ai, yi)}mi=1. The goal of
robust regression is to recover x∗ from data A and y.

In Problem 1 we assume all inliers (ai, yi) are noiseless,
i.e., r (v∗, di) = |a⊤

i x
∗ − yi| = 0. The extension to the

noisy case is not hard (cf . [46, Thm 2], [36, Thm A.1]).
The GNC schedule is closely related to the convergence

rates of IRLS. Informally, [46] suggests that the linear GNC
schedule (as is commonly seen) leads to a linear rate. How-
ever, it is possible for IRLS to attain superlinear rates. In
particular, defining the superlinear GNC schedule

ϵ(t+1) ← β(ϵ(t))2−p, β > 0, (11)

we prove the following result:

Theorem 2. Assume A ∈ Rm×n has i.i.d. N (0, 1) entries.
Initialize Algorithm 1 at x(0) and ϵ(0) > 0 such that ∥x(0)−
x∗∥2 ≤ ϵ(0). Denote by r∗min+ the smallest non-zero number
among the set of residuals {|a⊤

i x
∗ − yi|}mi=1. Define

α :=

√
5 · 22−p

0.99 · 0.516 · 1(
r∗min+

)1−p ·
√
k ·

(
1.01

√
k +

√
n
)

(m− k)
. (12)
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Then the iterates {x(t)}t≥0 produced by GNC-IRLSp with
p ∈ [0, 1]4 and the GNC schedule (11) with β ≥ α satisfy

∥x(t) − x∗∥2 ≤

{
βt · ϵ(0) p = 1

β
(2−p)t−1

1−p · (ϵ(0))(2−p)t p ∈ [0, 1)
(13)

with probability at least 1− (P0 + P1 + P2), where

P0 := exp
(
− Ω̃(n)

)
, P1 := exp(−Ω̃(k − n)),

P2 := exp
(
− Ω̃(m− k − n log n)

)
.

(14)

We discuss several aspects of Theorem 2: (i) the proba-
bilities (14), (ii) the condition β ≥ α (12), (iii) its relation
to prior works, and (iv) the interaction of the GNC schedule
(11), error bound (13) and condition ∥x(0) − x∗∥2 ≤ ϵ(0).

(i) In the probability terms of (14), Ω̃ stands for the stan-
dard big-Ω notation, with the difference that Ω̃ also sup-
presses logarithmic terms. We wish P0, P1, P2 of (14) to be
small so that (13) holds with high probability. This is true
whenever n is large (P0), k ≫ n (P1), and m−k ≫ n log n
(P2). It seems counterintuitive to ask for the number k of
outliers to be far larger than n, but the challenging case of
Problem 1 occurs exactly when k is large. If k were small,
then an alternative proof would give P1 = exp(−Ω̃(n)).
Such proof is much simpler, which is why we omit it.

(ii) We wish α to be as small as possible as this would
make it easier to set the factor β in the GNC schedule
(11). Ignoring the values of the constants in (12), α mainly
involves two terms, r∗min+ and O((k +

√
kn)/(m − k)).

Since r∗min+ measures the minimum residual of outliers at
the ground truth x∗, we expect it to be a large constant.
Since p ∈ [0, 1], a large (r∗min+)

1−p would make α small;
on the other hand, for p = 1, α does not depend on r∗min+ at
all. Then note that we require a large k in (i), but this might
make the second term O((k+

√
kn)/(m−k)) and therefore

α very large. The rescue is in the denominator: α is small
if the number m− k of inliers (or the inlier rate) is large.

(iii) Theorem 2 is motivated by [46, Thm 1], over which
we make some improvements. First, the GNC schedule of
[46] sets ϵ(t+1) ← βϵ(t) if ∥x(t+1) − x(t)∥2 ≤ 2βϵ(t), or
otherwise ϵ(t+1) ← ϵ(t). We simplify and generalize it into
(11). Also, [46] is limited to the case p = 1, but Theorem 2
holds for any p ∈ [0, 1]; we derive some technical lemmas
that overcome the challenges of the non-convex case p < 1.

The final point (iv) has more delicate interpretations and
ramifications, and we discuss it in Sections 3.1-3.4 next.

3.1. Global Linear Convergence at p = 1?

For the error bound ∥x(t) − x∗∥2 ≤ βt · ϵ(0) of (13) to
make sense, one needs to set β < 1, then the condition α ≤
β in Theorem 2 implies α < 1. As discussed, we have α <
1 if the inlier rate is large. Indeed, assuming k,m≫ n and

4It is valid to run GNC-IRLSp with p = 0, as we justified in [52].

β = 0.8, p = 1, ϵ(0) = 102100
30

10−8

0 20 40 60 80 100

# of Iterations (t)

βtϵ(0)

∥x(t) − x∗∥2

(a) Decay of Error (Bound) (13)

β = 0.8, p = 0, ϵ(0) = 130

10−2

10−6

10−15

0 4 8 12 16 20

# of Iterations (t)

Random Init.
LS Init.

(b) Decay of Error ∥x(t) − x∗∥2

Figure 2. (2a, Section 3.1): Error bound ∥x(t) − x∗∥2 ≤ βtϵ(0)

(13) with initialization x(0) ∼ N (0, 100In). (2b, Section 3.2):
Errors of GNC-IRLS0 at each iteration with least-squares versus
random initialization. 100 trials, k = 400,m = 1000, n = 10.

bringing now the constant of (12) into the picture, we see
that α < 1 amounts to m− k > 2.02

√
5/(0.99× 0.516)k.

This defines an outlier rate below which Theorem 2 holds.
This also implies Theorem 2 is optimal in an information-
theoretical sense (e.g., it only requires m to be linear in k).

For ∥x(t) − x∗∥2 ≤ βt · ϵ(0) to be true, Theorem 2 re-
quires ∥x(0) − x∗∥2 ≤ ϵ(0) (among other assumptions).
Given any initialization x(0), one can choose a large ϵ(0)

such that ∥x(0) − x∗∥2 ≤ ϵ(0), so [46] claimed this is a
global linear convergence. But this claim is imprecise, e.g.,
if x(0) is the least-squares initialization and ϵ(0) is larger
than all residuals |a⊤

i x
(0) − yi|, then all weights w

(1)
i are

equal to ϵ(0), and we would get x(1) = x(0). As such, the
error would not decrease until ϵ(t) becomes smaller: Figure
2a shows that ∥x(t)−x∗∥2 “waits” for almost 20 iterations
to decay together with the bound βtϵ(0) (ϵ(0) = 100). This
overlooked phenomenon caused by large ϵ(0) is what we
call a burn-in period. Interestingly, the burn-in period does
not mean that our bound (13) is incorrect, but just that it
might be loose for large ϵ(0) in early iterations.

Figure 2a shows that GNC-IRLS1 needs more than 100
iterations to reach machine accuracy. We improve this next,
by considering p ∈ [0, 1) (Sections 3.2-3.4).

3.2. Local Quadratic Convergence at p = 0

Theorem 2 with p ∈ [0, 1) is better elaborated in the case
p = 0, for which (13) gives ∥x(t) − x∗∥2 ≤ (βϵ(0))2

t

/β.
This corresponds to a quadratic convergence rate. Again,
the error bound (βϵ(0))2

t

/β only makes sense if βϵ(0) < 1,
or if we set ϵ(0) small (note that this time we do not require
β < 1). In turn, Theorem 2 would demand an initialization
x(0) such that ∥x(0)−x∗∥2 ≤ ϵ(0). As corroborated by Fig-
ure 2b, GNC-IRLS0 with random (“bad”) initialization and
small ϵ(0) fails, but the least-squares initialization seems to
be good enough, allowing GNC-IRLS0 to converge at a
quadratic rate, within 10 iterations, where “the number of
correct digits doubles at each iteration” [14, Section 9.5.3].
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Figure 3. (3a, Section 3.3): From linear to quadratic rates, vertical
lines indicating the transition takes place; k = 400,m = 1000,
x(0) ∼ N (0, In). (3b, Section 3.4): Error ∥x† − x∗∥2 of the
least-squares estimator x†. We set 100 trials, n = 10.

Powerful as it might seem, quadratic (and superlinear) con-
vergence is doomed to be local and in general cannot hold
for all initializations (cf . Newton’s method); we refer the
reader to our prior work [52] for different insights into the
quadratic rates of IRLS for robust regression.

We believe the next best convergence guarantees are
these two: (i) prove that some IRLS variant has two-phase
convergence, first global linear and then local quadratic,
(ii) derive a suitable choice of ϵ(0), β, and x(0) for which
quadratic convergence happens starting from the first itera-
tion. We discuss these next in Section 3.3 and 3.4.

3.3. Graduated Rates From Linear to Quadratic?

Consider the following slight twist over Algorithm 1:

(a) With some initialization x(0) and a sufficiently large
ϵ(0) such that ∥x(0) − x∗∥2 ≤ ϵ(0), run Algorithm 1
with p = 1 and GNC schedule (11), until βtϵ(0) < 1.
Theorem 2 suggests that ∥x(t) − x∗∥2 ≤ βtϵ(0).

(b) Re-run Algorithm 1 with x(0) := x(t), ϵ(0) := βtϵ(0),
p = 0, and schedule (11). Quadratic convergence (13)
of Theorem 2 is now meaningful, since βϵ(0) < 1.

Simply put, the above twist switches from p = 1 to p =
0 if βtϵ(0) < 1, resulting in a graduated rate from global
linear to local quadratic. Such a graduated rate guarantee
seems rare; we can only find it in [20]. Figure 3a shows
that when we switch to p = 0, the convergence ensues in
the next 10 iterations. A deficiency is that this twist also
comes with a burn-in period (cf . Section 3.1), after which it
is possible that the linear convergence phase is skipped and
the quadratic convergence takes place directly (Figure 3a).

3.4. Quadratic Rates From The First Iteration?

The IRLS twist of Section 3.3 can take 30 iterations to
converge if ϵ(0) is large (Figure 3a). But we also saw that,
with the least-squares initialization and βϵ(0) = 0.8 < 1,

GNC-IRLS0 converges within 10 iterations, at a quadratic
rate (Figure 2b). We now argue that it is theoretically pos-
sible for GNC-IRLS0 to have quadratic rates starting from
as early as the first iteration. For this, we first prove:

Proposition 1. Assume A ∈ Rm×n has i.i.d. N (0, 1) en-
tries with m ≥ n. Let x† := (A⊤A)−1A⊤y. With proba-
bility at least 1− exp(−Ω(k))− exp(−Ω(m)), we have

∥x† − x∗∥2 ≤
(1.01

√
k +
√
n) · ∥Ax∗ − y∥2

(0.99
√
m−

√
n)2

. (15)

We wish ∥x† − x∗∥2 ≤ 1; if so we can set ϵ(0) = 1
and β < 1, achieving quadratic rates with initialization x†

(Theorem 2). This is possible if k/m is small and m, k ≫
n; see (15). This is also empirically confirmed in Figure 3b,
where ∥x† − x∗∥2 ≤ 1 for fewer than 30% outliers.

Implementation Details. The discussions so far suggest
the following implementation of GNC-IRLSp. Set ϵ(0) =
1, p = 0. Initialize it via least-squares. Set β smaller than 1;
we always use β = 0.8. Theorem 1 suggests to let {ϵ(t)}t
converge to some ϵ > 0. In the noiseless case, we set ϵ =
10−16. Otherwise, if we are given an inlier threshold c such
that r (v∗, di) ≤ c for all inliers di, then we set ϵ = c.

4. Experiments: Lp Versus TLS
Here we compare GNC-TLS [12, 68] and GNC-IRLSp.

For more extensive experiments of IRLS and its variants,
see, e.g., [1, 19, 24, 26, 40, 57, 58, 62, 68].

Experimental Setup. We contextualize our experiment in
the application of point cloud registration. In this applica-
tion, each sample di is a 3D point pair (yi,xi), the vari-
able v consists of a 3D rotation R and translation t, and the
residual function is r (v ; di) = ∥yi −Rxi − t∥2. The cor-
responding weighted least-squares problem (4) is solved by
eliminating the translation first and then applying SVD [34].

Data. We randomly sample k outlier point pairs (yj ,xj)
so that yj ∼ N (0, I3) and xj ∼ N (0, I3); here I3 de-
notes the 3 × 3 identity matrix. To get m − k inlier pairs
(yi,xi), we randomly sample xi from N (0, I3) and com-
pute yi = R∗xi + t∗ + ϵi. Here, R∗ and t∗ are ran-
domly generated ground truth rotation and translation re-
spectively, and ϵi ∼ N (0, 0.012I3) is some Gaussian noise.
We set c2 = 0.012 × 5.542, so each inlier (yi,xi) satisfies
∥yi −R∗xi − t∗∥2 ≤ c2 with probability ≥ 1− 10−6.

Metric. Given a rotation R, translation t, and ground truth
inlier index set I∗, we can calculate the average inlier resid-
ual

∑
i∈I∗ ∥yi−Rxi− t∥2/(m− k). This is used to mea-

sure the errors made by the algorithms to evaluate.

Results. As the outlier rate varies from 10% to 90%,
GNC-IRLS0 and GNC-TLS entail almost the same aver-
age inlier residual (Figure 4a). Their errors are even smaller
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Figure 4. Comparison of GNC-IRLS0 and GNC-TLS for point
cloud registration. 100 trials, m = 1000. 4d: 900/1000 outliers.

than those at the ground truth (R∗, t∗), which suggests that
the performance of both algorithms cannot be further im-
proved for such experiments. But note that they could fail
for more than 900/1000 outliers (which was reported in
prior works, so we did not provide a plot here) and that
the breakdown points will change for different data distri-
butions and different geometric problems.

What can actually be improved is the convergence rate:
GNC-IRLS0 terminates in 10 iterations, while GNC-TLS
takes 32 (Figure 4b), indicating that GNC-IRLS0 is 3 times
faster (Figure 4c). For fair5 comparison, both methods are
implemented to terminate under the same condition, that
is whenever the difference of the minimum values of (4)
between two consecutive iterations is smaller than 10−10

(other thresholds, e.g., 10−6, 10−16, lead to similar results).
The errors of GNC-TLS decrease as fast as GNC-IRLS0

(Figure 4d, left). At first glance, this seems counterintuitive
because GNC-TLS comes with a linear GNC schedule (cf .
Section 1.2) and is thus expected to converge linearly (cf .
[46]), as opposed to the quadratic rate of GNC-IRLS0 (cf .
Theorem 2). With hindsight, this might be a natural conse-
quence of the weighting strategy of GNC-TLS (cf . [68, Eq.
(14)], (5), (6)): Weight 0 is set if the residual is particularly
large, and this could completely rule out some obvious out-
liers at early iterations (and similarly for particularly small
residuals), resulting in a fast decrease of errors. But this
weighting scheme brings diminishing gains in later itera-

5It is slightly unfair to GNC-IRLS0 as its weights are typically larger.

tions, where the errors of GNC-TLS decrease only linearly
(Figure 4d, right). The final observation is that GNC-IRLS0

reaches an error smaller than that of (R∗, t∗) at iteration
7, but it requires a few more iterations to terminate (simi-
larly for GNC-TLS). This implies the termination criterion
is sub-optimal (it is hard to design a provably better one).

Finally, Figures 4b and 4d show that GNC-TLS has an
error of ≤ 10−3 already at iteration 10, but, unnecessarily,
it terminates at iteration 32. We improve this in Section 5,
without even changing the termination criterion.

5. MS-GNC-TLS: Improving GNC-TLS

... it indicates that GNC can fail, and that there is therefore no
point in looking for a general proof of correctness.

Andrew Blake & Andrew Zisserman [12]

In this section, we improve GNC-TLS [12, 68] from two
aspects, as respectively motivated by two ideas that we have
developed for the ℓp-loss, namely majorization (Section 2)
and superlinear GNC schedule (Section 3). Majorization
guarantees a monotonic decrease of the objective and the
eventual convergence (cf . Theorem 1), and the superlinear
GNC schedule speeds up convergence (cf . Theorem 2).

Majorization. To motivate the need for majorizing the TLS
loss ρ(r) = min{r2, c2}, recall GNC-TLS uses ρµ (6) to
approximate ρ(·). The issue is that ρµ(·) relaxes ρ(·) and
approximates it from below, and hence ρµ(r) ≤ ρ(r),∀µ >
0 (Figure 5a). This makes a convergence analysis difficult.

We propose the following smooth function

ρµ(r) =


r2, if |r| ≤ c,
µ+1
µ c2, if |r| ≥ µ+1

µ c,

−µr2 + 2(1 + µ)c|r| − (1 + µ)c2, o/w,

(16)

to majorize the TLS loss ρ(r); see Figure 5b. Since both
ρµ(r) (6) and ρµ(r) approach ρ(r) as µ → ∞, one might
expect comparable performance. However, a crucial differ-
ence is that, with the majorizer ρµ(r), convergence guaran-
tees easily ensue. Indeed, ρµ(r) is akin to the smooth ma-
jorizer (7) of the ℓp-loss, and one could construct a quadratic
majorizer for ρµ(r), which enables an IRLS + GNC scheme
(cf . Remarks 1-3, Section 1.2). In particular, this IRLS vari-
ant involves (i) weight update using (5) with ρ = ρµ(t) , i.e.,

w
(t+1)
i =


1, if r(t)i ≤ c,

0, if r(t)i ≥
µ(t)+1
µ(t) c,

c(1+µ(t))

r
(t)
i

− µ(t), o/w,

(17)

and (ii) updating µ(t+1) based on some GNC schedule.
We prove the following result to accompany Theorem 1.
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Figure 5. The TLS loss ρ(r) and its surrogates.

Theorem 3 (Convergence of majorized GNC-TLS). Let
{v(t)}t be the iterates of IRLS with weight update (17) and
a GNC schedule {µ(t)}t. Assume {v(t)}t is bounded, i.e.,
∥v(t)∥2 < ∞ (∀t). Suppose {µ(t)}t is non-decreasing and
converges to µ < ∞. Under Assumptions 1 and 2, every
accumulation point of {v(t)}t is a stationary point of

min
v∈C

∑m

i=1
ρµ

(
r (v , di)

)
. (18)

Superlinear Schedule. Motivated by (11) (with p = 0) and
discussions in Sections 3.2-3.3, we propose the update rule

µ(t+1) ←

{
γ
√

µ(t) µ(t) ≤ 1

γµ(t) µ(t) > 1
, γ > 1, (19)

as our GNC schedule. Denote by MS-GNC-TLS the result-
ing IRLS method that optimizes (16) with schedule (19).

The intuition behind the superlinear schedule (19) is
as follows. With (19), the interval (c, c + c/µ(t)) of
(17) that produces non-binary weights shrinks faster than
the linear schedule µ(t+1) ← γµ(t) (Figure 6a), thus
the superlinear schedule makes it happen earlier that all
weights become binary, which is a good indicator for con-
vergence. Note though that this argument does not prove
(MS-)GNC-TLS converges, as it does not exclude the
case that (MS-)GNC-TLS could produce different binary
weights at consecutive iterations (cf . [10] and [4, Thm 15]).

Under the setting of Figure 4c, MS-GNC-TLS takes 6
iterations to converge (Figure 6b). It is even faster than
GNC-IRLS0 as it benefits from combining soft and hard
thresholding (17). In this experiment, MS-GNC-TLS and
GNC-TLS result in basically the same error upon conver-
gence; it is just that GNC-TLS does not monotonically de-
crease the objective, and that its linear GNC schedule is
more conservative than the proposed superlinear one.
Implementation Details. With the superlinear schedule
(19), µ(t) increases very fast, so one could set µ(0) ← 10−15

such that MS-GNC-TLS can still terminate within 10 itera-
tions. However, schedule (19) is double-edged: If µ(t) in-
creases so fast that all residuals are larger than µ(t)+1

µ(t) c, then

5.5·103
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Figure 6. 6a: Length c/µ(t) of the interval that corresponds to
non-binary weights (17) with c = 0.0554, µ(0) = 10−5, γ = 1.4.
6b: Number of iterations at which the algorithms terminate.

all weights would be zero as per (17) and MS-GNC-TLS
might fail. Fortunately, this situation can be prevented if
we slow down: replace µ(t+1) ← γ

√
µ(t) of (19) with

µ(t+1) ← γ(µ(t))1/(2−p) for a larger p ∈ (0, 1].

6. Conclusion, Limitations, and Future Work

Conclusion. While IRLS and GNC have often been viewed
as different techniques [38,39,57,68,72], we reconcile them
with an emphasis on a theoretical understanding of con-
vergence properties and their relation with GNC schedules.
Two messages are (i) that a majorization strategy should be
constructed for guaranteeing convergence (Theorems 1 and
3), and (ii) that a superlinear GNC schedule should be con-
sidered for guaranteeing convergence rates (Theorem 2).
Limitations & Future Work. IRLS and its variants would
break down if the number m − k of inliers is close to the
number n of variables, say if m − k < 3n. For geometric
vision problems, n is small (e.g., n = 6 for point cloud
registration), so IRLS might fail if, for example, m − k <
18. In fact, for small m, other methods (e.g., RANSAC [7,
28], outlier removal [50], or semidefinite relaxations [31,
51, 70]) are efficient, accurate, and are thus recommended.

A limitation of the TLS loss ρ(r) = min{r2, c2} is the
need to choose a threshold parameter c. Ideally, it should be
chosen as small as possible but larger than every inlier resid-
ual; see [53] for a related discussion. Prior works [4, 62]
tried to dispense with c2, but it was at the expense of in-
troducing other parameters. This issue might be solved by
changing c in a GNC style at each iteration, which implies
future work of designing a GNC schedule for c and study-
ing its interplay with another GNC parameter µ(t). On the
theory side, we note that extending the analysis of Theorem
2 beyond ℓp-losses remains to be studied in future work.
Acknowledgements. This work was supported by grants
NSF 1704458, NSF 1934979, ONR MURI 503405-78051,
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contenant divers perfectionnemens de ces méthodes et leur
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[50] Álvaro Parra Bustos and Tat-Jun Chin. Guaranteed outlier
removal for point cloud registration with correspondences.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 40(12):2868–2882, 2018. 8

[51] Liangzu Peng, Mahyar Fazlyab, and René Vidal. Semidefi-
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